51
|
Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev 2016; 106:256-276. [PMID: 27496705 DOI: 10.1016/j.addr.2016.07.007] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/02/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022]
Abstract
In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed.
Collapse
Affiliation(s)
- P Lundquist
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| | - P Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| |
Collapse
|
52
|
Shakya AK, Chowdhury MYE, Tao W, Gill HS. Mucosal vaccine delivery: Current state and a pediatric perspective. J Control Release 2016; 240:394-413. [PMID: 26860287 PMCID: PMC5381653 DOI: 10.1016/j.jconrel.2016.02.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/21/2016] [Accepted: 02/05/2016] [Indexed: 12/30/2022]
Abstract
Most childhood infections occur via the mucosal surfaces, however, parenterally delivered vaccines are unable to induce protective immunity at these surfaces. In contrast, delivery of vaccines via the mucosal routes can allow antigens to interact with the mucosa-associated lymphoid tissue (MALT) to induce both mucosal and systemic immunity. The induced mucosal immunity can neutralize the pathogen on the mucosal surface before it can cause infection. In addition to reinforcing the defense at mucosal surfaces, mucosal vaccination is also expected to be needle-free, which can eliminate pain and the fear of vaccination. Thus, mucosal vaccination is highly appealing, especially for the pediatric population. However, vaccine delivery across mucosal surfaces is challenging because of the different barriers that naturally exist at the various mucosal surfaces to keep the pathogens out. There have been significant developments in delivery systems for mucosal vaccination. In this review we provide an introduction to the MALT, highlight barriers to vaccine delivery at different mucosal surfaces, discuss different approaches that have been investigated for vaccine delivery across mucosal surfaces, and conclude with an assessment of perspectives for mucosal vaccination in the context of the pediatric population.
Collapse
Affiliation(s)
| | | | - Wenqian Tao
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
53
|
Wang X, Wang N, Li N, Zhen Y, Wang T. Multifunctional particle-constituted microneedle arrays as cutaneous or mucosal vaccine adjuvant-delivery systems. Hum Vaccin Immunother 2016; 12:2075-2089. [PMID: 27159879 DOI: 10.1080/21645515.2016.1158368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
To overcome drawbacks of current injection vaccines, such as causing needle phobia, needing health professionals for inoculation, and generating dangerous sharps wastes, researchers have designed novel vaccines that are combined with various microneedle arrays (MAs), in particular, with the multifunctional particle-constructed MAs (MPMAs). MPMAs prove able to enhance vaccine stability through incorporating vaccine ingredients in the carrier, and can be painlessly inoculated by minimally trained workers or by self-administration, leaving behind no metal needle pollution while eliciting robust systemic and mucosal immunity to antigens, thanks to delivering vaccines to cutaneous or mucosal compartments enriched in professional antigen-presenting cells (APCs). Especially, MPMAs can be easily integrated with functional molecules fulfilling targeting vaccine delivery or controlling immune response toward a Th1 or Th2 pathway to generate desired immunity against pathogens. Herein, we introduce the latest research and development of various MPMAs which are a novel but promising vaccine adjuvant delivery system (VADS).
Collapse
Affiliation(s)
- Xueting Wang
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Ning Wang
- b School of Medical Engineering, Hefei University of Technology , Hefei , China
| | - Ning Li
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Yuanyuan Zhen
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Ting Wang
- a School of Pharmacy, Anhui Medical University , Hefei , China
| |
Collapse
|
54
|
Conjugates of small targeting molecules to non-viral vectors for the mediation of siRNA. Acta Biomater 2016; 36:21-41. [PMID: 27045350 DOI: 10.1016/j.actbio.2016.03.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED To use siRNA (small interfering RNA) for gene therapy, a gene delivery system is often necessary to overcome several challenging requirements including rapid excretion, low stability in blood serum, non-specific accumulation in tissues, poor cellular uptake and inefficient intracellular release. Active and/or passive targeting should help the delivery system to reach the desired tissue or cell, to be internalized, and to deliver siRNA to the cytoplasm so that siRNA can inhibit protein synthesis. This review covers conjugates of small targeting molecules and non-viral delivery systems for the mediation of siRNA, with a focus on their transfection properties in order to help the development of new and efficient siRNA delivery systems, as the therapeutic solutions of tomorrow. STATEMENT OF SIGNIFICANCE The delivery of siRNA into cells or tissues remains to be a challenge for its applications, an alternative strategy for siRNA delivery systems is direct conjugation of non-viral vectors with targeting moieties for cellular delivery. In comparison to macromolecules, small targeting molecules have attracted great attention due to their many potential advantages including significant simplicity and ease of production, good repeatability and biodegradability. This review will focus on the most recent advances in the delivery of siRNA using conjugates of small targeting molecules and non-viral delivery systems. Based the editor's suggestions, we hope the revised manuscript could provide more profound understanding to the conjugates of targeting molecules to vectors for mediation of siRNA.
Collapse
|
55
|
|
56
|
Li N, Wang N, Wang X, Zhen Y, Wang T. Microneedle arrays delivery of the conventional vaccines based on nonvirulent viruses. Drug Deliv 2016; 23:3234-3247. [DOI: 10.3109/10717544.2016.1165311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Ning Li
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| | - Ning Wang
- School of Medical Engineering, Hefei University of Technology, Hefei, China
| | - Xueting Wang
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| | - Yuanyuan Zhen
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| |
Collapse
|
57
|
Ahmed KK, Geary SM, Salem AK. Development and Evaluation of Biodegradable Particles Coloaded With Antigen and the Toll-Like Receptor Agonist, Pentaerythritol Lipid A, as a Cancer Vaccine. J Pharm Sci 2016; 105:1173-9. [PMID: 26886334 DOI: 10.1016/j.xphs.2015.11.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/08/2015] [Accepted: 11/20/2015] [Indexed: 12/01/2022]
Abstract
Immune adjuvants are important components of current and prospective cancer vaccines. In this study, we aimed at evaluating the use of a synthetic lipid A derivative, pentaerythritol lipid A (PET lipid A), loaded into poly(lactic-co-glycolic acid) particles, as a potential cancer vaccine adjuvant. Poly(lactic-co-glycolic acid) particles (size range: 250-600 nm) were successfully formulated to include PET lipid A and/or the model tumor antigen, chicken ovalbumin (OVA). It was shown that particulated PET lipid A had a distinct advantage at promoting secretion of the immune potentiating cytokine, IL-12p70, and upregulating key costimulatory surface proteins, CD86 and CD40, in murine dendritic cells in vitro. In a murine tumor model, involving prophylactic vaccination with various permutations of soluble versus particulated formulations of OVA with or without PET lipid A, modest benefit was observed in terms of OVA-specific cell-mediated immune responses when PET lipid A was delivered in particles. These findings translated into a corresponding trend toward increased survival of mice challenged with OVA-expressing tumor cells (E.G7). In terms of translation of safe adjuvants into the clinic, these results promote the concept of delivering toll-like receptor-4 agonists in particles because doing so improves their adjuvant properties, while decreasing the chances of adverse effects due to off-target uptake by nonphagocytic cells.
Collapse
Affiliation(s)
- Kawther K Ahmed
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa 52242
| | - Sean M Geary
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa 52242
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa 52242.
| |
Collapse
|
58
|
Preparation of the Multifunctional Liposome-Containing Microneedle Arrays as an Oral Cavity Mucosal Vaccine Adjuvant-Delivery System. Methods Mol Biol 2016; 1404:651-667. [PMID: 27076328 DOI: 10.1007/978-1-4939-3389-1_42] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, the multifunctional liposome-constituted microneedle arrays (LiposoMAs) have been proven to be an interesting vaccine adjuvant-delivery system (VADS) that are stable and can be vaccinated via oral cavity mucosal route. When given to mice at oral mucosa, the LiposoMAs can effectively eliminate the ingredient loss caused by chewing, swallowing, and saliva flowing and can, thus, elicit robust systemic as well as mucosal immunoresponses against the loaded antigens. In addition, the LiposoMAs can induce a mixed Th1/Th2 immunoresponse and strong cellular/humoral immunity due to special adjuvanticity and targeting delivery functions of the nanoparticulate VADS. In this chapter, the preparation, characterization as well as mucosal vaccination of the LiposoMAs are introduced. In addition, the methods for sampling mouse organs, tissues, and cells and for evaluation of the immunization efficacy are mainly included.
Collapse
|
59
|
Snook JD, Chesson CB, Peniche AG, Dann SM, Paulucci A, Pinchuk IV, Rudra JS. Peptide nanofiber–CaCO3 composite microparticles as adjuvant-free oral vaccine delivery vehicles. J Mater Chem B 2016; 4:1640-1649. [DOI: 10.1039/c5tb01623a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To combat mucosal pathogens that cause gastrointestinal (GI) infections, local mucosal immunity is required which is best achieved through oral vaccination.
Collapse
Affiliation(s)
- Joshua D. Snook
- Department of Pharmacology & Toxicology
- University of Texas Medical Branch
- Galveston
- USA
| | - Charles B. Chesson
- Institute for Translation Sciences
- University of Texas Medical Branch
- Galveston
- USA
- Sealy Center for Vaccine Development
| | - Alex G. Peniche
- Department of Internal Medicine-Division of Infectious Diseases
- University of Texas Medical Branch
- Galveston
- USA
| | - Sara M. Dann
- Institute for Translation Sciences
- University of Texas Medical Branch
- Galveston
- USA
- Department of Internal Medicine-Division of Infectious Diseases
| | | | - Iryna V. Pinchuk
- Institute for Translation Sciences
- University of Texas Medical Branch
- Galveston
- USA
- Department of Internal Medicine-Division of Gastroenterology
| | - Jai S. Rudra
- Department of Pharmacology & Toxicology
- University of Texas Medical Branch
- Galveston
- USA
- Sealy Center for Vaccine Development
| |
Collapse
|
60
|
Gamazo C, Martín-Arbella N, Brotons A, Camacho AI, Irache JM. Mimicking microbial strategies for the design of mucus-permeating nanoparticles for oral immunization. Eur J Pharm Biopharm 2015; 96:454-63. [PMID: 25615880 PMCID: PMC7126451 DOI: 10.1016/j.ejpb.2015.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
Abstract
Dealing with mucosal delivery systems means dealing with mucus. The name mucosa comes from mucus, a dense fluid enriched in glycoproteins, such as mucin, which main function is to protect the delicate mucosal epithelium. Mucus provides a barrier against physiological chemical and physical aggressors (i.e., host secreted digestive products such as bile acids and enzymes, food particles) but also against the potentially noxious microbiota and their products. Intestinal mucosa covers 400m(2) in the human host, and, as a consequence, is the major portal of entry of the majority of known pathogens. But, in turn, some microorganisms have evolved many different approaches to circumvent this barrier, a direct consequence of natural co-evolution. The understanding of these mechanisms (known as virulence factors) used to interact and/or disrupt mucosal barriers should instruct us to a rational design of nanoparticulate delivery systems intended for oral vaccination and immunotherapy. This review deals with this mimetic approach to obtain nanocarriers capable to reach the epithelial cells after oral delivery and, in parallel, induce strong and long-lasting immune and protective responses.
Collapse
Affiliation(s)
- Carlos Gamazo
- Department of Microbiology, University of Navarra, Pamplona, Spain
| | - Nekane Martín-Arbella
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Ana Brotons
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Ana I Camacho
- Department of Microbiology, University of Navarra, Pamplona, Spain
| | - J M Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
61
|
Smith JD, Morton LD, Ulery BD. Nanoparticles as synthetic vaccines. Curr Opin Biotechnol 2015; 34:217-24. [DOI: 10.1016/j.copbio.2015.03.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/21/2015] [Indexed: 12/16/2022]
|
62
|
Multifunctional liposomes constituting microneedles induced robust systemic and mucosal immunoresponses against the loaded antigens via oral mucosal vaccination. Vaccine 2015; 33:4330-40. [PMID: 25858854 DOI: 10.1016/j.vaccine.2015.03.081] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/12/2015] [Accepted: 03/24/2015] [Indexed: 11/20/2022]
Abstract
To develop effective, convenient and stable mucosal vaccines, mannose-PEG-cholesterol (MPC)/lipid A-liposomes (MLLs) entrapping model antigen bovine serum albumin (BSA) were prepared by the procedure of emulsification-lyophilization and used to constitute microneedles, forming the proMLL-filled microneedle arrays (proMMAs). The proMMAs were rather stable and hard enough to pierce porcine skin and, upon rehydration, dissolved rapidly recovering the MLLs without size and entrapment change. The proMMAs given to mice via oral mucosal (o.m.) route, rather than routine intradermal administration, elicited robust systemic and mucosal immunoresponses against the loaded antigens as evidenced by high levels of BSA-specific IgG in the sera and IgA in the salivary, intestinal and vaginal secretions of mice. Enhanced levels of IgG2a and IFN-γ in treated mice revealed that proMMAs induced a mixed Th1/Th2 immunoresponse. Moreover, a significant increase in CD8(+) T cells confirmed that strong cellular immunity had also been established by the immunization of the proMMAs. Thus, the proMMAs can be immunized via o.m. route to set up an effective multiple defense against pathogen invasion and may be an effective vaccine adjuvant-delivery system (VADS) applicable in the controlled temperature chain.
Collapse
|
63
|
Wang T, Zhen Y, Ma X, Wei B, Wang N. Phospholipid bilayer-coated aluminum nanoparticles as an effective vaccine adjuvant-delivery system. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6391-6. [PMID: 25780860 DOI: 10.1021/acsami.5b00348] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The phospholipid bilayer-coated aluminum nanoparticles (PLANs), formed via chemisorption, were prepared by reverse ethanol injection-lyophilization (REIL) utilizing the phosphophilicity of aluminum. The anhydrous antigen-loaded PLANs obtained by REIL proved stable, satisfying using the controlled-temperature-chain instead of the integrated cold-chain for distribution, and could be rehydrated to reconstitute instantly an aqueous suspension of the antigen-PLANs, which were more readily taken up by antigen-presenting cells and, when given subcutaneously to mice, induced more robust antigen-specific humoral and cellular immunoresponses but less local inflammation than the antigen-alum. Thus, the PLANs are a useful vaccine adjuvant-delivery system with advantages over the widely used naked alum.
Collapse
Affiliation(s)
- Ting Wang
- †School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Yuanyuan Zhen
- †School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Xiaoyu Ma
- †School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Biao Wei
- †School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Ning Wang
- ‡School of Medical Engineering, Hefei University of Technology, 193 Tun Brook Road, Hefei, Anhui Province 230009, China
| |
Collapse
|
64
|
Abstract
Vaccination has a proven record as one of the most effective medical approaches to prevent the spread of infectious diseases. Traditional vaccine approaches involve the administration of whole killed or weakened microorganisms to stimulate protective immune responses. Such approaches deliver many microbial components, some of which contribute to protective immunity, and assist in guiding the type of immune response that is elicited. Despite their impeccable record, these approaches have failed to yield vaccines for many important infectious organisms. This has prompted a move towards more defined vaccines ('subunit vaccines'), where individual protective components are administered. This unit provides an overview of the components that are used for the development of modern vaccines including: an introduction to different vaccine types (whole organism, protein/peptide, polysaccharide, conjugate, and DNA vaccines); techniques for identifying subunit antigens; vaccine delivery systems; and immunostimulatory agents ('adjuvants'), which are fundamental for the development of effective subunit vaccines.
Collapse
|
65
|
Wang T, Zhen Y, Ma X, Wei B, Li S, Wang N. Mannosylated and lipid A-incorporating cationic liposomes constituting microneedle arrays as an effective oral mucosal HBV vaccine applicable in the controlled temperature chain. Colloids Surf B Biointerfaces 2015; 126:520-30. [PMID: 25612819 DOI: 10.1016/j.colsurfb.2015.01.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/11/2014] [Accepted: 01/04/2015] [Indexed: 10/24/2022]
Abstract
To develop an effective, convenient and stable mucosal vaccine against hepatitis B virus (HBV), the mannose-PEG-cholesterol/lipid A-liposomes (MLLs) loaded with HBsAg were prepared by the procedure of emulsification-lyophilization and, subsequently, filled into the microholes of microneedle array reverse molds and dried to form the proHBsAg-MLLs microneedle arrays (proHMAs). The proHMAs were stable even at 40 °C for up to 3 days and hard enough to pierce porcine skin but, upon rehydration, rapidly dissolved recovering the HBsAg-MLLs without obvious changes in size and antigen association efficiency. Notably, immunization of mice only once with the proHMAs at oral mucosa induced robust systemic and widespread mucosal immunoresponses, as evidenced by the high levels of HBsAg-specific IgG in the sera and IgA in the salivary, intestinal and vaginal secretions. In addition, a strong cellular immunity against HBV had been established through a mixed Th1/Th2 response, as confirmed by a significant increase in CD8(+) T cells as well as the enhanced levels of IgG2a and IFN-γ in the treated mice. Thus, the proHMAs can be conveniently vaccinated via oral mucosal route to set up a multiple immune defense against HBV invasion and, in addition, may be a stable HBV vaccine applicable in the controlled temperature chain for wide distribution.
Collapse
Affiliation(s)
- Ting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China.
| | - Yuanyuan Zhen
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Xiaoyu Ma
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Biao Wei
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Shuqin Li
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Ning Wang
- School of Medical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province 230009, China.
| |
Collapse
|
66
|
Cui Z, Han D, Sun X, Zhang M, Feng X, Sun C, Gu J, Tong C, Lei L, Han W. Mannose-modified chitosan microspheres enhance OprF-OprI-mediated protection of mice against Pseudomonas aeruginosa infection via induction of mucosal immunity. Appl Microbiol Biotechnol 2014; 99:667-80. [PMID: 25381907 DOI: 10.1007/s00253-014-6147-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 01/22/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that localizes to and colonizes mucosal tissue. Thus, vaccines that elicit a strong mucosal response against P. aeruginosa should be superior to other vaccination strategies. In this study, to stimulate rapid and enhanced mucosal immune responses, mannose-modified chitosan microspheres loaded with the recombinant outer membrane protein OprF190-342-OprI21-83 (FI) (FI-MCS-MPs) of P. aeruginosa were developed as a potent subunit vaccine for mucosal delivery. FI-MCS-MPs were successfully obtained via the tripolyphosphate ionic crosslinking method. Confocal and immunohistochemical analyses indicated that FI-MCS-MPs exhibited the ability to bind the macrophage mannose receptor (MMR, CD206) in vitro and in vivo. After intranasal immunization of mice with FI-MCS-MPs, FI-specific humoral immune responses were detected, measured as local IgM antibody titers in lung tissue slurry; IgA antibody titers in nasal washes, bronchoalveolar lavage (BAL), and intestinal lavage; and systemic IgA and IgG antibody titers in serum. FI-MCS-MPs induced early and high mucosal and systemic humoral antibody responses comparable to those in the group vaccinated with unmodified mannose. High levels of IFN-γ and IL-4 in addition to T lymphocyte subsets induced a mixed Th1/Th2 response in mice immunized with FI-MCS-MPs, resulting in the establishment of cellular immunity. Additionally, when immunized mice were challenged with P. aeruginosa via the nasal cavity, FI-MCS-MPs demonstrated 75 % protective efficacy. Together, these data indicate that mannose-modified chitosan microspheres are a promising subunit delivery system for vaccines against P. aeruginosa infection.
Collapse
Affiliation(s)
- Ziyin Cui
- College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|