51
|
Hu X, Zhu H, He X, Chen J, Xiong L, Shen Y, Li J, Xu Y, Chen W, Liu X, Cao D, Xu X. The application of nanoparticles in immunotherapy for hepatocellular carcinoma. J Control Release 2023; 355:85-108. [PMID: 36708880 DOI: 10.1016/j.jconrel.2023.01.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related deaths worldwide, however, current clinical diagnostic and treatment approaches remain relatively limited, creating an urgent need for the development of effective technologies. Immunotherapy has emerged as a powerful treatment strategy for advanced cancer. The number of clinically approved drugs for HCC immunotherapy has been increasing. However, it remains challenging to improve their transport and therapeutic efficiency, control their targeting and release, and mitigate their adverse effects. Nanotechnology has recently gained attention for improving the effectiveness of precision therapy for HCC. We summarize the key features of HCC associated with nanoparticle (NPs) targeting, release, and uptake, the roles and limitations of several major immunotherapies in HCC, the use of NPs in immunotherapy, the properties of NPs that influence their design and application, and current clinical trials of NPs in HCC, with the aim of informing the design of delivery platforms that have the potential to improve the safety and efficacy of HCC immunotherapy,and thus, ultimately improve the prognosis of HCC patients.
Collapse
Affiliation(s)
- Xinyao Hu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoqin He
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayu Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lin Xiong
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayi Li
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Liu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dedong Cao
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ximing Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
52
|
Shao M, Lopes D, Lopes J, Yousefiasl S, Macário-Soares A, Peixoto D, Ferreira-Faria I, Veiga F, Conde J, Huang Y, Chen X, Paiva-Santos AC, Makvandi P. Exosome membrane-coated nanosystems: Exploring biomedical applications in cancer diagnosis and therapy. MATTER 2023; 6:761-799. [DOI: 10.1016/j.matt.2023.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
53
|
Sheridan A, Brown AC. Recent Advances in Blood Cell-Inspired and Clot Targeted Thrombolytic Therapies. J Tissue Eng Regen Med 2023; 2023:6117810. [PMID: 37731481 PMCID: PMC10511217 DOI: 10.1155/2023/6117810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Myocardial infarction, stroke, and pulmonary embolism are all deadly conditions associated with excessive thrombus formation. Standard treatment for these conditions involves systemic delivery of thrombolytic agents to break up clots and restore blood flow; however, this treatment can impact the hemostatic balance in other parts of the vasculature, which can lead to excessive bleeding. To avoid this potential danger, targeted thrombolytic treatments that can successfully target thrombi and release an effective therapeutic load are necessary. Because activated platelets and fibrin make up a large proportion of clots, these two components provide ample opportunities for targeting. This review will highlight potential thrombus targeting mechanisms as well as recent advances in thrombolytic therapies which utilize blood-cells and clotting proteins to effectively target and lyse clots.
Collapse
Affiliation(s)
- Anastasia Sheridan
- Joint Department of Biomedical Engineering of University of North Carolina – Chapel Hill and North Carolina State University, Raleigh, NC 27695
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering of University of North Carolina – Chapel Hill and North Carolina State University, Raleigh, NC 27695
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606
- Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27606
| |
Collapse
|
54
|
Patel D, Thankachan S, Sreeram S, Kavitha KP, Suresh PS. The role of tumor-educated platelets in ovarian cancer: A comprehensive review and update. Pathol Res Pract 2023; 241:154267. [PMID: 36509009 DOI: 10.1016/j.prp.2022.154267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Platelets have recently surfaced as critical players in cancer metastasis and the local and systemic responses to tumor growth. The emerging concept of "Tumor-educated platelets (TEPs)" comprises the exchange of biomolecules between tumor cells and platelets, thereby leading to the "education" of platelets. Increased platelet numbers have long been associated with cancer patients' tumor metastasis and poor clinical prognosis. However, it is very recently that researchers have delved deeper into the tumor-microenvironment and probed the mechanism of interactions between tumor cells and platelets. Designing strategies to target the TEPs and the communications between platelets and tumor cells can prove to be a promising breakthrough in cancer therapy. Through this review, we aim to analyze the recent developments in this field and discuss the characteristics of TEPs, focusing on ovarian cancer-associated TEPs and their characteristics, the interplay between ovarian cancer-associated TEPs and cancer cells, and the purview of TEP-targeted cancer diagnosis and therapy, including platelet biomarkers and inhibitors.
Collapse
Affiliation(s)
- Dimple Patel
- School of Biotechnology, National Institute of Technology, Calicut 673601, Kerala, India
| | - Sanu Thankachan
- School of Biotechnology, National Institute of Technology, Calicut 673601, Kerala, India
| | - Saraswathy Sreeram
- Department of Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - K P Kavitha
- Department of Pathology, Aster MIMS Calicut, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut 673601, Kerala, India.
| |
Collapse
|
55
|
Sha X, Dai Y, Chong L, Wei M, Xing M, Zhang C, Li J. Pro-efferocytic macrophage membrane biomimetic nanoparticles for the synergistic treatment of atherosclerosis via competition effect. J Nanobiotechnology 2022; 20:506. [PMID: 36456996 PMCID: PMC9714205 DOI: 10.1186/s12951-022-01720-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Macrophages participate in many links in the pathological process of atherosclerosis (AS) and the regulation of influence of macrophages at the molecular level might be a new avenue for AS treatment. For this aim, the macrophage membrane biomimetic nanoparticles, derived from macrophage membrane coated SHP1i-loaded liposome NPs (MM@Lips-SHP1i) was designed. Due to the reservation of intrinsic membrane proteins and function from macrophages, the biomimic nanoparticles could effectively evade clearance by the immune system, prolong blood circulation time and actively tend and aggregate to atherosclerotic plaques. More importantly, in the plaque area, MM@Lips-SHP1i nanoparticles could compete with macrophages in vivo to bind with oxidized low-density lipoprotein (oxLDL) and lipopolysaccharide (LPS), reduce uptake of new lipids by macrophages, reduce foam cell formation, and inhibit the expression of pro-inflammatory cytokines. In addition, small molecule inhibitor of SHP-1, the downstream effector molecule of CD47 loaded in macrophage membrane biomimetic nanoparticles could interrupt CD47-SIRPα signal transduction in monocytes and macrophages, thereby enhancing the efferocytosis of macrophages, inhibiting the progression of plaque, achieving synergistic treatment of atherosclerosis. This work focuses on the key process in the formation of AS, macrophage foaming and chronic inflammation, and is based on the fact that macrophage membrane biomimetic nanoparticles can preserve the key surface proteins of macrophages closely related to the formation of AS, providing a new avenue to inhibit the progression of AS by utilizing the biological characteristics of macrophage membrane in macrophage membrane biomimetic nanoparticles.
Collapse
Affiliation(s)
- Xuan Sha
- grid.417303.20000 0000 9927 0537School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004 China
| | - Yue Dai
- grid.417303.20000 0000 9927 0537School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004 China ,grid.413389.40000 0004 1758 1622Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006 China
| | - Lijuan Chong
- grid.417303.20000 0000 9927 0537School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004 China ,grid.413389.40000 0004 1758 1622Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006 China
| | - Min Wei
- grid.417303.20000 0000 9927 0537School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004 China ,grid.413389.40000 0004 1758 1622Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006 China
| | - Mengyuan Xing
- grid.417303.20000 0000 9927 0537School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004 China
| | - Chun Zhang
- grid.417303.20000 0000 9927 0537School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004 China ,grid.413389.40000 0004 1758 1622Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006 China
| | - Jingjing Li
- grid.417303.20000 0000 9927 0537School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004 China ,grid.413389.40000 0004 1758 1622Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006 China
| |
Collapse
|
56
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
57
|
Naskar A, Cho H, Kim KS. A Nanocomposite with Extracellular Vesicles from Lactobacillus paracasei as a Bioinspired Nanoantibiotic Targeting Staphylococcus aureus. Pharmaceutics 2022; 14:2273. [PMID: 36365092 PMCID: PMC9692410 DOI: 10.3390/pharmaceutics14112273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 08/29/2023] Open
Abstract
The utilization of biomimetic materials that merge functional nanoparticles (NPs) with a cell-derived nanosized membrane is a state-of-the-art approach to harnessing cellular properties for biomedical applications. However, the development of biocompatible and species-selective biomimetic agents against hazardous pathogens threatening human health is still in its early stages. Herein, we report the synthesis and functional analysis of a novel nanoplatform in which a PEGylated MoS2-ZnO (MZ) nanocomposite was cloaked with a generally regarded as safe (GRAS)-grade Lactobacillus paracasei-derived extracellular vesicle (LPEV) for MZ-LPEV nanocomposite and evaluated its activity against Staphylococcus aureus. The MZ nanocomposite was characterized via X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The coating of MZ with LPEV was confirmed through nanoparticle tracking analysis and zeta potential measurements. MZ-LPEV exhibited 5- to 20-fold higher antibacterial activity than that of ZO NPs and MZ nanocomposite against S. aureus. Reactive oxygen species (ROS) production and bacterial membrane disruption were confirmed as antibacterial mechanisms of MZ-LPEV. Finally, MZ-LPEV exhibited enhanced biocompatibility and selectivity for S. aureus. All our results showed that LPEV could be utilized for developing synergistic nanoantibiotics against S. aureus.
Collapse
Affiliation(s)
| | | | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
58
|
Dai Z, Zhao T, Song N, Pan K, Yang Y, Zhu X, Chen P, Zhang J, Xia C. Platelets and platelet extracellular vesicles in drug delivery therapy: A review of the current status and future prospects. Front Pharmacol 2022; 13:1026386. [PMID: 36330089 PMCID: PMC9623298 DOI: 10.3389/fphar.2022.1026386] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Platelets are blood cells that are primarily produced by the shedding of megakaryocytes in the bone marrow. Platelets participate in a variety of physiological and pathological processes in vivo, including hemostasis, thrombosis, immune-inflammation, tumor progression, and metastasis. Platelets have been widely used for targeted drug delivery therapies for treating various inflammatory and tumor-related diseases. Compared to other drug-loaded treatments, drug-loaded platelets have better targeting, superior biocompatibility, and lower immunogenicity. Drug-loaded platelet therapies include platelet membrane coating, platelet engineering, and biomimetic platelets. Recent studies have indicated that platelet extracellular vesicles (PEVs) may have more advantages compared with traditional drug-loaded platelets. PEVs are the most abundant vesicles in the blood and exhibit many of the functional characteristics of platelets. Notably, PEVs have excellent biological efficacy, which facilitates the therapeutic benefits of targeted drug delivery. This article provides a summary of platelet and PEVs biology and discusses their relationships with diseases. In addition, we describe the preparation, drug-loaded methods, and specific advantages of platelets and PEVs targeted drug delivery therapies for treating inflammation and tumors. We summarize the hot spots analysis of scientific articles on PEVs and provide a research trend, which aims to give a unique insight into the development of PEVs research focus.
Collapse
Affiliation(s)
- Zhanqiu Dai
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Tingxiao Zhao
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
| | - Nan Song
- Department of Pathology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Kaifeng Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xunbin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| | - Jun Zhang
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| | - Chen Xia
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| |
Collapse
|
59
|
Shih CP, Tang X, Kuo CW, Chueh DY, Chen P. Design principles of bioinspired interfaces for biomedical applications in therapeutics and imaging. Front Chem 2022; 10:990171. [PMID: 36405322 PMCID: PMC9673126 DOI: 10.3389/fchem.2022.990171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/08/2022] [Indexed: 09/29/2023] Open
Abstract
In the past two decades, we have witnessed rapid developments in nanotechnology, especially in biomedical applications such as drug delivery, biosensing, and bioimaging. The most commonly used nanomaterials in biomedical applications are nanoparticles, which serve as carriers for various therapeutic and contrast reagents. Since nanomaterials are in direct contact with biological samples, biocompatibility is one of the most important issues for the fabrication and synthesis of nanomaterials for biomedical applications. To achieve specific recognition of biomolecules for targeted delivery and biomolecular sensing, it is common practice to engineer the surfaces of nanomaterials with recognition moieties. This mini-review summarizes different approaches for engineering the interfaces of nanomaterials to improve their biocompatibility and specific recognition properties. We also focus on design strategies that mimic biological systems such as cell membranes of red blood cells, leukocytes, platelets, cancer cells, and bacteria.
Collapse
Affiliation(s)
- Chun-Pei Shih
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Xiaofang Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
60
|
Mougenot MF, Pereira VS, Costa ALR, Lancellotti M, Porcionatto MA, da Silveira JC, de la Torre LG. Biomimetic Nanovesicles—Sources, Design, Production Methods, and Applications. Pharmaceutics 2022; 14:pharmaceutics14102008. [PMID: 36297442 PMCID: PMC9610935 DOI: 10.3390/pharmaceutics14102008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Despite all the progress in the field of liposomes and nanoparticles for applications as drug and gene delivery systems, the specific targeting and immune system escape capabilities of these systems are still limited. Biomimetic nanovesicles emerged as a strategy to overcome these and other limitations associated with synthetic carriers, such as short circulation time, cytotoxicity, and difficulty in crossing biological barriers, since many of the desirable abilities of drug delivery systems are innate characteristics of biological vesicles. Thus, the question arises: would biomimetic nanovesicles be responsible for addressing these advances? It is currently known that biomimetic nanovesicles (BNV) can combine the intrinsic advantages of natural materials with the well-known production methods and controllability of synthetic systems. Besides, the development of the biotechnology and nanotechnology fields has provided a better understanding of the functionalities of biological vesicles and the means for the design and production of biomimetic nanovesicles (BNV). Based on this, this work will focus on tracking the main research on biomimetic nanovesicles (BNV) applied as drug and gene delivery systems, and for vaccines applications. In addition, it will describe the different sources of natural vesicles, the technical perspectives on obtaining them, and the possibility of their hybridization with synthetic liposomes.
Collapse
Affiliation(s)
- Marcel Franco Mougenot
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas 13083-970, Brazil
| | - Vanessa Sousa Pereira
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas 13083-970, Brazil
| | - Ana Letícia Rodrigues Costa
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas 13083-970, Brazil
- Institute of Exact and Technological Sciences, Campus Florestal, Federal University of Viçosa (UFV), Florestal 35690-000, Brazil
| | - Marcelo Lancellotti
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, Brazil
| | | | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil
| | - Lucimara Gaziola de la Torre
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas 13083-970, Brazil
- Correspondence: ; Tel.: +55-19-3521-0397
| |
Collapse
|
61
|
Yang F, Xue J, Wang G, Diao Q. Nanoparticle-based drug delivery systems for the treatment of cardiovascular diseases. Front Pharmacol 2022; 13:999404. [PMID: 36172197 PMCID: PMC9512262 DOI: 10.3389/fphar.2022.999404] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease is the most common health problem worldwide and remains the leading cause of morbidity and mortality. Despite recent advances in the management of cardiovascular diseases, pharmaceutical treatment remains suboptimal because of poor pharmacokinetics and high toxicity. However, since being harnessed in the cancer field for the delivery of safer and more effective chemotherapeutics, nanoparticle-based drug delivery systems have offered multiple significant therapeutic effects in treating cardiovascular diseases. Nanoparticle-based drug delivery systems alter the biodistribution of therapeutic agents through site-specific, target-oriented delivery and controlled drug release of precise medicines. Metal-, lipid-, and polymer-based nanoparticles represent ideal materials for use in cardiovascular therapeutics. New developments in the therapeutic potential of drug delivery using nanoparticles and the application of nanomedicine to cardiovascular diseases are described in this review. Furthermore, this review discusses our current understanding of the potential role of nanoparticles in metabolism and toxicity after therapeutic action, with a view to providing a safer and more effective strategy for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Fangyu Yang
- Department of Clinical Laboratory Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjiang Xue
- Department of Clinical Laboratory Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Bio-Rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Qizhi Diao
- Department of Clinical Laboratory Medicine, Sanya Women and Children’s Hospital Managed by Shanghai Children’s Medical Center, Hainan, China
- *Correspondence: Qizhi Diao,
| |
Collapse
|
62
|
Zhang Y, Zhang X, Li H, Liu J, Wei W, Gao J. Membrane-Coated Biomimetic Nanoparticles: A State-of-the-Art Multifunctional Weapon for Tumor Immunotherapy. MEMBRANES 2022; 12:membranes12080738. [PMID: 36005653 PMCID: PMC9412372 DOI: 10.3390/membranes12080738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
Abstract
The advent of immunotherapy, which improves the immune system’s ability to attack and eliminate tumors, has brought new hope for tumor treatment. However, immunotherapy regimens have seen satisfactory results in only some patients. The development of nanotechnology has remarkably improved the effectiveness of tumor immunotherapy, but its application is limited by its passive immune clearance, poor biocompatibility, systemic immunotoxicity, etc. Therefore, membrane-coated biomimetic nanoparticles have been developed by functional, targeting, and biocompatible cell membrane coating technology. Membrane-coated nanoparticles have the advantages of homologous targeting, prolonged circulation, and the avoidance of immune responses, thus remarkably improving the therapeutic efficacy of tumor immunotherapy. Herein, this review explores the recent advances and future perspectives of cell membrane-coated nanoparticles for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China;
| | - Xinyi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
| | - Haitao Li
- Department of Vascular Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefangdadao Road, Wuhan 430022, China; (H.L.); (J.L.)
| | - Jianyong Liu
- Department of Vascular Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefangdadao Road, Wuhan 430022, China; (H.L.); (J.L.)
| | - Wei Wei
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China;
- Correspondence: (W.W.); (J.G.)
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China;
- Correspondence: (W.W.); (J.G.)
| |
Collapse
|
63
|
Special issue on the latest advances in regenerative medicine and cancer using drug delivery systems. Eur J Pharm Biopharm 2022; 177:89-90. [PMID: 35750107 DOI: 10.1016/j.ejpb.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
64
|
Zoulikha M, Huang F, Wu Z, He W. COVID-19 inflammation and implications in drug delivery. J Control Release 2022; 346:260-274. [PMID: 35469984 PMCID: PMC9045711 DOI: 10.1016/j.jconrel.2022.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/15/2022] [Indexed: 01/09/2023]
Abstract
Growing evidence indicates that hyperinflammatory syndrome and cytokine storm observed in COVID-19 severe cases are narrowly associated with the disease's poor prognosis. Therefore, targeting the inflammatory pathways seems to be a rational therapeutic strategy against COVID-19. Many anti-inflammatory agents have been proposed; however, most of them suffer from poor bioavailability, instability, short half-life, and undesirable biodistribution resulting in off-target effects. From a pharmaceutical standpoint, the implication of COVID-19 inflammation can be exploited as a therapeutic target and/or a targeting strategy against the pandemic. First, the drug delivery systems can be harnessed to improve the properties of anti-inflammatory agents and deliver them safely and efficiently to their therapeutic targets. Second, the drug carriers can be tailored to develop smart delivery systems able to respond to the microenvironmental stimuli to release the anti-COVID-19 therapeutics in a selective and specific manner. More interestingly, some biosystems can simultaneously repress the hyperinflammation due to their inherent anti-inflammatory potency and endow their drug cargo with a selective delivery to the injured sites.
Collapse
Affiliation(s)
- Makhloufi Zoulikha
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feifei Huang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
65
|
Imran M, Akhileshwar Jha L, Hasan N, Shrestha J, Pangeni R, Parvez N, Mohammed Y, Kumar Jha S, Raj Paudel K. “Nanodecoys”- Future of drug delivery by encapsulating nanoparticles in natural cell membranes. Int J Pharm 2022; 621:121790. [DOI: 10.1016/j.ijpharm.2022.121790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
|
66
|
Huang Y, Liu W. Cell membrane-engineered nanoparticles for cancer therapy. J Mater Chem B 2022; 10:7161-7172. [DOI: 10.1039/d2tb00709f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell-membrane-coated nanotechnology involves dressing the synthetic nanoparticles (NPs) with membrane derived from different types of cells to endow the NPs with the properties of a specific cell type and to further...
Collapse
|