51
|
NMDA Receptors Regulate Genes Responsible for Major Immune Functions of Mononuclears in Human Peripheral Blood. Bull Exp Biol Med 2018; 165:252-255. [PMID: 29923004 DOI: 10.1007/s10517-018-4141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 10/28/2022]
Abstract
To determine the role of NMDA receptors in the functional regulation of immunocompetent cells, comparative assay was carried out for genes expressed in the mononuclears in peripheral blood of healthy persons under normal conditions and after blockade of these receptors. The genes, whose expression changed in response to blockade of NMDA receptors in mononuclears, encode the products involved in regulation of the major functions of immune cells, such as proliferation (IL4, VCAM1, and CDKN2A), apoptosis (BAX, MYC, CDKN2A, HSPB1, and CADD45A), activation (IL4R, IL4, VCAM1, and CDKN2A), and differentiation (IL4, VCAM1, and BAX).
Collapse
|
52
|
Volpi C, Fallarino F, Mondanelli G, Macchiarulo A, Grohmann U. Opportunities and challenges in drug discovery targeting metabotropic glutamate receptor 4. Expert Opin Drug Discov 2018; 13:411-423. [DOI: 10.1080/17460441.2018.1443076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
53
|
Salabert AS, Mora-Ramirez E, Beaurain M, Alonso M, Fontan C, Tahar HB, Boizeau ML, Tafani M, Bardiès M, Payoux P. Evaluation of [ 18F]FNM biodistribution and dosimetry based on whole-body PET imaging of rats. Nucl Med Biol 2017; 59:1-8. [PMID: 29413751 DOI: 10.1016/j.nucmedbio.2017.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/05/2017] [Accepted: 12/17/2017] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The aim of this work was to study the biodistribution, metabolism and radiation dosimetry of rats injected with [18F]FNM using PET/CT images. This novel radiotracer targeting NMDA receptor has potential for investigation for neurological and psychiatric diseases. METHODS Free fraction and stability in fresh human plasma were determined in vitro. PET/CT was performed on anesthetized rats. Organs were identified and 3D volumes of interest (VOIs) were manually drawn on the CT in the center of each organ. Time activity curves (TACs) were created with these VOIs, enabling the calculation of residence times. To confirm these values, ex vivo measurements of organs were performed. Plasma and urine were also collected to study in vivo metabolism. Data was extrapolated to humans, effective doses were estimated using ICRP-60 and ICRP-89 dosimetric models and absorbed doses were estimated using OLINDA/EXM V1.0 and OLINDA/EXM V2.0 (which use weighting factors from ICRP-103 to do the calculations). RESULTS The [18F]FNM was stable in human plasma and the diffusible free fraction was 53%. As with memantine, this tracer is poorly metabolized in vivo. Ex vivo distributions validated PET/CT data as well as demonstrating a decrease of radiotracer uptake in the brain due to anesthesia. Total effective dose was around 6.11 μSv/MBq and 4.65 μSv/MBq for female and male human dosimetric models, respectively. CONCLUSIONS This study shows that the presented compound exhibits stability in plasma and plasma protein binding very similar to memantine. Its dosimetry shows that it is suitable for use in humans due to a low total effective dose compared to other PET radiotracers.
Collapse
Affiliation(s)
- Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; University Hospital, Radiopharmacy Unit, Toulouse, France.
| | - Erick Mora-Ramirez
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France; Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France; Universidad de Costa Rica, CICANUM-Escuela de Física, San José, Costa Rica.
| | - Marie Beaurain
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; University Hospital, Radiopharmacy Unit, Toulouse, France.
| | - Mathieu Alonso
- University Hospital, Radiopharmacy Unit, Toulouse, France.
| | | | - Hafid Belhadj Tahar
- Research and Expertise Group, French Association for the Promotion of Medical Research (AFPREMED), Toulouse, France.
| | - Marie Laure Boizeau
- Advanced Technology Institute in Life Sciences (ITAV), Centre National de la Recherche Scientifique-Université Paul Sabatier Toulouse III (CNRS-UPS), Université Paul Sabatier Toulouse III (UPS), Université de ToulouseToulouse, France.
| | - Mathieu Tafani
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; University Hospital, Radiopharmacy Unit, Toulouse, France.
| | - Manuel Bardiès
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France; Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; University Hospital, Nuclear Medicine Unit, Toulouse, France.
| |
Collapse
|
54
|
Lattanzio SM. Fibromyalgia Syndrome: A Metabolic Approach Grounded in Biochemistry for the Remission of Symptoms. Front Med (Lausanne) 2017; 4:198. [PMID: 29250522 PMCID: PMC5715322 DOI: 10.3389/fmed.2017.00198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022] Open
Abstract
Fibromyalgia syndrome (FMS) is a chronic, complex, and heterogeneous disorder of still poorly understood etiopathophysiology associated with important musculoskeletal widespread pain, fatigue, non-restorative sleep, and mood disturbances. It is estimated to afflict 2–3% of the worldwide population, with clean prevalence among women. The objective of this paper is to propose a novel treatment for symptomatic remission of FMS, grounded in biochemistry and consisting in the withdrawal from the diet of molecules that can indirectly trigger the symptoms. The hypothesis develops from the evidence that low serotonin levels are involved in FMS. Serotonin is synthesized starting from the essential amino acid tryptophan. The presence of non-absorbed molecules in the gut, primarily fructose, reduces tryptophan absorption. Low tryptophan absorption leads to low serotonin synthesis that triggers FMS symptoms. Moreover not-absorbed sugars could also produce a microbiota deterioration activating a positive feedback loop: the increasing microbiota deterioration reduces the functionality of absorption both of fructose and tryptophan in the gut, entering a vicious circle. The therapeutic idea is to sustain serotonin synthesis allowing the proper tryptophan absorption. The core of the cure treatment is the exclusion from the diet of some carbohydrates and the marked reduction of some others. The main target is the limitation of total dietary fructose as marked as possible. It could be an effective strategy to get the remission of symptoms acting on the impaired biochemical pathways. The straying from the treatment is expected to cause the reappear of the symptoms.
Collapse
|
55
|
Zakrocka I, Kocki T, Turski WA. The effect of three angiotensin-converting enzyme inhibitors on kynurenic acid production in rat kidney in vitro. Pharmacol Rep 2017; 69:536-541. [DOI: 10.1016/j.pharep.2017.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/11/2016] [Accepted: 01/18/2017] [Indexed: 01/19/2023]
|
56
|
Ehrenreich H. Autoantibodies against the N-Methyl-d-Aspartate Receptor Subunit NR1: Untangling Apparent Inconsistencies for Clinical Practice. Front Immunol 2017; 8:181. [PMID: 28298911 PMCID: PMC5331041 DOI: 10.3389/fimmu.2017.00181] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/08/2017] [Indexed: 12/31/2022] Open
Abstract
This viewpoint review provides an integrative picture of seemingly contradictory work published on N-methyl-d-aspartate receptor 1 (NMDAR1) autoantibodies (AB). Based on the present state of knowledge, it gives recommendations for the clinical decision process regarding immunosuppressive treatment. Brain antigen-directed AB in general and NMDAR1-AB in particular belong to a preexisting autoimmune repertoire of mammals including humans. Specific autoimmune reactive B cells may get repeatedly (perhaps transiently) boosted by various potential stimulants (e.g., microbiome, infections, or neoplasms) plus less efficiently suppressed over lifespan (gradual loss of tolerance), likely explaining the increasing seroprevalence upon aging (>20% NMDAR1-AB in 80-year-old humans). Pathophysiological significance emerges (I) when AB-specific plasma cells settle in the brain and produce large amounts of brain antigen-directed AB intrathecally and/or (II) in conditions of compromised blood–brain barrier (BBB), for instance, upon injury, infection, inflammation, or genetic predisposition (APOE4 haplotype), which then allows substantial access of circulating AB to the brain. Regarding NMDAR1-AB, functional effects on neurons in vitro and elicitation of brain symptoms in vivo have been demonstrated for immunoglobulin (Ig) classes, IgM, IgA, and IgG. Under conditions of brain inflammation, intrathecal production and class switch to IgG may provoke high NMDAR1-AB (and other brain antigen-directed AB) levels in cerebrospinal fluid (CSF) and serum, causing the severe syndrome named “anti-NMDAR encephalitis,” which then requires immunosuppressive therapy on top of the causal encephalitis treatment (if available). However, negative CSF NMDAR1-AB results cannot exclude chronic effects of serum NMDAR1-AB on the central nervous system, since the brain acts as “immunoprecipitator,” particularly in situations of compromised BBB. In any case of suspected symptomatic consequences of circulating AB directed against brain antigens, leakiness of the BBB should be evaluated by CSF analysis (albumin quotient as proxy) and magnetic resonance imaging before considering immunosuppression.
Collapse
Affiliation(s)
- Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) , Göttingen , Germany
| |
Collapse
|
57
|
Liao S, Ruiz Y, Gulzar H, Yelskaya Z, Ait Taouit L, Houssou M, Jaikaran T, Schvarts Y, Kozlitina K, Basu-Roy U, Mansukhani A, Mahajan SS. Osteosarcoma cell proliferation and survival requires mGluR5 receptor activity and is blocked by Riluzole. PLoS One 2017; 12:e0171256. [PMID: 28231291 PMCID: PMC5322947 DOI: 10.1371/journal.pone.0171256] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/17/2017] [Indexed: 11/18/2022] Open
Abstract
Osteosarcomas are malignant tumors of bone, most commonly seen in children and adolescents. Despite advances in modern medicine, the poor survival rate of metastatic osteosarcoma has not improved in two decades. In the present study we have investigated the effect of Riluzole on a human and mouse metastatic osteosarcoma cells. We show that LM7 cells secrete glutamate in the media and that mGluR5 receptors are required for the proliferation of LM7 cells. Riluzole, which is known to inhibit glutamate release, inhibits proliferation, induces apoptosis and prevents migration of LM7 cells. This is also seen with Fenobam, a specific blocker of mGluR5. We also show that Riluzole alters the phosphorylation status of AKT/P70 S6 kinase, ERK1/2 and JNK1/2. Thus Riluzole is an effective drug to inhibit proliferation and survival of osteosarcoma cells and has therapeutic potential for the treatment of osteosarcoma exhibiting autocrine glutamate signaling.
Collapse
Affiliation(s)
- Sally Liao
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Yuleisy Ruiz
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Hira Gulzar
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Zarina Yelskaya
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Lyes Ait Taouit
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Murielle Houssou
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Trisha Jaikaran
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Yuriy Schvarts
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Kristina Kozlitina
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Upal Basu-Roy
- Department of Microbiology & Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, United States of America
| | - Alka Mansukhani
- Department of Microbiology & Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, United States of America
| | - Shahana S. Mahajan
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
- Brain and Mind Research Institute, Weil Cornell Medical College, New York, NY, United States of America
| |
Collapse
|
58
|
The Markers of Glutamate Metabolism in Peripheral Blood Mononuclear Cells and Neurological Complications in Lung Cancer Patients. DISEASE MARKERS 2016; 2016:2895972. [PMID: 28044066 PMCID: PMC5164907 DOI: 10.1155/2016/2895972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/13/2016] [Indexed: 01/10/2023]
Abstract
Objective. To evaluate the involvement of glutamate metabolism in peripheral blood mononuclear cells (PBMC) in the development of neurological complications in lung cancer and during chemotherapy. Methods. The prospective study included 221 lung cancer patients treated with chemotherapeutics. Neurological status and cognitive functions were evaluated at baseline and after 6-month follow-up. Glutamate level, the activities of glutaminase- (GLS-) glutamate synthetizing enzyme, glutamate dehydrogenase (GDH), and glutamate decarboxylase catalyzing glutamate degradation were analyzed in PBMC and in sera of lung cancer patients by means of spectrophotometric and colorimetric methods. Results. Chemotherapy of lung neoplasms induced increase of glutamate content in PBMC and its concentration in serum increased the activity of GDH in PBMC and decreased activity of glutaminase in PBMC. The changes in glutamate metabolism markers were associated with initial manifestation of neurological deficit in lung cancer patients and with new symptoms, which appear as a complication of chemotherapy. Moreover, the analyzed parameters of glutamate control correlated with a spectrum of cognitive functions measures in lung cancer patients. Conclusion. We have demonstrated dysregulation in glutamate and glutamate metabolism controlling enzymes as promising indicators of risk for chemotherapy-induced neurological complications in lung cancer patients with particular emphasis on cognitive impairment.
Collapse
|
59
|
Glufosinate aerogenic exposure induces glutamate and IL-1 receptor dependent lung inflammation. Clin Sci (Lond) 2016; 130:1939-54. [PMID: 27549113 DOI: 10.1042/cs20160530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022]
Abstract
Glufosinate-ammonium (GLA), the active component of an herbicide, is known to cause neurotoxicity. GLA shares structural analogy with glutamate. It is a powerful inhibitor of glutamine synthetase (GS) and may bind to glutamate receptors. Since these potentials targets of GLA are present in lung and immune cells, we asked whether airway exposure to GLA may cause lung inflammation in mice. A single GLA exposure (1 mg/kg) induced seizures and inflammatory cell recruitment in the broncho-alveolar space, and increased myeloperoxidase (MPO), inducible NO synthase (iNOS), interstitial inflammation and disruption of alveolar septae within 6-24 h. Interleukin 1β (IL-1β) was increased and lung inflammation depended on IL-1 receptor 1 (IL-1R1). We demonstrate that glutamate receptor pathway is central, since the N-methyl-D-aspartate (NMDA) receptor inhibitor MK-801 prevented GLA-induced lung inflammation. Chronic exposure (0.2 mg/kg 3× per week for 4 weeks) caused moderate lung inflammation and enhanced airway hyperreactivity with significant increased airway resistance. In conclusion, GLA aerosol exposure causes glutamate signalling and IL-1R-dependent pulmonary inflammation with airway hyperreactivity in mice.
Collapse
|