51
|
Nickel nanoparticles decorated on carbon quantum dots as a novel non-platinum catalyst for methanol oxidation; a green, low-cost, electrochemically-synthesized electrocatalyst. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115534] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
52
|
Chen TW, Chinnapaiyan S, Chen SM, Ali MA, Elshikh MS, Mahmoud AH. A feasible sonochemical approach to synthesize CuO@CeO 2 nanomaterial and their enhanced non-enzymatic sensor performance towards neurotransmitter. ULTRASONICS SONOCHEMISTRY 2020; 63:104903. [PMID: 31951999 DOI: 10.1016/j.ultsonch.2019.104903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
A nanostructured and high conductive cupric oxide (CuO NPs) with hierarchical CeO2 sheets-like structure was synthesized by a facile sonochemical approach. Furthermore, CuO/CeO2 nanostructure is synthesized by high-intensity ultrasonic probe (Ti-horn, 50 kHz and 100 W) at ambient air. Moreover, the synthesized CuO/CeO2 material was characterized by various analytical techniques including FESEM, EDX, XRD and electrochemical methods. Then, the synthesized CuO/CeO2 composite was applied for the electrocatalytic detection of dopamine using CV and DPV techniques. In addition, the CuO/CeO2 modified electrode has good electrocatalytic performance with high linear range from 0.025 to 98.5 µM towards the determination of dopamine drug and high sensitivity of the CuO/CeO2 modified drug sensor was calculated as 16.34 nM and 4.823 μA·µM-1·cm-2, respectively. Moreover, a repeatability, reproducibility and stability of the CuO@CeO2 mixture modified electrode were analyzed towards the determination of dopamine biomolecule. Interestingly, the real time application of CuO@CeO2 modified electrode was established in different serum and drug samples.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan, Republic of China
| | - Sathishkumar Chinnapaiyan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China.
| | - M Ajmal Ali
- Department of Botany, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Hossam Mahmoud
- Department Zoology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
53
|
An ultrasensitive electroanalytical sensor based on MgO/SWCNTs- 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide paste electrode for the determination of ferulic acid in the presence sulfite in food samples. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104572] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
54
|
Chen TW, Chinnapaiyan S, Chen SM, Hossam Mahmoud A, Elshikh MS, Ebaid H, Taha Yassin M. Facile sonochemical synthesis of rutile-type titanium dioxide microspheres decorated graphene oxide composite for efficient electrochemical sensor. ULTRASONICS SONOCHEMISTRY 2020; 62:104872. [PMID: 31806555 DOI: 10.1016/j.ultsonch.2019.104872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/10/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
In this reports the facile and green synthesis of rutile-type titanium dioxide nanoparticles decorated graphene oxide nanocomposite via the ultrasonication process (frequency: 50 kHz, Power: 100 W/cm2 and Ultrasonic type: Ti-horn). Because, the sonochemical synthesis method is simple, non-explosive and harmless method than other conventional technique. Furthermore, the synthesized material was characterized by various analytical techniques including FESEM, EDX, XRD, EIS and electrochemical methods. Then, the synthesized TiO2 MPs@GOS composite was applied for the electrocatalytic detection of theophylline (TPL) using CV and amperometric (current-time) techniques. Captivatingly, the modified sensor has excellent electrocatalytic performance with the wider linear range from 0.02 to 209.6 µM towards the determination of theophylline and the LOD and sensitivity of the modified sensor was calculated as 13.26 nM and 1.183 μA·µM-1·cm-2, respectively. In addition, a selectivity, reproducibility and stability of the TiO2 MPs@GOS modified GCE were analyzed towards the determination of theophylline molecule. Finally, the real time application of TiO2 MPs@GOS modified theophylline sensor was established in serum and drug samples.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan, ROC
| | - Sathishkumar Chinnapaiyan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Ahmed Hossam Mahmoud
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Taha Yassin
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
55
|
Hu Q, Li W, Xiang B, Zou X, Hao J, Deng M, Wu Q, Wang Y. Sulfur source-inspired synthesis of β-NiS with high specific capacity and tunable morphologies for hybrid supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
56
|
Hu Q, Zou X, Huang Y, Wei Y, YaWang, Chen F, Xiang B, Wu Q, Li W. Graphene oxide-drove transformation of NiS/Ni3S4 microbars towards Ni3S4 polyhedrons for supercapacitor. J Colloid Interface Sci 2020; 559:115-123. [DOI: 10.1016/j.jcis.2019.10.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 11/17/2022]
|
57
|
Chen TW, Sivasamy Vasantha A, Chen SM, Al Farraj DA, Soliman Elshikh M, Alkufeidy RM, Al Khulaifi MM. Sonochemical synthesis and fabrication of honeycomb like zirconium dioxide with chitosan modified electrode for sensitive electrochemical determination of anti-tuberculosis (TB) drug. ULTRASONICS SONOCHEMISTRY 2019; 59:104718. [PMID: 31442770 DOI: 10.1016/j.ultsonch.2019.104718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Herein, novel honeycomb like zirconium dioxide with chitosan (ZrO2@chitosan) nanocomposite have been designed through a facile ultrasound-assisted method and followed by a simple sonication process (bath-type ultrasound washer; Honda Electronics-W-118T; 100 W/cm2 and 300 kHz frequency). After then, as-synthesized ZrO2@chitosan was characterized by FESEM, XRD and EIS. The ZrO2@chitosan nanocomposite modified glassy carbon electrode shows excellent electrochemical sensing performance towards anti-tuberculosis drug (rifampicin). Furthermore, the ZrO2@chitosan modified and fabricated electrochemical sensor showed a wide linear range between 0.015 µM and 547.4 µM and nanomolar detection limit (7.5 nM). Moreover, the ZrO2@chitosan modified electrode showed selectivity towards the detection of anti-tuberculosis drug (rifampicin). The ZrO2@chitosan nanocomposite film modified non-enzymatic sensor has high stable and good reproducible towards the detection of rifampicin. In addition, the as-synthesized ZrO2@chitosan nanocomposite modified electrode has been applied to the determination of rifampicin in biological samples such as human serum and urine samples.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Airathevar Sivasamy Vasantha
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Roua M Alkufeidy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Manal M Al Khulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
58
|
Mishra A, Shetti NP, Basu S, Raghava Reddy K, Aminabhavi TM. Carbon Cloth‐based Hybrid Materials as Flexible Electrochemical Supercapacitors. ChemElectroChem 2019. [DOI: 10.1002/celc.201901122] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Amit Mishra
- Department of ChemistryBilkent University, Cankaya Ankara- 06008 Turkey
| | - Nagaraj P. Shetti
- Center for Electrochemical Science & Materials, Department of Chemistry, K. L. E. Institute of Technology, Gokul, Hubballi-580030Affiliated to Visvesvaraya Technological University Karnataka India
| | - Soumen Basu
- School of Chemistry and BiochemistryThapar Institute of Engineering & Technology, Patiala Punjab- 147004 India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular EngineeringThe University of Sydney Sydney, NSW 2006 Australia
| | - Tejraj M. Aminabhavi
- Pharmaceutical EngineeringSonia College of Pharmacy Dharwad 580 002, Karnataka India
| |
Collapse
|
59
|
Chen TW, Rajaji U, Chen SM, Lou BS, Al-Zaqri N, Alsalme A, Alharthi FA, Lee SY, Chang WH. A sensitive electrochemical determination of chemotherapy agent using graphitic carbon nitride covered vanadium oxide nanocomposite; sonochemical approach. ULTRASONICS SONOCHEMISTRY 2019; 58:104664. [PMID: 31450375 DOI: 10.1016/j.ultsonch.2019.104664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/23/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
We have developed a graphitic carbon nitride covered vanadium oxide nanocomposite (V2O5@g-C3N4) by a simple sonochemical approach (50 kHz and 150 W/cm2). Furthermore, the morphology and chemical composition of the V2O5@g-C3N4 nanocomposite was carried out by X-rays diffractometry (XRD), transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS). Furthermore, the V2O5@g-C3N4 nanocomposite modified electrode was investigate electrochemical behavior of the anticancer drug. Compared with bare SPCE, V2O5/SPCE and g-C3N4/SPCE, V2O5@g-C3N4 modified SPCE showed highest current response towards anti-cancer drug (methotrexate). Furthermore, the modified sensor exhibits with a sharp peaks and wide linear range (0.025-273.15 μM) by using DPV with the sensitivity of 7.122 μA μM-1 cm-2. Notably, we have achieved a nanomolar detection limit (13.26 nM) for the DPV detection of methotrexate. Further, the practicability of the V2O5@g-C3N4 nanocomposite modified sensor can be used for real time sensing of methotrexate in drug and blood serum samples with good recover ranges. It has potential applications in routine analysis with high specificity, excellent reproducibility and good stability.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Bih-Show Lou
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan, Taiwan; Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Chemistry, College of Science, Ibb University, P.O. Box 70270, Ibb, Yemen
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fahad A Alharthi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, Taitung MacKay Memorial Hospital, MacKay Memorial Hospital, Mackay Junior College of Medicine, Nursing, and Management College, Taipei, Taiwan.
| | - Wen-Han Chang
- Department of Emergency Medicine, MacKay Memorial Hospital, Institute of Mechatronic Engineering, National Taipei University of Technology, Taiwan; Graduate Institute of Injury Prevention and Control, School of Medicine, Taipei Medical University, Taiwan
| |
Collapse
|
60
|
Sriram B, Govindasamy M, Wang SF, Jothi Ramalingam R, Al-Lohedan H, Maiyalagan T. Novel sonochemical synthesis of Fe 3O 4 nanospheres decorated on highly active reduced graphene oxide nanosheets for sensitive detection of uric acid in biological samples. ULTRASONICS SONOCHEMISTRY 2019; 58:104618. [PMID: 31450380 DOI: 10.1016/j.ultsonch.2019.104618] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 05/23/2023]
Abstract
In this study, a super-active Iron (II, III) oxide nanospheres (Fe3O4 NPs) decorated reduced graphene oxide (rGOS) nanocomposite was developed. Fe3O4 NPs were stabilized on rGOS through electrostatic interactions in the aqueous medium. This process involves an ultrasound assisted reduction reaction of the GOS. The as-synthesized Fe3O4 NPs@rGOS was characterized through the HRTEM, SEM, XRD, Raman, elemental mapping and EDX analysis. The Fe3O4 NPs@rGOS modified GCE was developed for the determination of biomarker. Uric acid is important biomarker based on gout and kidney stone with high adverse effect in human body. The results obtained showed that the modified electrode Fe3O4 NPs@rGOS shows good electrochemical reduction peak compared to bare electrode and control electrodes. The Fe3O4 NPs@rGOS modified sensor linear range 0.02-783.6 µM was observed with nanomolar LOD 0.12 nM. In addition, the modified Fe3O4 NPs@rGOS/GCE sensor has been applied to determination of uric acid concentration in urine and blood serum samples. Furthermore, advantages of the modified sensor are high stability, repeatability and reproducibility.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan
| | - Mani Govindasamy
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan.
| | - R Jothi Ramalingam
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Hamad Al-Lohedan
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - T Maiyalagan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, Tamil Nadu, India.
| |
Collapse
|
61
|
Zhang R, Huang L, Yu Z, Jiang R, Hou Y, Sun L, Zhang B, Huang Y, Ye B, Zhang Y. Spherical cactus-like composite based on transition metals Ni, Co and Mn with 1D / 2D bonding heterostructure for electrocatalytic overall water splitting. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
62
|
Chen TW, Rajaji U, Chen SM, Muthumariyappan A, Mogren MMA, Jothi Ramalingam R, Hochlaf M. Facile synthesis of copper(II) oxide nanospheres covered on functionalized multiwalled carbon nanotubes modified electrode as rapid electrochemical sensing platform for super-sensitive detection of antibiotic. ULTRASONICS SONOCHEMISTRY 2019; 58:104596. [PMID: 31450358 DOI: 10.1016/j.ultsonch.2019.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 05/17/2023]
Abstract
Herein, we report a super-active electrocatalyst of copper(II) oxide nanoparticles (CuO NPs) decorated functionalized multiwalled carbon nanotubes (CuO NPs@f-MWCNTs) by the ultrasonic method. The as-synthesized CuO NPs@f-MWCNTs was characterized through the FESEM, XPS, XRD and electrochemical impedance spectroscopy (EIS). The combination of highly active CuO NPs and highly conductive f-MWCNTs film with rapid detection enables this nanohybrid to display excellent electrochemical performance towards anesthesia drug. Furthermore, the hybrid electrocatalyst modified SPCE was developed for the determination of flunitrazepam (FTM) for the first time. FTM is important anesthesia drug with high adverse effect in human body. Benefiting from the synergistic reaction of CuO NPs and f-MWCNTs, this nanohybrid exhibited high sensitivity and specificity towards FTM electro-reduction. The CuO NPs@f-MWCNTs film modified SPCE exhibits outstanding electrochemical activity including excellent reproducibility, wide linear range from 0.05 to 346.6 µM with nanomolar limit of detection for FTM detection. Further, the as-modified CuO NPs@f-MWCNTs/SPCE has been applied to determination of FTM in biological and drug samples with satisfactory recovery results, thereby showing a notable potential for extensive (bio) sensor applications.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Akilarasan Muthumariyappan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Muneerah Mogren Al Mogren
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - R Jothi Ramalingam
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Majdi Hochlaf
- Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Universit́ e Paris-Est, ́5 Blvd. Descartes, 77454 Marne-la-Vallee, France
| |
Collapse
|
63
|
Rajaji U, Muthumariappan A, Chen SM, Chen TW, Tseng TW, Wang K, Qi D, Jiang J. Facile sonochemical synthesis of porous and hierarchical manganese(III) oxide tiny nanostructures for super sensitive electrocatalytic detection of antibiotic (chloramphenicol) in fresh milk. ULTRASONICS SONOCHEMISTRY 2019; 58:104648. [PMID: 31450373 DOI: 10.1016/j.ultsonch.2019.104648] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
We report the preparation of a porous and hierarchical manganese(III) oxide tiny nanostructures (Mn2O3 TNS) by a simple sonochemical approach. The nanocatalyst was synthesized by a bath-type ultrasound washer (Honda Electronics, W-118T) at 700 W and 300 kHz frequency. The morphology and chemical composition of the nanocatalyst were characterized by X-rays diffractometry (XRD), transmission electron microscopy (TEM), energy dispersive x-rays (EDX), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The electrocatalytic activity (ECA) was monitored by detection of toxic antibiotic drug (chloramphenicol) under phosphate buffer (pH 7.0). A facile sonochemical route was employed to prepare Mn2O3 TNS modified electrode. The screen-printed carbon electrode (SPCE) modified with Mn2O3 TNS was fabricated and applied for the electrochemical determination of chloramphenicol. Compared with bare SPCE, Mn2O3 TNS modified SPCE showed highest current response towards chloramphenicol. Furthermore, the modified sensor exhibits with a sharp peak and two linear ranges by using DPV (i) 0.015-1.28 μM with the sensitivity of 4.167 μA μM-1 cm-2 and (ii) 1.35-566.3 μM with the sensitivity of 7.205 μA μM-1 cm-2. Notably, we achieved a very low-level detection limit of 4.26 nM for the DPV detection of chloramphenicol. Further, the superior practicability of the nanosheets modified sensor can be used for real time sensing of chloramphenicol with good recover ranges.
Collapse
Affiliation(s)
- Umamaheswari Rajaji
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| | - Akilarasan Muthumariappan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC.
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Tien-Wen Tseng
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC.
| | - Kang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
64
|
Govindasamy M, Wang SF, Subramanian B, Ramalingam RJ, Al-Lohedan H, Sathiyan A. A novel electrochemical sensor for determination of DNA damage biomarker (8-hydroxy-2'-deoxyguanosine) in urine using sonochemically derived graphene oxide sheets covered zinc oxide flower modified electrode. ULTRASONICS SONOCHEMISTRY 2019; 58:104622. [PMID: 31450347 DOI: 10.1016/j.ultsonch.2019.104622] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 06/10/2023]
Abstract
To explore a novel and multi-layer based graphene oxide covered zinc oxide nanoflower (ZnO NFs@GOS) as a modified electrode materials by sonochemical technique (40 kHz, 300 W). Herein, novel nanocomposite is successfully characterized by various characterization analysis (FESEM, HRTEM, XRD, XPS and (EIS) electrochemical impedance spectroscopy) and employed as high sensitive modified electrode (ZnO NFs@GOS nanocomposite) for the electrochemical determination of biomarker. 8-hydroxy-2'-deoxyguanosine (8-HDG) is one of the important cancer and oxidative stress biomarker. The results demonstrated that the ZnO NFs@GOS modified SPCE reveal well-defined electro-oxidation peak at 0.36 V (vs. Ag/AgCl). The high sensitive properties of the optimized flower like modified electrode are because of the excellent synergistic effect of the ZnO flower and the graphene oxide nanosheets, as evidenced by a superior bio-sensing performance. The nanocomposite fabricated modified biosensor was facilitating the analysis of 8-HDG in the concentration ranges of 0.05-536.5 µM with a low detection limit is 8.67 nM. The ZnO NFs@GOS modified sensor can also employed for the determination of 8-HDG in human urine samples, promising its application towards the quantification of cancer biomarker in biological samples.
Collapse
Affiliation(s)
- Mani Govindasamy
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan.
| | - Bowya Subramanian
- Department of Electrical Engineering and Computer Science, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; Department of Information Technology, KSR College of Engineering, Tiruchengode, Tamil Nadu, India
| | - R Jothi Ramalingam
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Hamad Al-Lohedan
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Anandraj Sathiyan
- Department of Chemistry, Bishop Heber College, Trichy 620017, Tamil Nadu, India
| |
Collapse
|
65
|
Chen TW, Rajaji U, Chen SM, Al Mogren MM, Hochlaf M, Al Harbi SDA, Ramalingam RJ. A novel nanocomposite with superior electrocatalytic activity: A magnetic property based ZnFe 2O 4 nanocubes embellished with reduced graphene oxide by facile ultrasonic approach. ULTRASONICS SONOCHEMISTRY 2019; 57:116-124. [PMID: 31208606 DOI: 10.1016/j.ultsonch.2019.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Herein, a novel Zinc Ferrite nanocubes (ZnFe2O4 NCs) decorated reduced graphene oxide (rGO) nanocomposite have been designed through a sonochemical method. After then, as-synthesized ZnFe2O4 NCs/rGO was characterized by XPS, XRD, HRTEM and EIS. Furthermore, the ZnFe2O4 NCs/rGO nanocomposite modified GCE (glassy carbon electrode) shows excellent electrochemical sensing performance towards biomarker of 4-nitroquinoline N-oxide (4-NQ) with fast detection. 4-NQ is one of the important cancer biomarker. Moreover, the fabricated sensor showed a wide linear window for 4-NQ between 0.025 and 534.12 µM and nanomolar detection limit (8.27 nM). Further, the as-prepared ZnFe2O4 NCs/rGO/GCE has been applied to the determination of 4-NQ in human blood and urine samples with excellent recovery results.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Muneerah Mogren Al Mogren
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Majdi Hochlaf
- Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, University Paris-Est, ́5 Blvd. Descartes, 77454 Marne-la-Vallee, France
| | - Sarah Dhaif Allah Al Harbi
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - R Jothi Ramalingam
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
66
|
Muthumariyappan A, Rajaji U, Chen SM, Chen TW, Li YL, Ramalingam RJ. One-pot sonochemical synthesis of Bi 2WO 6 nanospheres with multilayer reduced graphene nanosheets modified electrode as rapid electrochemical sensing platform for high sensitive detection of oxidative stress biomarker in biological sample. ULTRASONICS SONOCHEMISTRY 2019; 57:233-241. [PMID: 31103278 DOI: 10.1016/j.ultsonch.2019.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
4-Nitroquinoline N-oxide (4-NQO) is an important tumorigenic organic compound with high adverse effect in the human body. In this study, a novel Bismuth Tungstate nanospheres (Bi2WO6) decorated reduced graphene oxide (Bi2WO6/rGOS) nanocomposite have been designed through a sonochemical method. The as-synthesized Bi2WO6/rGOS was characterized through the HRTEM, FESEM, XPS, EIS and XRD. Furthermore, the nanocomposite modified glassy carbon electrode (GCE) was developed for the determination of 4-NQO. The results showed that the Bi2WO6/rGOS nanocomposite modified electrode exhibit valuable responses and excellent electrocatalytic activity. The fabricated sensor was facilitated the analysis of 4-NQO with a nanomolar detection limit (6.11 nM). Further, the as-synthesized Bi2WO6/rGOS modified electrode has been applied to sensing of 4-NQO in human blood and urine samples with satisfactory recovery.
Collapse
Affiliation(s)
- Akilarasan Muthumariyappan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Yi-Ling Li
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - R Jothi Ramalingam
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
67
|
Rajaji U, Manavalan S, Chen SM, Chinnapaiyan S, Chen TW, Jothi Ramalingam R. Facile synthesis and characterization of erbium oxide (Er 2O 3) nanospheres embellished on reduced graphene oxide nanomatrix for trace-level detection of a hazardous pollutant causing Methemoglobinaemia. ULTRASONICS SONOCHEMISTRY 2019; 56:422-429. [PMID: 31101280 DOI: 10.1016/j.ultsonch.2019.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The nanomaterials have received enormous attention in the catalysis applications. Particularly, we have focused on the fabrication of nanocomposite for an electrochemical sensor with improved electrocatalytic performance. Herein, a rapid and sensitive electrochemical detection of nitrite is essential for assessing the risks facing ecosystems in environment. We report a simple and robust ultrasonic-assisted synthetical route via prepared Er2O3 nanoparticles decorated reduced graphene oxide nanocomposite (Er2O3 NPs@RGO) modified electrode for nitrite detection. The composition and morphological formation were characterized by XRD, XPS, FESEM, and HRTEM. The amperometric (i-t) and cyclic voltammetry were exhibits tremendous electrocatalytic capability and superior performance toward nitrite oxidation. A sensitive and reproducible amperometric nitrite sensor was fabricated which able to detect trace concentration as 3.69 nM and excellent sensitivity (24.17 µA µM-1 cm-2). The method worked well even in cured meat and water samples and the results has indicates the reliability of the method in real-time analysis.
Collapse
Affiliation(s)
- Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shaktivel Manavalan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Sathishkumar Chinnapaiyan
- International Master Program in Mechanical and Automation Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - R Jothi Ramalingam
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
68
|
Chen TW, Rajaji U, Chen SM, Li YL, Ramalingam RJ. Ultrasound-assisted synthesis of α-MnS (alabandite) nanoparticles decorated reduced graphene oxide hybrids: Enhanced electrocatalyst for electrochemical detection of Parkinson's disease biomarker. ULTRASONICS SONOCHEMISTRY 2019; 56:378-385. [PMID: 31101276 DOI: 10.1016/j.ultsonch.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Herein, novel manganese sulfide nanoparticles (MnS NPs) decorated reduced graphene oxide (rGOS) nanocomposite have been designed through a facile ultrasound-assisted method and followed by a sonication process. After then, as-synthesized α-MnS@rGOS was characterized by HRTEM, FESEM, XPS, XRD and EIS. Furthermore, the α-MnS@rGOS nanocomposite modified SPCE (screen-printed carbon electrode) shows excellent electrochemical sensing performance towards Parkinson's disease biomarker of dopamine (DA). Moreover, the fabricated sensor showed a wide linear range for dopamine between 0.02 and 438.6 µM and nanomolar detection limit (3.5 nM). In addition, the α-MnS@rGOS modified SPCE showed selectivity towards the detection of dopamine in presence of a 10-fold higher concentration of other important biomolecules. The nanocomposite film modified SPCE sensor was good stable and reproducible towards the detection of Parkinson's disease biomarker. Furthermore, the as-synthesized α-MnS@rGOS nanocomposite modified SPCE has been applied to the determination of dopamine in human serum, rat serum and pharmaceutical samples with acceptable recoveries.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Yi-Ling Li
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - R Jothi Ramalingam
- King Saud University, Department of Chemistry, College of Science, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
69
|
Govindasamy M, Subramanian B, Wang SF, Chinnapaiyan S, Jothi Ramalingam R, Al-Lohedan HA. Ultrasound-assisted synthesis of tungsten trioxide entrapped with graphene nanosheets for developing nanomolar electrochemical (hormone) sensor and enhanced sensitivity of the catalytic performance. ULTRASONICS SONOCHEMISTRY 2019; 56:134-142. [PMID: 31101247 DOI: 10.1016/j.ultsonch.2019.03.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Herein, we have reported a simple sonochemical synthesis of multi-layer graphene covered tungsten trioxide nanoballs (WO3 NBs) and the nanocomposite was characterized by FESEM, HRTEM, XRD, XPS, CV and EIS. Furthermore, progesterone (PGT) is a preferred marker for various biological problems like pregnancy problem, mood swings, anxiety, depression, nervousness and body pain. Therefore, its selective and sensitive determination in various biological fluids is beneficial for the evaluation of malformation problems. We describe the fabrication of an amperometric and non-enzymatic biosensor based on WO3 NBs@GR nanocomposite modified electrode for nanomolar detection of PGT. The results showed that the nanocomposite modified electrode exhibit well-defined electro-oxidation peak compared to bare and control electrodes, demonstrating the superior electrocatalytic ability and performances. The fabricated modified sensor was facilitates the analysis of PGT in the concentration ranges of 0.025-1792.5 µM with a low detection limit of 4.28 nM. Further, the as-prepared WO3 NBs@GR electrode has been applied to determination of PGT in human blood samples with outstanding recovery results and more importantly, the facile and environment-friendly sonochemical construction strategy extended here, may be open a cost-effective way for setting up the nanocomposites based (bio) sensing platform.
Collapse
Affiliation(s)
- Mani Govindasamy
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan
| | - Bowya Subramanian
- Department of Information Technology, KSR College of Engineering, Tiruchengode, Tamil Nadu, India; Department of Electrical Engineering and Computer Science, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan.
| | - Sathishkumar Chinnapaiyan
- International Master Program in Mechanical and Automation Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - R Jothi Ramalingam
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Hamad A Al-Lohedan
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
70
|
Affiliation(s)
- Tao Chen
- Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 P. R. China
| | - Shaoting Wei
- Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 P. R. China
| | - Zhenghua Wang
- Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 P. R. China
| |
Collapse
|
71
|
Govindasamy M, Wang SF, Jothiramalingam R, Noora Ibrahim S, Al-lohedan HA. A screen-printed electrode modified with tungsten disulfide nanosheets for nanomolar detection of the arsenic drug roxarsone. Mikrochim Acta 2019; 186:420. [DOI: 10.1007/s00604-019-3535-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/22/2019] [Indexed: 12/23/2022]
|
72
|
Chen TW, Rajaji U, Chen SM, Jothi Ramalingam R. Rapid sonochemical synthesis of silver nano-leaves encapsulated on iron pyrite nanocomposite: An excellent catalytic application in the electrochemical detection of herbicide (Acifluorfen). ULTRASONICS SONOCHEMISTRY 2019; 54:90-98. [PMID: 30846281 DOI: 10.1016/j.ultsonch.2019.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/07/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Herein, we developed a silver nanoparticles decorated iron pyrite flowers (FeS2@Ag NL) based nanocomposite was prepared by a sonochemical method. The formation of FeS2@Ag NL nanocomposite was confirmed by XRD, XPS, HR-TEM and analytical techniques. The FeS2@Ag NL/SPCE was potentially applied towards electrochemical detection of toxic herbicide (acifluorfen-AFF). This provided an efficient sensor platform anchoring FeS2@Ag NL on its surface. Under optimized conditions of differential pulse voltammetric transduction, a linear relationship between the current and the concentration was obtained in the range of 0.05-1126.45 µM for Acifluorfen. The detection limit was observed to be 0.0025 µM. the modified sensor exhibits excellent electrochemical performance, including good linear range, nanomolar detection limit, high sensitivity, and desirable stability. Particularly, the practical applicability was revealed by quantifying the AFF concentration in biological samples.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - R Jothi Ramalingam
- King Saud University, Department of Chemistry, College of Science, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
73
|
Zhou H, Li X, Li Y, Zheng M, Pang H. Applications of M xSe y (M = Fe, Co, Ni) and Their Composites in Electrochemical Energy Storage and Conversion. NANO-MICRO LETTERS 2019; 11:40. [PMID: 34137999 PMCID: PMC7770788 DOI: 10.1007/s40820-019-0272-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/14/2019] [Indexed: 05/05/2023]
Abstract
Transition-metal selenides (MxSey, M = Fe, Co, Ni) and their composites exhibit good storage capacities for sodium and lithium ions and occupy a unique position in research on sodium-ion and lithium-ion batteries. MxSey and their composites are used as active materials to improve catalytic activity. However, low electrical conductivity, poor cycle stability, and low rate performance severely limit their applications. This review provides a comprehensive introduction to and understanding of the current research progress of MxSey and their composites. Moreover, this review proposes a broader research platform for these materials, including various bioelectrocatalytic performance tests, lithium-sulfur batteries, and fuel cells. The synthesis method and related mechanisms of MxSey and their composites are reviewed, and the effects of material morphologies on their electrochemical performance are discussed. The advantages and disadvantages of MxSey and their composites as well as possible strategies for improving the storage and conversion of electrochemical energy are also summarized.
Collapse
Affiliation(s)
- Huijie Zhou
- School of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Xiaxia Li
- School of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yan Li
- School of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Mingbo Zheng
- School of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
74
|
Multi-scale biomass-based carbon microtubes decorated with Ni-Co sulphides nanoparticles for supercapacitors with high rate performance. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
75
|
Facile Synthesis and Characterization of CoS2–SiO2/Chitosan: The Photocatalysis in Real Samples, and Antimicrobial Evaluation. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01074-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|