51
|
Cheng YN, Jiang ZH, Sun LS, Su ZY, Zhang MM, Li HL. Synthesis of 1, 2, 4-triazole benzoyl arylamine derivatives and their high antifungal activities. Eur J Med Chem 2020; 200:112463. [PMID: 32464471 DOI: 10.1016/j.ejmech.2020.112463] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Two series of novel 1, 2, 4-triazole benzoyl arylamine derivatives were prepared and screened for their activities against three pathogens of Gaeumannomyces graminis var.tritici, Sclerotinia sclerotiorum and Fusarium graminearum using the mycelium growth inhibition method in vitro. The results indicated that most of the synthesized derivatives displayed antifungal activities. Compounds 6c-d and 6f-g exhibited lower EC50s against all the three pathogens. Among of them, the compound 6g displayed the most potent antifungal activities with EC50 values of 0.01, 0.19 and 0.12 μg mL-1 respectively. The structure and activity relationship showed that election-withdrawing group at pata-position of aniline was favorable for high activities, and the preferred groups were alkoxy carbonyls. These results proposed that the compound 6g can be a lead compound for development of novel fungicide.
Collapse
Affiliation(s)
- Yi-Nan Cheng
- Plant Protection College of Henan Agricultural University, Zhengzhou, 450002, China; Provincial Key Laboratory of the Discovery and Application of Novel Pesticide, Zhengzhou, 450002, China.
| | - Zhen-Hua Jiang
- Plant Protection College of Henan Agricultural University, Zhengzhou, 450002, China
| | - Lian-Sheng Sun
- Plant Protection College of Henan Agricultural University, Zhengzhou, 450002, China
| | - Zi-Yang Su
- Plant Protection College of Henan Agricultural University, Zhengzhou, 450002, China
| | - Meng-Meng Zhang
- Plant Protection College of Henan Agricultural University, Zhengzhou, 450002, China
| | - Hong-Lian Li
- Plant Protection College of Henan Agricultural University, Zhengzhou, 450002, China; Provincial Key Laboratory of the Discovery and Application of Novel Pesticide, Zhengzhou, 450002, China
| |
Collapse
|
52
|
Gonçalves ÍFS, Souza TM, Vieira LR, Marchi FC, Nascimento AP, Farias DF. Toxicity testing of pesticides in zebrafish-a systematic review on chemicals and associated toxicological endpoints. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10185-10204. [PMID: 32062774 DOI: 10.1007/s11356-020-07902-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The use of zebrafish (Danio rerio) has arisen as a promising biological platform for toxicity testing of pesticides such as herbicides, insecticides, and fungicides. Therefore, it is relevant to assess the use of zebrafish in models of exposure to investigate the diversity of pesticide-associated toxicity endpoints which have been reported. Thus, this review aimed to assess the recent literature on the use of zebrafish in pesticide toxicity studies to capture data on the types of pesticide used, classes of pesticides, and zebrafish life stages associated with toxicity endpoints and phenotypic observations. A total of 352 articles published between September 2012 and May 2019 were curated. The results show an increased trend in the use of zebrafish for testing the toxicity of pesticides, with a great diversity of pesticides (203) and chemical classes (58) with different applications (41) being used. Furthermore, experimental outcomes could be clustered in 13 toxicity endpoints, mainly developmental toxicity, oxidative stress, and neurotoxicity. Organophosphorus, pyrethroid, azole, and triazine were the most studied classes of pesticides and associated with various toxicity endpoints. Studies frequently opted for early life stages (embryos and larvae). Although there is an evident lack of standardization of nomenclatures and phenotypic alterations, the information gathered here highlights associations between (classes of) pesticides and endpoints, which can be used to relate mechanisms of action specific to certain classes of chemicals.
Collapse
Affiliation(s)
- Íris Flávia Sousa Gonçalves
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil
| | - Terezinha Maria Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| | - Leonardo Rogério Vieira
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil
| | - Filipi Calbaizer Marchi
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
| | - Adailton Pascoal Nascimento
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
| | - Davi Felipe Farias
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil.
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil.
| |
Collapse
|
53
|
Wang H, Meng Z, Liu F, Zhou L, Su M, Meng Y, Zhang S, Liao X, Cao Z, Lu H. Characterization of boscalid-induced oxidative stress and neurodevelopmental toxicity in zebrafish embryos. CHEMOSPHERE 2020; 238:124753. [PMID: 31545217 DOI: 10.1016/j.chemosphere.2019.124753] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Boscalid is a widely used fungicide in agriculture and has been frequently detected in both environments and agricultural products. However, evidence on the neurotoxic effect of boscalid is scarce. In this study, zebrafish served as an animal model to investigate the toxic effects and mechanisms of boscalid on aquatic vertebrates or higher animals. And we unravelled that boscalid induced developmental defects associated with oxidative stress. Developmental defects, including head deformity, hypopigmentation, decreased number of newborn neurons, structural defects around the ventricle, enlarged intercellular space in the brain, and nuclear concentration, were observed in zebrafish embryos after boscalid exposure at 48 hpf. Interestingly, we found that boscalid might directly induce oxidative stress and alter the activity of ATPase, which in turn disrupted the expression of genes involved in neurodevelopment and transmitter-transmitting signalings and melanocyte differentiation and melanin synthesis signalings. Ultimately, the differentiation of nerve cells and melanocytes were both impacted and the synthesis of melanin was inhibited, leading to morphological abnormalities. Additionally, exposure to boscalid led to less and imbalance motion and altered tendency of locomotor in larval fish. Collectively, our results provide new evidences for a comprehensive assessment of its toxicity and a warning for its residues in environment and agricultural products.
Collapse
Affiliation(s)
- Honglei Wang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Zhen Meng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Liqun Zhou
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Meile Su
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Yunlong Meng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330006, PR China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China.
| |
Collapse
|
54
|
Tian S, Teng M, Meng Z, Yan S, Jia M, Li R, Liu L, Yan J, Zhou Z, Zhu W. Toxicity effects in zebrafish embryos (Danio rerio) induced by prothioconazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113269. [PMID: 31574395 DOI: 10.1016/j.envpol.2019.113269] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Triazole fungicides are widely used in agriculture production and have adverse impacts on aquatic organisms. As one of the triazole fungicides, prothioconazole has been reported to cause many toxicological effects, but its risks to aquatic organisms are unknown. In this study, we systematically explored the toxicity effects of prothioconazole exposure on zebrafish embryos (Danio rerio) involving in developmental toxicity, oxidative damage and metabolism disorders. The results showed that prothioconazole exposure to zebrafish embryos produced a series of toxic symptoms, including hatching inhibition, shortening of body length, pericardial cyst and yolk cyst. In addition, prothioconazole exposure caused significant lipid peroxidation and oxidative damage. Particularly, we also found that metabolites and genes involved in lipid metabolism also showed significant changes. This study may provide theoretical basis for systematically assessing the potential risks of zebrafish embryos with prothioconazole exposure.
Collapse
Affiliation(s)
- Sinuo Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Ming Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Ruisheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Li Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
55
|
Evolutionarily conserved susceptibility of the mitochondrial respiratory chain to SDHI pesticides and its consequence on the impact of SDHIs on human cultured cells. PLoS One 2019; 14:e0224132. [PMID: 31697708 PMCID: PMC6837341 DOI: 10.1371/journal.pone.0224132] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Succinate dehydrogenase (SDH) inhibitors (SDHIs) are used worldwide to limit the proliferation of molds on plants and plant products. However, as SDH, also known as respiratory chain (RC) complex II, is a universal component of mitochondria from living organisms, highly conserved through evolution, the specificity of these inhibitors toward fungi warrants investigation. We first establish that the human, honeybee, earthworm and fungal SDHs are all sensitive to the eight SDHIs tested, albeit with varying IC50 values, generally in the micromolar range. In addition to SDH, we observed that five of the SDHIs, mostly from the latest generation, inhibit the activity of RC complex III. Finally, we show that the provision of glucose ad libitum in the cell culture medium, while simultaneously providing sufficient ATP and reducing power for antioxidant enzymes through glycolysis, allows the growth of RC-deficient cells, fully masking the deleterious effect of SDHIs. As a result, when glutamine is the major carbon source, the presence of SDHIs leads to time-dependent cell death. This process is significantly accelerated in fibroblasts derived from patients with neurological or neurodegenerative diseases due to RC impairment (encephalopathy originating from a partial SDH defect) and/or hypersensitivity to oxidative insults (Friedreich ataxia, familial Alzheimer’s disease).
Collapse
|