51
|
Lyu L, Liang H, Huang Y, Ding H, Yang GP. Annual hypoxia causing long-term seawater acidification: Evidence from low-molecular-weight organic acids in the Changjiang Estuary and its adjacent sea area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151819. [PMID: 34838564 DOI: 10.1016/j.scitotenv.2021.151819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
In this study, components, concentrations, distribution characteristics, sources of low-molecular-weight organic acids (LMWOAs) and relationships among the annual hypoxia, LMWOAs and seawater acidification were investigated in the Changjiang Estuary and its adjacent sea area in July 2015. Lactic, acetic and formic acids were detected in the seawater samples in the study area, and their total concentrations (ΣLMWOAs) varied from 0 to 262.6 μmol·L-1, with an average value of 39.2 μmol·L-1. In the surface seawater, high concentration areas of ΣLMWOAs occurred in the sea area near the Changjiang Estuary and the Hangzhou Bay, and north of study area. In the sampling stations along transect A6, high concentration areas of ΣLMWOAs appeared in the bottom seawater of nearshore stations and middle seawater of offshore stations. The terrigenous inputs, especially the Changjiang runoff, were the dominant sources for LMWOAs in the sampling period. The consistency of hypoxia areas, high concentration areas of ΣLMWOAs and low pH value areas in winter and summer suggested that annual hypoxia could cause the long-term seawater acidification by producing LMWOAs in the Changjiang Estuary and its adjacent sea area.
Collapse
Affiliation(s)
- Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, PR China; Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao 266100, PR China
| | - Haorui Liang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao 266100, PR China; South China Sea Marine Survey and Technology Center, State Oceanic Administration, Guangzhou 510300, PR China
| | - Yuhuan Huang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao 266100, PR China
| | - Haibing Ding
- Qingdao National Laboratory of Marine Science and Technology, Qingdao 266100, PR China; Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao 266100, PR China; Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao 266100, PR China.
| | - Gui-Peng Yang
- Qingdao National Laboratory of Marine Science and Technology, Qingdao 266100, PR China; Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao 266100, PR China
| |
Collapse
|
52
|
Lin L, Zhong S, Chen C, Wang P, Qian W, Ceng J, Zhu X, Xu X. 近海海域养殖源微塑料的环境赋存丰度、生物积累与生态风险. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
53
|
Yu X, Huang W, Wang Y, Wang Y, Cao L, Yang Z, Dou S. Microplastic pollution in the environment and organisms of Xiangshan Bay, East China Sea: An area of intensive mariculture. WATER RESEARCH 2022; 212:118117. [PMID: 35121421 DOI: 10.1016/j.watres.2022.118117] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) pollution in oceans is an emerging environmental problem that poses ecological risks for marine ecosystems. Based on the abundance, distribution, and characteristics of microplastics (MPs) in surface water, sediment, and organisms, MP sources, pollution, trophic transfer, and ecological risk in Xiangshan Bay, an area of intensive mariculture in East China Sea, were assessed in this study. MPs were prevalent in the environment and organisms, with overall abundances at a low-medium level compared with the levels in the coastal areas. In water, MPs were more abundant in the inner bay (0.32 items m-3), which is a more significant source of MPs with intensive mariculture than the central (0.09 items m-3) and outer bays (0.07 items m-3). The narrow and land-enclosed inner bay, with weak hydrodynamics for water exchange, retained MPs, thus increasing their abundance. The ecological risk of MPs in water was at a low-moderate level. The MP abundance in sediment did not vary significantly among the three regions of the bay. The morphological characteristics and polymers of the MPs differed in sediment from those in water, which was related to their diverse environmental redistribution routes. MP abundance ingested by organisms were related to their biological features and foraging habits. Overall, fish ingested more MPs than crustaceans, bivalves, and cephalopods, while zooplankton ingested the minimal MPs. Filter feeders ingested less MPs, with a preference for smaller particles than predators. MPs did not show trophic transfer behavior in organisms. Additionally, MPs ingested by infauna showed similar morphological and chemical characteristics compared to sediment at the point of organism residence, whereas MPs ingested by pelagic species were dissimilar to those in surface water. Our findings provide information for understanding MP pollution, source tracing, trophic transfer, and ecological risk assessment in coastal ecosystems.
Collapse
Affiliation(s)
- Xiang Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Youji Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Yuntao Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Liang Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhi Yang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Shuozeng Dou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
54
|
Yin J, Li JY, Craig NJ, Su L. Microplastic pollution in wild populations of decapod crustaceans: A review. CHEMOSPHERE 2022; 291:132985. [PMID: 34801569 DOI: 10.1016/j.chemosphere.2021.132985] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Along with the increasing amount of plastic production and waste disposal, the presence of microplastics has been confirmed in all compartments of ecosystems. The microplastics in biota is of particular concern due to the potential eco-risks associated with long term exposure and the potential for transportation along food webs. Decapoda represents a diverse taxonomic group within the subphylum Crustacea, and some of which are highly valued in fishery and biological production. The interaction between microplastic pollution and wild populations of decapod crustaceans have been documented less than fish or bivalves but are critical to understand the fates of microplastics in marine eco-systems and enrich the baselines for consumption analyses. Our review systematically summarizes the occurrence, abundance and characteristics of microplastics detected in edible and non-edible sections of decapod crustaceans from field observations. Sub-groups between crabs and shrimps were also included for comparison. The occurrence of microplastics in the edible sections were less than those in non-edible sections, and there are differences between crabs and shrimps. Fibrous microplastics and items with a size category less than 1 mm were dominant pollutants across all available literature. The methodology selection, biological features and uptake pathways play roles in the microplastic body burden in Decapoda. Our work enriches the understanding of microplastic pollution in wild populations of decapod crustaceans but their contribution to the human exposure to microplastics needs to be addressed with more accurate measurements.
Collapse
Affiliation(s)
- Jie Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Nicholas J Craig
- School of Biosciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Lei Su
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200142, China.
| |
Collapse
|
55
|
Hu L, Fu J, Zheng P, Dai M, Zeng G, Pan X. Accumulation of microplastics in tadpoles from different functional zones in Hangzhou Great Bay Area, China: Relation to growth stage and feeding habits. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127665. [PMID: 34799175 DOI: 10.1016/j.jhazmat.2021.127665] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are ubiquitous in freshwater ecosystems, including inland small waterbodies (e.g., ponds and ditches), which are unique habitats for tadpoles. The uptake of MPs by tadpoles is influenced by their habitat, life stage, and feeding strategy. In this study, we investigated MP levels in small waterbodies in three different functional zones from the Hangzhou Great Bay Area, China, and resident tadpoles at different stages of metamorphosis with different feeding habits. Our results indicated that MPs in all three sampling areas were predominantly fibers; and the highest abundances of MPs were observed in water (4.70 ± 2.30 items/L) and sediment (728 ± 324 items/kg) from a textile industrial area, likely the result of nearby human activities. There was no significant difference in MP number in tadpoles between areas; however, omnivorous tadpoles with labial teeth and horny beaks ingested more MPs than did filter feeders. Based on their developmental characteristics, the collected tadpoles were categorized as: pre-metamorphosis, pro-metamorphosis, and metamorphic climax. The MP levels exhibited an upward trend, and MP size gradually increased as tadpole development progressed. This suggests that MPs may accumulate in tadpoles as they grow and potentially affect their metamorphosis from larvae to frogs.
Collapse
Affiliation(s)
- Lingling Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juyang Fu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pingjia Zheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengzheng Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ganning Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
56
|
Wang Q, Guan C, Han J, Chai M, Li R. Microplastics in China Sea: Analysis, status, source, and fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149887. [PMID: 34487899 DOI: 10.1016/j.scitotenv.2021.149887] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) in marine environments have raised increasing concerns worldwide in recent years. China is one of the largest plastic producers in the world. In this review, available information on MPs in China Sea was reviewed, including studies on seawater, sediment, and biota. The status and limits of sampling methods of MPs were summarized, such as sampling tools, sampling volume, and depth of sampling. The analytical methods of MPs were outlined, such as sieving, density separation, purification, filtration, and visual sorting. The characteristics of MPs, such as abundances, sizes, shapes, polymer types, sources, and fates were analyzed. The abundances of MPs in China Sea varied from 0.1 to 27,840.0 items m-3 in seawater, and from 13.0 to 14,712.0 items kg-1 d.w. in sediments. Furthermore, MPs were mainly featured with sizes ranging from 0.001 to 0.5 mm, with colors of transparent and black, and polymer types of polypropylene and polyethylene. To promote research on MPs in China Sea, the sampling and analytical methods were insufficiently standardized and should be improved. As for microplastic (MP) pollution in China Sea, laws and regulations have already been established to manage and control plastic waste. Furthermore, several suggestions to control plastic pollution were as follows: (1) control marine plastic pollution at the source; (2) strengthen technological innovations; (3) urge people to minimize disposable plastic products in their daily lives; (4) strengthen international cooperation in the treatment of marine plastic waste.
Collapse
Affiliation(s)
- Qian Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chunya Guan
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jie Han
- School of Science and Technology, The Open University of Hong Kong, Ho Man Tin, Kowloon, Hong Kong, China
| | - Minwei Chai
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ruili Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
57
|
Yuan F, Ding Y, Wang Y, Yu W, Zou X, Chen H, Fu G, Ding D, Tang J, Tang X, Zhang Z, Li S, Li D. Microplastic pollution in Larimichthys polyactis in the coastal area of Jiangsu, China. MARINE POLLUTION BULLETIN 2021; 173:113050. [PMID: 34688083 DOI: 10.1016/j.marpolbul.2021.113050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
We investigated microplastics (MPs) pollution in 349 Larimichthys polyactis specimens from the coastal area of Jiangsu Province, China. The MP abundance in L. polyactis was 1.03 ± 1.04 items/individual and 0.95 ± 0.92 items/10 g (wet weight). The MP abundance in specimens from the Haizhou Bay fishing ground was slightly higher than that in specimens from the Lvsi fishing ground. Spearman's correlation showed that MP abundance was positively correlated with body length when expressed as items/individual, but not items/10 g. The abundance in the gastrointestinal tract was slightly higher than that in the gills, but the differences were not significant for either measurement index. The MPs predominantly ingested by L. polyactis were <1 mm, fibrous, blue and had a cellophane composition. The MP pollution in L. polyactis in the coast of Jiangsu Province is at a medium to low level, as compared with other regions of China.
Collapse
Affiliation(s)
- Feng Yuan
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
| | - Yongcheng Ding
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China
| | - Ying Wang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China
| | - Wenwen Yu
- Marine Fisheries Research Institute of Jiangsu Province, Nantong 226007, China; Jiangsu Key Laboratory of Marine Bioresources and Ecology, Nantong 226007, China.
| | - Xinqing Zou
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China.
| | - Hongyu Chen
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China
| | - Guanghe Fu
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China
| | - Duo Ding
- Marine Fisheries Research Institute of Jiangsu Province, Nantong 226007, China; Jiangsu Key Laboratory of Marine Bioresources and Ecology, Nantong 226007, China
| | - Jianhua Tang
- Marine Fisheries Research Institute of Jiangsu Province, Nantong 226007, China; Jiangsu Key Laboratory of Marine Bioresources and Ecology, Nantong 226007, China
| | - Xiaojian Tang
- Marine Fisheries Research Institute of Jiangsu Province, Nantong 226007, China
| | - Zhaohui Zhang
- Fishery Ecological Environment Monitoring Station of Jiangsu Province, Nanjing 221000, China
| | - Shihu Li
- College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dan Li
- Marine Fisheries Research Institute of Jiangsu Province, Nantong 226007, China; College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
58
|
Curren E, Kuwahara VS, Yoshida T, Leong SCY. Marine microplastics in the ASEAN region: A review of the current state of knowledge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117776. [PMID: 34280748 DOI: 10.1016/j.envpol.2021.117776] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Microplastic pollution is a prevalent and serious problem in marine environments. These particles have a detrimental impact on marine ecosystems. They are harmful to marine organisms and are known to be a habitat for toxic microorganisms. Marine microplastics have been identified in beach sand, the seafloor and also in marine biota. Although research investigating the presence of microplastics in various marine environments have increased across the years, studies in Southeast Asia are still relatively limited. In this paper, 36 studies on marine microplastic pollution in Southeast Asia were reviewed and discussed, focusing on microplastics in beach and benthic sediments, seawater and marine organisms. These studies have shown that the presence of fishing harbours, aquaculture farms, and tourism result in an increased abundance of microplastics. The illegal and improper disposal of waste from village settlements and factories also contribute to the high abundance of microplastics observed. Hence, it is crucial to identify the hotspots of microplastic pollution, for assessment and mitigation purposes. Future studies should aim to standardize protocols and quantification, to allow for better quantification and assessment of the levels of microplastic contamination for monitoring purposes.
Collapse
Affiliation(s)
- Emily Curren
- St. John Island National Marine Laboratory, Tropical Marine Science Institute (TMSI), National University of Singapore, 18 Kent Ridge Road, 119227, Singapore.
| | - Victor S Kuwahara
- Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Teruaki Yoshida
- Unit for Harmful Algal Bloom Studies, Borneo Marine Research Institute, University Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Sandric Chee Yew Leong
- St. John Island National Marine Laboratory, Tropical Marine Science Institute (TMSI), National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| |
Collapse
|
59
|
Zhang Z, Deng C, Dong L, Liu L, Li H, Wu J, Ye C. Microplastic pollution in the Yangtze River Basin: Heterogeneity of abundances and characteristics in different environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117580. [PMID: 34147783 DOI: 10.1016/j.envpol.2021.117580] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Microplastic pollution in the Yangtze River Basin has become a major concern; however, the variations in different environmental compartments are unknown. Here, we compiled published information including detection methods, occurrence, and characterization of microplastics from 624 sampling sites in river water, river sediment, lake and reservoir water, and lake and reservoir sediment in the Yangtze River Basin. The spatial distribution of sampling sites shows fractal pattern and was uniformly concentrated around the main stream of the Yangtze River and the lake geographical zone. Collection, pretreatment, identification, and quantification processes varied among different studies. Non-parametric tests were performed to compare the different microplastic indices. A Pearson correlation analysis was used to study the relationship between microplastic pollution and local socioeconomic conditions. We found that the microplastic size and abundance distribution in river water and lake and reservoir water showed different patterns for different sampling methods, indicating that different methods influenced the results. Population density and urbanization rate are suggested to be important factors influencing the spatial heterogeneity of microplastic abundances in water, rather than in sediment. The microplastic abundances in lake and reservoir water were higher than that in river water in bulk samples. However, microplastic abundances among different sediment environments shows no significant difference. For bulk water samples and sediment samples overall, the proportion of small microplastics (<1 mm, i.e. SMP), fibers, transparent debris, and polypropylene (PP) were 65.1%, 67.8%, 31.8%, and 29.7%, respectively. The microplastic characteristics of lake and reservoir water and sediment were similar, differing from those of river water and sediment. This study provides the first basin scale insight into microplastic occurrence and characteristics in different environments in the Yangtze River Basin.
Collapse
Affiliation(s)
- Zeqian Zhang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chenning Deng
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Li Dong
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lusan Liu
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haisheng Li
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jia Wu
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chenlei Ye
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
60
|
Huang W, Wang X, Chen D, Xu EG, Luo X, Zeng J, Huan T, Li L, Wang Y. Toxicity mechanisms of polystyrene microplastics in marine mussels revealed by high-coverage quantitative metabolomics using chemical isotope labeling liquid chromatography mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126003. [PMID: 33992921 DOI: 10.1016/j.jhazmat.2021.126003] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 05/06/2023]
Abstract
Marine microplastic has become an important environmental issue of global concern due to its wide distribution and harmful impacts. However, there is still insufficient information on the toxicity mechanism of microplastics to marine organisms. In this study, we developed and applied a high-coverage quantitative metabolomics technique to investigate the toxicity mechanisms of the polystyrene microspheres (micro-PS) on marine mussels (Mytilus coruscus). A total of 3599 metabolites were quantified, including 163 positively identified metabolites, 318 high-confident putatively identified metabolites, and 2602 mass-matched metabolites from the hemolymph of mussels. Metabolomics analysis indicated that micro-PS disrupted the amino acid metabolism, particularly phenylalanine metabolism, which may lead to oxidative stress and neurotoxicity. Micro-PS at environmentally relevant concentrations induced oxidative stress and immunotoxicity in mussels. After 7 days of recovery, along with the significant clearance of micro-PS by mussels, both metabolite levels and biochemical indicators generally returned to the same level as the control group. Overall, the results showed that microplastics at environmentally-relevant concentrations can cause toxic effects on mussels but these influences are reversible. We envisage the usages of high-coverage metabolomics for investigating the toxicity of various types of microplastics under many different conditions, including those relevant to the marine environment.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Xinghuo Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Deying Chen
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Xian Luo
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jiangning Zeng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver V6T 1Z1, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Youji Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| |
Collapse
|
61
|
Lorenzi L, Reginato BC, Mayer DG, Gentil E, Pezzin APT, Silveira VF, Dantas DV. Spatio-seasonal microplastics distribution along a shallow coastal lagoon ecocline within a marine conservation unit. MARINE POLLUTION BULLETIN 2021; 170:112644. [PMID: 34175697 DOI: 10.1016/j.marpolbul.2021.112644] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The aim of our study is to estimate the abundance and sources of floating microplastics (MPs) along a coastal lagoon ecocline in a marine conservation unit (MCU) for implementing effective prevention and mitigation actions in South Brazil. MPs were sampled monthly, and the abundance and size were determined for hard solids, soft plastic, plastic filaments, and paint fragments. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis was performed, and the MPs were classified as polyethylene, polyester, polypropylene, polybutadiene, and polystyrene. Downstream areas (outside of the MCU) showed high levels of MPs, during the winter, due to low precipitation and the predominance of S/SE winds. During summer, precipitation increases, and MPs are exported with surface runoff, resulting in lower level of MPs. Outside MCU areas, a high concentration of tourism houses, commercials, and artisanal fisheries were observed, which could contribute to all types of plastic debris found in our study.
Collapse
Affiliation(s)
- Luciano Lorenzi
- Grupo de Estudos de Organismos Bentônicos de Fundos Inconsolidados Vegetados e não Vegetados, Departamento de Ciências Biológicas - Biologia Marinha, Universidade da Região de Joinville (UNIVILLE), Rodovia Duque de Caxias, 6 365 São Francisco do Sul, Santa Catarina, Brazil; Programa de Pós-Graduação em Saúde e Meio Ambiente PPGSMA - UNIVILLE, Brazil
| | - Bruna C Reginato
- Grupo de Estudos de Organismos Bentônicos de Fundos Inconsolidados Vegetados e não Vegetados, Departamento de Ciências Biológicas - Biologia Marinha, Universidade da Região de Joinville (UNIVILLE), Rodovia Duque de Caxias, 6 365 São Francisco do Sul, Santa Catarina, Brazil
| | - Devon G Mayer
- Grupo de Estudos de Organismos Bentônicos de Fundos Inconsolidados Vegetados e não Vegetados, Departamento de Ciências Biológicas - Biologia Marinha, Universidade da Região de Joinville (UNIVILLE), Rodovia Duque de Caxias, 6 365 São Francisco do Sul, Santa Catarina, Brazil
| | - Eduardo Gentil
- Grupo de Gestão, Ecologia e Tecnologia Marinha (GTMar), Departamento de Engenharia de Pesca e Ciências Biológicas, Universidade do Estado de Santa Catarina (UDESC), R. Cel. Fernandes Martins, 270 Laguna, Santa Catarina, Brazil; Programa de Pós-Graduação em Planejamento Territorial e Desenvolvimento Socioambiental (PPGPLAN)/FAED/UDESC, Brazil
| | - Ana Paula Testa Pezzin
- Grupo de Materiais Poliméricos, Programa de Pós-Graduação em Engenharia de Processos (PPGEP - UNIVILLE), Brazil
| | - Victória Fonseca Silveira
- Departamento de Ciências Biológicas - Biologia Marinha, Universidade da Região de Joinville (UNIVILLE), Rodovia Duque de Caxias, 6 365 São Francisco do Sul, Santa Catarina, Brazil
| | - David V Dantas
- Grupo de Gestão, Ecologia e Tecnologia Marinha (GTMar), Departamento de Engenharia de Pesca e Ciências Biológicas, Universidade do Estado de Santa Catarina (UDESC), R. Cel. Fernandes Martins, 270 Laguna, Santa Catarina, Brazil; Programa de Pós-Graduação em Planejamento Territorial e Desenvolvimento Socioambiental (PPGPLAN)/FAED/UDESC, Brazil.
| |
Collapse
|
62
|
Environmental Microplastic Particles vs. Engineered Plastic Microparticles-A Comparative Review. Polymers (Basel) 2021; 13:polym13172881. [PMID: 34502921 PMCID: PMC8434362 DOI: 10.3390/polym13172881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022] Open
Abstract
Microplastic particles (MPs) pose a novel threat to nature. Despite being first noticed in the 1970s, research on this topic has only surged in recent years. Researchers have mainly focused on environmental plastic particles; however, studies with defined microplastic particles as the sample input are scarce. Furthermore, comparison of those studies indicates a discrepancy between the particles found (e.g., in the environment) and those used for further research (e.g., exposure studies). Obviously, it is important to use particles that resemble those found in the environment to conduct appropriate research. In this review, different categories of microplastic particles are addressed, before covering an overview of the most common separation and analysis methods for environmental MPs is covered. After showing that the particles found in the environment are mostly irregular and polydisperse, while those used in studies with plastic microparticles as samples are often not, different particle production techniques are investigated and suggestions for preparing realistic plastic particles are given.
Collapse
|
63
|
Alomar C, Sanz-Martín M, Compa M, Rios-Fuster B, Álvarez E, Ripolles V, Valencia JM, Deudero S. Microplastic ingestion in reared aquaculture fish: Biological responses to low-density polyethylene controlled diets in Sparus aurata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116960. [PMID: 33780838 DOI: 10.1016/j.envpol.2021.116960] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
During the last years, ingestion of microplastics (MPs) has been quantified in marine species both with an ecological and commercial interest at sea and under experimental conditions, highlighting the importance to assess MP ingestion in commercially and aquaculture important species such as gilthead seabream (Sparus aurata) fish. In order to study the ingestion of MPs in a commercially valuable species, gilthead seabreams were exposed to an enriched diet with virgin and weathered low-density polyethylene (LDPE) pellets for three months followed by a detoxification period of one month of no exposure to MP enriched diets. Our results indicate that MP ingestion in these fishes increased with exposure time, and differences were found between treatments, showing the highest ingestion values after three months of exposure to MP enriched diets and in the weathered treatment. However, after one month of detoxification, no MPs were found in the gastrointestinal tracts of fish, reflecting no long-term retention of MPs in Sparus aurata digestive system. According to results from this study, exposure of fish to MP enriched diets does not affect fish size neither the Fulton's condition index as both parameters increased with time in all treatments (control, virgin and weathered). Both carbon and nitrogen isotopic signatures decreased with fish size in all treatments which could be related to an increase of nitrogen deposition efficiency in fish muscle with a high protein assimilation during the first months of Sparus aurata.
Collapse
Affiliation(s)
- Carme Alomar
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain.
| | - Marina Sanz-Martín
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Montserrat Compa
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Beatriz Rios-Fuster
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Elvira Álvarez
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Vincent Ripolles
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - José María Valencia
- Laboratorio de Investigaciones Marinas y Acuicultura, LIMIA-Govern de Les Illes Balears, Port d'Andratx, Balearic Islands, Spain; INAGEA (INIA-CAIB-UIB), Carr. de Valldemossa, Km 7.5, 07122, Palma, Balearic Islands, Spain
| | - Salud Deudero
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| |
Collapse
|
64
|
Xu L, Cao L, Huang W, Liu J, Dou S. Assessment of plastic pollution in the Bohai Sea: Abundance, distribution, morphological characteristics and chemical components. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116874. [PMID: 33752136 DOI: 10.1016/j.envpol.2021.116874] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/01/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Plastics are globally distributed in oceans and can pose a threat to the environment and organisms. In this study, plastic pollution in surface water and sediments of the Bohai Sea was assessed based on plastic abundance, distribution and characteristics (shape, polymer, size and color). Water and sediment samples were collected across the sea using a plankton net (330 μm) and a grab sampler, respectively. The following conclusions were reached. 1) In surface water, large plastics were less abundant (0.14 items/m3) and showed less diverse characteristics than microplastics (0.79 items/m3) but did not significantly differ in spatial distribution. 2) Microplastics in water were more abundant (1.95 items/m3) with more diverse characteristics in Liaodong Bay than in other regions of the sea (0.26-0.59 items/m3). Plastic waste from highly concentrated agricultural, industrial and fishery activities could make large contributions to microplastics in Liaodong Bay. Additionally, low hydrodynamics and long distance to Bohai Strait are unfavorable for diffusion of particles, facilitating the retention of microplastics and increasing the abundance in this bay. 3) Microplastics in sediments were smaller in terms of dominant sizes (<0.5 mm) with less diverse characteristics than particles in water (0.5-1.5 mm). Specifically, fragments, foams and lines dominated among the microplastics in water, whereas fibers and fragments were dominant particles in sediments; alkyd resin, polyethylene, polystyrene and polypropylene (PP) predominated among the particles in water, but rayon, cellulose and PP were dominant particles in sediments. 4) Neither abundance nor size of microplastics in the two media was proportionally correlated and showed low similarity indexes of polymer (0.16), shape (0.29) or color (0.38). This could be related to mismatch in spatiotemporal distributions and variations in the characteristics, fate and behavior of microplastics in the two media. The findings provide knowledge for tracing the sources of plastics in the Bohai Sea.
Collapse
Affiliation(s)
- Lili Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Liang Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Jinhu Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Shuozeng Dou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
65
|
Wang LY, Gu YY, Zhang ZM, Sun AL, Shi XZ, Chen J, Lu Y. Contaminant occurrence, mobility and ecological risk assessment of phthalate esters in the sediment-water system of the Hangzhou Bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144705. [PMID: 33736359 DOI: 10.1016/j.scitotenv.2020.144705] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The pollution characteristics, spatiotemporal variation, sediment-water partitioning, and potential ecological risk assessment of phthalate esters (PAEs) in the sediment-seawater system of the Hangzhou Bay (HZB) in summer and autumn were researched. The sum of the concentrations of the 10 PAEs in seawater ranges from 7305 ng/L to 22,861 ng/L in summer and from 8100 ng/L to 33,329 ng/L in autumn, with mean values of 15,567 ± 4390 and 17,884 ± 6850 ng/L, respectively. The Σ16PAEs in the sediments are between 118 and 5888 μg/kg and 145 and 4746 μg/kg in summer and autumn, respectively. The level of PAEs in seawater varies with the seasons, but it is relatively stable in the sediments. Di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DnBP), and diisobutyl phthalate (DiBP) are the predominant PAE congeners in the HZB. The DnBP and DiBP concentrations in seawater are greater than the DEHP concentration, which is the opposite in the sediments. The sediment-seawater equilibrium distribution study indicates that the PAEs with medium molecular weights, such as DiBP, butyl benzyl phthalate, and DnBP, are near dynamic equilibrium in the sediment-seawater system; PAEs with high molecular weights (e.g., di-n-octyl phthalate and DEHP) tend to transfer from water to the sediments; and PAEs with low molecular weights (e.g., dimethyl phthalate, diethyl phthalate, and diamyl phthalate) tend to spread to seawater. The risk assessment results in seawater indicate that DEHP and DiBP might pose high potential risks to sensitive organisms, and DnBP might exhibit medium ecological risks. In the sediment, DiBP might display a high potential risk to fish, and the potential risk of DEHP is high in several sites.
Collapse
Affiliation(s)
- Liu-Yong Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Yan-Yu Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Ze-Ming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Ai-Li Sun
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xi-Zhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yin Lu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| |
Collapse
|
66
|
Sun X, Wang T, Chen B, Booth AM, Liu S, Wang R, Zhu L, Zhao X, Qu K. Factors influencing the occurrence and distribution of microplastics in coastal sediments: From source to sink. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124982. [PMID: 33461103 DOI: 10.1016/j.jhazmat.2020.124982] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 05/06/2023]
Abstract
Microplastic (MP) pollution is attracting growing global attention, but little is known about the factors influencing MP occurrence and distributions in marine sediments. Here, MPs were sampled from the sediments of two semi-enclosed bays (Jinghai Bay and Laizhou Bay) and two coastal open zones (Lancelet Reserve and Solen grandis Reserve) in China. The order of MP abundance was Jinghai Bay > Laizhou Bay > Lancelet Reserve > Solen grandis Reserve. Average MP diversity indices for Laizhou Bay (1.84 ± 0.18), Lancelet Reserve (1.59 ± 0.43), S. grandis Reserve (1.58 ± 0.89), and Jinghai Bay (1.43 ± 0.14) revealed Laizhou Bay had the most complicated MP sources. A significant negative correlation between MP abundance and sediment grain size occurred in the semi-enclosed coastal zones (p = 0.004, r = -0.618) rather than in the open coastal zones (p = 0.051, r = -0.480), indicating small sediment particles can strongly enhance MP accumulation in semi-enclosed costal sediments. Although anthropogenic activities influence the MP distribution at source, the composition of regional and local sediments might impact MP occurrence in semi-enclosed coastal zones from the sink. These results help to improve our understanding of the fate and inventory of MPs in coastal sediments.
Collapse
Affiliation(s)
- Xuemei Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Teng Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Bijuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Andy M Booth
- SINTEF Ocean, Department of Environment and New Resources, Trondheim, 7465, Norway.
| | - Shufang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Rongyuan Wang
- North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao 266033, China
| | - Lin Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xinguo Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
67
|
Chen JC, Fang C, Zheng RH, Hong FK, Jiang YL, Zhang M, Li Y, Hamid FS, Bo J, Lin LS. Microplastic pollution in wild commercial nekton from the South China Sea and Indian Ocean, and its implication to human health. MARINE ENVIRONMENTAL RESEARCH 2021; 167:105295. [PMID: 33714106 DOI: 10.1016/j.marenvres.2021.105295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Marine biota, especially commercially important species, serves as a basis for human nutrition. However, millions of tons of plastic litter are produced and enter the marine environment every year, with potential adverse impacts on marine organisms. In the present study, we investigated the occurrence and characteristics of microplastic (MP) pollution in the digestive tracts of 13 species of wild nektons from 20 stations sampled in the South China Sea (SCS) and the Indian Ocean (IO), and assessed the human health risks of MPs. The detection rate of MPs ranged from 0.00% to 50.00% from the SCS, which was dramatically lower than that from the IO (10.00-80.00%). The average abundance of MP was 0.18 ± 0.06 items g wet weight-1 (ww-1) in the SCS, which was significantly lower than that in the IO with a concentration of 0.70 ± 0.16 items g ww-1. Most MPs were fibers in type, black in color, and polyester (PES) in polymer composition in both the SCS and IO. Interestingly, distinct profiles of MP pollution were found between the benthic and pelagic nektons: 1) The predominant MP composition was PES in the benthic nektons, whereas polyamide (PA) accounted for a larger part of the total MP count in the pelagic nektons within the SCS; 2) The abundance of MP in the benthic nektons (0.52 ± 0.24 items individual-1) was higher than that in the pelagic nektons (0.30 ± 0.11 items individual-1). Accordingly, the mean hazard score of MPs detected in the benthic nektons (220.66 ± 210.75) was higher than that in the pelagic nektons (49.53 ± 22.87); 3) The mean size of the MP in the pelagic nektons (0.84 ± 0.17 mm) was larger than that in the benthic nektons (0.49 ± 0.09 mm). Our findings highlight the need to further investigate the ecological impacts of MPs on wild nekton, especially commercially important species, and its potential implications for human health.
Collapse
Affiliation(s)
- Jin-Can Chen
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Chao Fang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China
| | - Rong-Hui Zheng
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China
| | - Fu-Kun Hong
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China
| | - Yu-Lu Jiang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Min Zhang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China
| | - Yuan Li
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China
| | - Fauziah Shahul Hamid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China.
| | - Long-Shan Lin
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China.
| |
Collapse
|
68
|
Zhang X, Xia X, Dai M, Cen J, Zhou L, Xie J. Microplastic pollution and its relationship with the bacterial community in coastal sediments near Guangdong Province, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144091. [PMID: 33360172 DOI: 10.1016/j.scitotenv.2020.144091] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The ecological stress caused by microplastic (MP) pollution in marine environments has attracted global attention. However, few studies have investigated the relationship between MP pollution and the microbial community in natural sediments. This study was the first to systematically characterize MP pollution (i.e., its abundance, shape, size and color) and investigate its relationship with the bacterial community in coastal sediments from Guangdong, South China, by microscopic observation and Illumina sequencing. The results of this study indicated that the abundance of microplastics (MPs), which was 344 ± 24 items/kg in 33 coastal sediments from 11 sites from South China, represented a relatively high level of MP pollution. MPs with sizes of <0.5 m, 0.5-1.0 mm and 1-2 mm accounted for the highest proportion (75%) in the sediments. Fiber/film (82%) and white/blue (91%) were the dominant shapes and colors, respectively, in all MP samples. Furthermore, the abundances, three shapes (fiber, film and fragment), three sizes (<0.5 mm, 0.5-1.0 mm and 1-2 mm), and two colors (blue and white) of MPs displayed positive correlations with some potential pathogens, including Vibrio, Pseudomonas, Bacillus and Streptococcus, but exhibited negative correlations with an environmentally friendly bacterial genus, Sphingomonas (which degrades various hazardous organic compounds), indicating that MPs might increase the potential ecological risks of coastal sediments. Our results may help to elucidate the relationship between MP pollution and the microbial community in coastal sediments.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xiongjian Xia
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ming Dai
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jianwei Cen
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lei Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Jiefen Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
69
|
Wang T, Hu M, Xu G, Shi H, Leung JYS, Wang Y. Microplastic accumulation via trophic transfer: Can a predatory crab counter the adverse effects of microplastics by body defence? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142099. [PMID: 32911152 DOI: 10.1016/j.scitotenv.2020.142099] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/23/2020] [Accepted: 08/29/2020] [Indexed: 05/07/2023]
Abstract
Microplastics are considered detrimental to aquatic organisms due to their potential accumulation along food chains. Thus, it is puzzling why some of them appear unaffected by microplastics. Here, we assessed the contribution of water filtration and food consumption to microplastic accumulation in a predatory marine crab (Charybdis japonica) and examined the associated impacts of microplastics (particle size: 5 μm) following ingestion for one week. Results showed that water filtration and food consumption contributed similarly to the accumulation of microplastics, which were distributed among organs in this order: hepatopancreas > guts > gills > muscles. Yet, biomagnification (i.e. accumulation through consumption of microplastic-contaminated mussels) did not occur possibly due to egestion of microplastics. The crabs upregulated detoxification capacity (EROD) and antioxidant defence (GST) in response to the microplastics accumulated in their tissues. However, these defence mechanisms collapsed when the microplastic concentration in hepatopancreas exceeded ~3 mg g-1, leading to severe hepatic injury (elevated AST and ALT) and impaired neural activity (reduced AChE). Our results suggest that marine organisms have an innate capacity to counter the acute effects of microplastics, but there is a limit beyond which the defence mechanisms fail and hence physiological functions are impaired. As microplastic pollution will deteriorate in the future, the fitness and survival of marine organisms may be undermined by microplastics, affecting the stability and functioning of marine ecosystems.
Collapse
Affiliation(s)
- Ting Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guangen Xu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Jonathan Y S Leung
- Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia 5005, Australia; Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
70
|
Towards Characterising Microplastic Abundance, Typology and Retention in Mangrove-Dominated Estuaries. WATER 2020. [DOI: 10.3390/w12102802] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plastic and, particularly, microplastic (MP) pollution is a growing research theme, dedicated largely to marine systems. Occurring at the land–sea interface, estuarine habitats such as mangroves are at risk of plastic pollution. This study compared MP pollution (level, morphotype, polymer composition, size and colour) across four South African estuaries, in relation to the built and natural environment. Mouth status, surrounding human population densities and land-use practices influenced the level and type of MP pollution. Systems that were most at risk were predominantly open estuaries surrounded by high population densities and diverse land use types. Microplastic levels and the diversity of types detected increased with increasing levels of anthropogenic disturbance. Overall, microfibres dominated in estuarine water (69%) and mangrove sediment (51%). Polyethylene (43%) and polypropylene (23%) were the dominant polymers overall. Weathered fishing gear, weathered packaging items and run-off from urban/industrial centres are probable sources of MP pollution. Increased run-off and river input during the wet/rainy season may explain the markedly higher MP loads in estuarine waters relative to the dry season. By contrast, MP deposition in mangrove sediment was higher during the dry season. Sediment MP abundance was significantly positively correlated with both pneumatophore density and sediment size (500–2000 µm). This study highlights the role of mangroves as MP sinks, which may limit movement of MPs into adjacent environments. However, under conditions such as flooding and extreme wave action, mangroves may shift from sinks to sources of plastic pollution.
Collapse
|