51
|
Moniuszko H, Malonga WAM, Koczoń P, Thijs S, Popek R, Przybysz A. Accumulation of Plastics and Trace Elements in the Mangrove Forests of Bima City Bay, Indonesia. PLANTS (BASEL, SWITZERLAND) 2023; 12:462. [PMID: 36771545 PMCID: PMC9919253 DOI: 10.3390/plants12030462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Pollution with microplastics (MPs), nanoplastics (NPs) and trace elements (TEs) remains a considerable threat for mangrove biomes due to their capability to capture pollutants suspended in the water. This study investigated the abundance and composition of plastics and TEs contained in the soil and pneumatophores of Avicennia alba sampled in experimental areas (hotel, market, river mouth, port, and rural areas) differentiated in anthropopressure, located in Bima Bay, Indonesia. Polymers were extracted and analyzed with the use of a modified sediment isolation method and Fourier transform infrared spectroscopy. Trace elements were detected by inductively coupled plasma optical emission spectrometry. The lowest and highest quantities of MPs in soil were recorded in rural and hotel areas, respectively. The rural site was characterized by distinct MP composition. The amounts of sediment-trapped MPs in the tested localities should be considered as high, and the recognized polymers partly corresponded with local human activity. Concentrations of seven plastic types found in plant tissues did not entirely reflect sediment pollution with nine types, suggesting a selective accumulation (particularly of polyamides and vinylidene chloride) and substance migration from other areas. Very low concentrations of non-biogenic TEs were observed, both in sediments and pneumatophores. The results highlight the relevance of environmental contamination with plastics.
Collapse
Affiliation(s)
- Hanna Moniuszko
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW (WULS—SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Win Ariga Mansur Malonga
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW (WULS—SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
- Department of Nature Resource Conservation, Sumbawa University of Technology, Olat Maras Street, Moyohulu District, Sumbawa Regency 84371, Indonesia
| | - Piotr Koczoń
- Department of Chemistry, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW (WULS—SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Robert Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW (WULS—SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Arkadiusz Przybysz
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW (WULS—SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
52
|
Walther BA, Bergmann M. Plastic pollution of four understudied marine ecosystems: a review of mangroves, seagrass meadows, the Arctic Ocean and the deep seafloor. Emerg Top Life Sci 2022; 6:371-387. [PMID: 36214383 DOI: 10.1042/etls20220017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 02/06/2023]
Abstract
Plastic pollution is now a worldwide phenomenon affecting all marine ecosystems, but some ecosystems and regions remain understudied. Here, we review the presence and impacts of macroplastics and microplastics for four such ecosystems: mangroves, seagrass meadows, the Arctic Ocean and the deep seafloor. Plastic production has grown steadily, and thus the impact on species and ecosystems has increased, too. The accumulated evidence also indicates that plastic pollution is an additional and increasing stressor to these already ecosystems and many of the species living in them. However, laboratory or field studies, which provide strong correlational or experimental evidence of ecological harm due to plastic pollution remain scarce or absent for these ecosystems. Based on these findings, we give some research recommendations for the future.
Collapse
Affiliation(s)
- Bruno Andreas Walther
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Melanie Bergmann
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
53
|
Jasińska A, Różalska S, Rusetskaya V, Słaba M, Bernat P. Microplastic-Induced Oxidative Stress in Metolachlor-Degrading Filamentous Fungus Trichoderma harzianum. Int J Mol Sci 2022; 23:12978. [PMID: 36361770 PMCID: PMC9658726 DOI: 10.3390/ijms232112978] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 09/07/2023] Open
Abstract
While there has been intensive research on the influence of microplastics (MPs) on aquatic organisms and humans, their effect on microorganisms is relatively little-known. The present study describes the response of the Trichoderma harzianum strain to low-density polyethylene (LDPE) microparticles. MPs, either separately or with metolachlor (MET), were added to the cultures. Initially, MP was not found to have a negative effect on fungal growth and MET degradation. After 72 h of cultivation, the content of fungal biomass in samples with MPs was almost three times higher than that in the cultures without MPs. Additionally, a 75% degradation of the initial MET was observed. However, due to the qualitative and quantitative changes in individual classes of phospholipids, cell membrane permeability was increased. Additionally, MPs induced the overproduction of reactive oxygen species. The activity of superoxide dismutase and catalase was also increased in response to MPs. Despite these defense mechanisms, there was enhanced lipid peroxidation in the cultures containing the LDPE microparticles. The results of the study may fill the knowledge gap on the influence of MPs on filamentous fungi. The findings will be helpful in future research on the biodegradation of contaminants coexisting with MPs in soil.
Collapse
Affiliation(s)
| | | | | | | | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| |
Collapse
|
54
|
Bonyadi Z, Maghsodian Z, Zahmatkesh M, Nasiriara J, Ramavandi B. Investigation of microplastic pollution in Torghabeh River sediments, northeast of Iran. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 250:104064. [PMID: 35994843 DOI: 10.1016/j.jconhyd.2022.104064] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/19/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Rivers are the route of transfer of microplastics from upstream to downstream areas and seas. Microplastic tracing in river sediments can provide a better reflection of long-term microplastic pollution. This study aimed to investigate the occurrence and distribution of microplastic contamination in the Torghabeh River sediments in Khorasan Razavi (Iran). Sediment samples were collected from four sites along the river. Microplastic particles were classified according to type, shape, and color. The average microplastic concentration was 8 ± 2.82 particles per 100 g of dry sediments. Most of the microplastics detected in river sediments were in the form of filaments and fragments. A total of 32 polymers were identified and isolated from sediments. According to Raman spectroscopy results, polystyrene had the highest abundance compared to polyester, polyethylene, and other polymers. The predominant shape of the microplastics in the river sediment was filament and fragmented. It can be concluded that the areas that were exposed to human activity contained more microplastic contamination. The present investigation can also provide baseline information for the study of riverine ecosystems.
Collapse
Affiliation(s)
- Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zeinab Maghsodian
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Mohammad Zahmatkesh
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Nasiriara
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
55
|
The Culturable Mycobiota of Sediments and Associated Microplastics: From a Harbor to a Marine Protected Area, a Comparative Study. J Fungi (Basel) 2022; 8:jof8090927. [PMID: 36135652 PMCID: PMC9501098 DOI: 10.3390/jof8090927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Fungi are an essential component of marine ecosystems, although little is known about their global distribution and underwater diversity, especially in sediments. Microplastics (MPs) are widespread contaminants worldwide and threaten the organisms present in the oceans. In this study, we investigated the fungal abundance and diversity in sediments, as well as the MPs, of three sites with different anthropogenic impacts in the Mediterranean Sea: the harbor of Livorno, the marine protected area “Secche della Meloria”; and an intermediate point, respectively. A total of 1526 isolates were cultured and identified using a polyphasic approach. For many of the fungal species this is the first record in a marine environment. A comparison with the mycobiota associated with the sediments and MPs underlined a “substrate specificity”, highlighting the complexity of MP-associated fungal assemblages, potentially leading to altered microbial activities and hence changes in ecosystem functions. A further driving force that acts on the fungal communities associated with sediments and MPs is sampling sites with different anthropogenic impacts.
Collapse
|
56
|
Asian Biomedicine. Healthy collaborations are needed for mangrove land use and mosquito control. ASIAN BIOMED 2022; 16:109-110. [PMID: 37551379 PMCID: PMC10321175 DOI: 10.2478/abm-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Asian Biomedicine
- Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
| |
Collapse
|