51
|
Garcia T, Schreiber E, Kumar V, Prasad R, Sirvent JJ, Domingo JL, Gómez M. Effects on the reproductive system of young male rats of subcutaneous exposure to n-butylparaben. Food Chem Toxicol 2017; 106:47-57. [DOI: 10.1016/j.fct.2017.05.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/10/2017] [Accepted: 05/14/2017] [Indexed: 12/20/2022]
|
52
|
Xue P, Zhao X, Qin M, Shi Z, Zhang M, Gu W. Transcriptome Analysis of Male Drosophila melanogaster Exposed to Ethylparaben Using Digital Gene Expression Profiling. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3966733. [PMID: 28973488 PMCID: PMC5510984 DOI: 10.1093/jisesa/iex050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Indexed: 05/30/2023]
Abstract
Ethylparaben (EP) has been shown to have estrogenic effects and can affect the normal development, longevity, and reproductive system of some animals. In this study, we investigated the effects of EP in male Drosophila melanogaster using transcriptome analysis or digital gene expression profiling. We then screened differentially expressed genes (DEGs) between the two groups (EP-treated and control group) of Drosophila, and performed clustering analysis, gene ontology (GO) function annotation, kyoto encyclopedia of gene and genomes metabolic pathway analysis. We found that EP enriched GO in three processes: cellular component, molecular function, and biological process. Consequently, we detected 13,959 genes and among them, 18 genes were identified to be significantly expressed between the EP-treated and control samples. Of these, seven genes were down-regulated, and eleven genes were up-regulated in EP-treated samples. Furthermore, four DEGs including two down-regulated genes (CG9465, CG9468) and two up-regulated genes (TotA, Sqz) were verified by real-time quantitative PCR. This study revealed the impact of EP on gene expression in fruit fly and provided new insight into the mechanisms of this response, which is helpful for understanding EP toxicity to humans.
Collapse
Affiliation(s)
- Peiqin Xue
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang’an Avenue, Chang’an District, Xi’an 710119, China (; ; ; ; ; )
| | - Xiaojun Zhao
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang’an Avenue, Chang’an District, Xi’an 710119, China (; ; ; ; ; )
| | - Mengbei Qin
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang’an Avenue, Chang’an District, Xi’an 710119, China (; ; ; ; ; )
| | - Zhanghuan Shi
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang’an Avenue, Chang’an District, Xi’an 710119, China (; ; ; ; ; )
| | - Min Zhang
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang’an Avenue, Chang’an District, Xi’an 710119, China (; ; ; ; ; )
| | - Wei Gu
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang’an Avenue, Chang’an District, Xi’an 710119, China (; ; ; ; ; )
| |
Collapse
|
53
|
Costa JR, Campos MS, Lima RF, Gomes LS, Marques MR, Taboga SR, Biancardi MF, Brito PVA, Santos FCA. Endocrine-disrupting effects of methylparaben on the adult gerbil prostate. ENVIRONMENTAL TOXICOLOGY 2017; 32:1801-1812. [PMID: 28181406 DOI: 10.1002/tox.22403] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/03/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Parabens are xenoestrogens widely employed in cosmetics, foodstuffs, and pharmaceutical products. These chemicals are known to disrupt hormone-dependent organs, due to their binding affinity for hormonal receptors. Although recent studies have evaluated the endocrine-disrupting potential of parabens in several reproductive organs, few have investigated the effects of these chemicals in the prostate. The aim of this work was to evaluate the effects of oral exposure to methylparaben (500 mg/kg/day) for 3, 7, and 21 days on male and female adult gerbil prostate. For this purpose, we employed biometrical, morphological, and immunohistochemical analyses. The results showed that methylparaben caused morphological changes in gerbil prostates in all experimental groups. These animals displayed similar alterations such as prostate epithelial hyperplasia, increased cell proliferation, and a higher frequency of AR-positive cells. However, the prostate of the female gerbil showed additional changes such as stromal inflammatory infiltration, intraepithelial neoplasia foci, and an increase in AR-positive frequency. Altogether, these data show that methylparaben was responsible for disrupting estrogenic and androgenic receptors, suggesting that parabens may have estrogenic and antiandrogenic effects in the prostate.
Collapse
Affiliation(s)
- Janaína R Costa
- Department of Histology, Embryology and Cell Biology, Laboratory of Histophysiology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74001970, Brazil
| | - Mônica S Campos
- Department of Biology, Laboratory of Microscopy and Microanalysis, State University of São Paulo - UNESP, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo, 15054000, Brazil
| | - Rodrigo F Lima
- Department of Histology, Embryology and Cell Biology, Laboratory of Histophysiology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74001970, Brazil
| | - Liana S Gomes
- Department of Histology, Embryology and Cell Biology, Laboratory of Histophysiology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74001970, Brazil
| | - Mara R Marques
- Department of Histology, Embryology and Cell Biology, Laboratory of Histophysiology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74001970, Brazil
| | - Sebastião R Taboga
- Department of Biology, Laboratory of Microscopy and Microanalysis, State University of São Paulo - UNESP, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo, 15054000, Brazil
| | - Manoel F Biancardi
- Department of Histology, Embryology and Cell Biology, Laboratory of Histophysiology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74001970, Brazil
| | - Pedro V A Brito
- Department of Histology, Embryology and Cell Biology, Laboratory of Histophysiology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74001970, Brazil
| | - Fernanda C A Santos
- Department of Histology, Embryology and Cell Biology, Laboratory of Histophysiology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74001970, Brazil
| |
Collapse
|
54
|
Madhubabu G, Yenugu S. Allethrin toxicity causes reproductive dysfunction in male rats. ENVIRONMENTAL TOXICOLOGY 2017; 32:1701-1710. [PMID: 28181402 DOI: 10.1002/tox.22394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/31/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Pyrethroids are widely used for domestic and agricultural purposes and their use is increasing, especially in developing countries. Uncontrolled use of these insecticides resulted in their entry into the food chain thereby causing toxicity to different organ systems. Allethrin is one of the widely used pyrethroids, but its toxicological effects are underreported when compared to other pyrethroids. Further, its effects on the male reproductive tract remain uncharacterized. In this study, its toxicity on the male reproductive tract was evaluated by administering 25-150 mg/kg body weight allethrin to adult rats for 60 days. The mRNA expression of factors that are important in spermatogenesis (Scf, c-Kit, Hsf2, Ovol1, Brdt, Kdm3A, Ybx-2, and Grth) and steroidogenesis (StAR, 3β-HSD, 17β-HSD) was significantly downregulated. Decreased levels of testosterone, reduced sperm count and daily sperm production was also observed due to allethrin toxicity. However, sperm quality parameters assessed by computer-assisted sperm analyzer were not affected. Spermatozoa obtained from allethrin-treated rats failed to undergo acrosome reaction. Results of this study indicate that allethrin affects spermatogenesis and sperm function, thus lending further support to the growing evidence of its toxicity.
Collapse
Affiliation(s)
- Golla Madhubabu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Suresh Yenugu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
55
|
Rattan S, Zhou C, Chiang C, Mahalingam S, Brehm E, Flaws JA. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J Endocrinol 2017; 233:R109-R129. [PMID: 28356401 PMCID: PMC5479690 DOI: 10.1530/joe-17-0023] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/29/2017] [Indexed: 01/10/2023]
Abstract
Endocrine disrupting chemicals are ubiquitous chemicals that exhibit endocrine disrupting properties in both humans and animals. Female reproduction is an important process, which is regulated by hormones and is susceptible to the effects of exposure to endocrine disrupting chemicals. Disruptions in female reproductive functions by endocrine disrupting chemicals may result in subfertility, infertility, improper hormone production, estrous and menstrual cycle abnormalities, anovulation, and early reproductive senescence. This review summarizes the effects of a variety of synthetic endocrine disrupting chemicals on fertility during adult life. The chemicals covered in this review are pesticides (organochlorines, organophosphates, carbamates, pyrethroids, and triazines), heavy metals (arsenic, lead, and mercury), diethylstilbesterol, plasticizer alternatives (di-(2-ethylhexyl) phthalate and bisphenol A alternatives), 2,3,7,8-tetrachlorodibenzo-p-dioxin, nonylphenol, polychlorinated biphenyls, triclosan, and parabens. This review focuses on the hypothalamus, pituitary, ovary, and uterus because together they regulate normal female fertility and the onset of reproductive senescence. The literature shows that several endocrine disrupting chemicals have endocrine disrupting abilities in females during adult life, causing fertility abnormalities in both humans and animals.
Collapse
Affiliation(s)
- Saniya Rattan
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Changqing Zhou
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Catheryne Chiang
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sharada Mahalingam
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Emily Brehm
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jodi A Flaws
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
56
|
Xu Z, Liu J, Wu X, Huang B, Pan X. Nonmonotonic responses to low doses of xenoestrogens: A review. ENVIRONMENTAL RESEARCH 2017; 155:199-207. [PMID: 28231547 DOI: 10.1016/j.envres.2017.02.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/13/2017] [Accepted: 02/16/2017] [Indexed: 05/21/2023]
Abstract
Xenoestrogens (XEs) mimic or block the synthesis, metabolism and transport of normal endogenous hormones, disturbing normal endocrine function. The available data on the nonmonotonic estrogenic effects of low doses of many XEs are reviewed, covering in vitro, in vivo and epidemiological studies. The observed nonmonotonic patterns of the dose-response curves are discussed, along with possible underlying mechanisms. This review is intended to provide guidance for harm predication and to suggest prevention measures.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Jun Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xinhao Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
57
|
Aker AM, Watkins DJ, Johns LE, Ferguson KK, Soldin OP, Anzalota Del Toro LV, Alshawabkeh AN, Cordero JF, Meeker JD. Phenols and parabens in relation to reproductive and thyroid hormones in pregnant women. ENVIRONMENTAL RESEARCH 2016; 151:30-37. [PMID: 27448730 PMCID: PMC5071140 DOI: 10.1016/j.envres.2016.07.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/31/2016] [Accepted: 07/02/2016] [Indexed: 05/21/2023]
Abstract
INTRODUCTION Phenols and parabens are ubiquitous environmental contaminants. Evidence from animal studies and limited human data suggest they may be endocrine disruptors. In the current study, we examined associations of phenols and parabens with reproductive and thyroid hormones in 106 pregnant women recruited for the prospective cohort, "Puerto Rico Testsite for Exploring Contamination Threats (PROTECT)". METHODS Urinary exposure biomarkers (bisphenol A, triclosan, benzophenone-3, 2,4-dichlorophenol, 2,5-dichlorophenol, butyl, methyl and propyl paraben) and serum hormone levels (estradiol, progesterone, sex hormone-binding globulin (SHBG), free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone) were measured at up to two time points during pregnancy (16-20 weeks and 24-28 weeks). We used linear mixed models to assess relationships between exposure biomarkers and hormone levels across pregnancy, controlling for urinary specific gravity, maternal age, BMI and education. In sensitivity analyses, we evaluated cross-sectional relationships between exposure and hormone levels stratified by study visit using linear regression. RESULTS An IQR increase in methyl paraben was associated with a 7.70% increase (95% CI 1.50, 13.90) in SHBG. Furthermore, an IQR increase in butyl paraben as associated with an 8.46% decrease (95% CI 16.92, 0.00) in estradiol, as well as a 9.34% decrease (95% CI -18.31,-0.38) in estradiol/progesterone. Conversely, an IQR increase in butyl paraben was associated with a 5.64% increase (95% CI 1.26, 10.02) in FT4. Progesterone was consistently negatively associated with phenols, but none reached statistical significance. After stratification, methyl and propyl paraben were suggestively negatively associated with estradiol at the first time point (16-20 weeks), and suggestively positively associated with estradiol at the second time point (24-28 weeks). CONCLUSIONS Within this ongoing birth cohort, certain phenols and parabens were associated with altered reproductive and thyroid hormone levels during pregnancy. These changes may contribute to adverse health effects in mothers or their offspring, but additional research is required.
Collapse
Affiliation(s)
- Amira M Aker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Lauren E Johns
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Kelly K Ferguson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Offie P Soldin
- Department of Medicine, Georgetown University, 3900 Reservoir Rd NW, Washington, DC 20007, USA
| | - Liza V Anzalota Del Toro
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-5067, USA
| | - Akram N Alshawabkeh
- College of Engineering, Northeastern University, 110 Forsyth St, Boston, MA 02115, USA
| | - José F Cordero
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-5067, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| |
Collapse
|
58
|
Giulivo M, Lopez de Alda M, Capri E, Barceló D. Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review. ENVIRONMENTAL RESEARCH 2016; 151:251-264. [PMID: 27504873 DOI: 10.1016/j.envres.2016.07.011] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 05/18/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are released into the environment from different sources. They are mainly used in packaging industries, pesticides and food constituents. Clinical evidence, experimental models, and epidemiological studies suggest that EDCs have major risks for humans by targeting different organs and systems in the body (e.g. reproductive system, breast tissue, adipose tissue, pancreas, etc.). Due to the ubiquity of human exposure to these compounds the aim of this review is to describe the most recent data on the effects induced by phthalates, bisphenol A and parabens in a critical window of exposure: in utero, during pregnancy, infants, and children. The interactions and mechanisms of toxicity of EDCs in relation to human general health problems, especially those broadening the term of endocrine disruption to 'metabolic disruption', should be deeply investigated. These include endocrine disturbances, with particular reference to reproductive problems and breast, testicular and ovarian cancers, and metabolic diseases such as obesity or diabetes.
Collapse
Affiliation(s)
- Monica Giulivo
- Institute of Agricultural and Environmental Chemistry, Università Cattolica del Sacro Cuore di Piacenza, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Miren Lopez de Alda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Ettore Capri
- Institute of Agricultural and Environmental Chemistry, Università Cattolica del Sacro Cuore di Piacenza, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, Emili Grahit 101, Edifici H2O, 17003 Girona, Spain.
| |
Collapse
|
59
|
Tabassum H, Parvez S, Raisuddin S. Melatonin abrogates nonylphenol-induced testicular dysfunction in Wistar rats. Andrologia 2016; 49. [DOI: 10.1111/and.12648] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 12/24/2022] Open
Affiliation(s)
- H. Tabassum
- Department of Medical Elementology and Toxicology; Jamia Hamdard (Hamdard University); New Delhi India
- Department of Biochemistry; Jamia Hamdard (Hamdard University); New Delhi India
| | - S. Parvez
- Department of Medical Elementology and Toxicology; Jamia Hamdard (Hamdard University); New Delhi India
| | - S. Raisuddin
- Department of Medical Elementology and Toxicology; Jamia Hamdard (Hamdard University); New Delhi India
| |
Collapse
|
60
|
Yang YJ, Hong YP, Chae SA. Reduction in semen quality after mixed exposure to bisphenol A and isobutylparaben in utero and during lactation periods. Hum Exp Toxicol 2016; 35:902-11. [DOI: 10.1177/0960327115608927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study was performed to determine the effect of low-level exposure to a mixture of bisphenol A (BPA) and isobutylparaben (IBP) on male reproduction. Corn oil, BPA (0.05 mg/kg/day), IBP (2.5 mg/kg/day), and a BPA/IBP mixture (BPA 0.05 mg/kg/day and IBP 2.5 mg/kg/day) were administered once daily by oral gavage to female rats for 5 weeks from gestation day 6 to lactation day 21. Male pups were killed at postnatal day 70 and examined for developmental characteristics, body weight, testis and epididymis weight, steroid hormones, epididymal sperm count and motility, and histological changes in testis and epididymis. The BPA/IBP mixture produced a significant downregulation of epididymal sperm count and motility. BPA or IBP alone also reduced epididymal sperm count and motility compared to control. These results indicate that exposure to low-level BPA/IBP mixture, which showed no notable physiological response in early life stages, can decrease semen quality in adulthood.
Collapse
Affiliation(s)
- Yun-Jung Yang
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
- Institute for Integrative Medicine, Catholic Kwandong University International St. Mary’s Hospital, Incheon, Korea
| | - Yeon-Pyo Hong
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Soo Ahn Chae
- Department of Pediatrics, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
61
|
Schagdarsurengin U, Western P, Steger K, Meinhardt A. Developmental origins of male subfertility: role of infection, inflammation, and environmental factors. Semin Immunopathol 2016; 38:765-781. [PMID: 27315198 DOI: 10.1007/s00281-016-0576-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/06/2016] [Indexed: 12/28/2022]
Abstract
Male gamete development begins with the specification of primordial cells in the epiblast of the early embryo and is not complete until spermatozoa mature in the epididymis of adult males. This protracted developmental process involves extensive alteration of the paternal germline epigenome. Initially, epigenetic reprogramming in fetal germ cells results in removal of most DNA methylation, including parent-specific epigenetic information. The germ cells then establish sex-specific epigenetic information through de novo methylation and undergo spermatogenesis. Chromatin in haploid germ cells is repackaged into protamines during spermiogenesis, providing further widespread epigenetic reorganization. Finally, after fertilization, epigenetic reprogramming in the preimplantation embryo is necessary for regaining totipotency. These events provide substantial windows during which epigenetic errors either may be corrected or may occur in the germline. There is now increasing evidence that environmental factors such as exposure to toxicants, the parents' and individual's diet, and even infectious and inflammatory events in the male reproductive tract may influence epigenetic reprogramming. This, together with other damage inflicted on the germline chromatin, may result in negative consequences for fertility and health. Large epidemiological birth cohort studies have yielded insight into possible causative environmental factors. Together with experimental animal studies, a clearer view of environmental impacts on fetal development and their intergenerational and even transgenerational effects on reproductive health has emerged and is reviewed in this article.
Collapse
Affiliation(s)
- Undraga Schagdarsurengin
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Patrick Western
- Centre for Genetic Diseases, Hudson Institute for Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Klaus Steger
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig University of Giessen, Aulweg 123, 35385, Giessen, Germany.
| |
Collapse
|
62
|
Boberg J, Axelstad M, Svingen T, Mandrup K, Christiansen S, Vinggaard AM, Hass U. Multiple Endocrine Disrupting Effects in Rats Perinatally Exposed to Butylparaben. Toxicol Sci 2016; 152:244-56. [DOI: 10.1093/toxsci/kfw079] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
63
|
Zhang L, Ding S, Qiao P, Dong L, Yu M, Wang C, Zhang M, Zhang L, Li Y, Tang N, Chang B. n-butylparaben induces male reproductive disorders via regulation of estradiol and estrogen receptors. J Appl Toxicol 2016; 26:1223-1234. [DOI: 10.1002/jat.3291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/11/2015] [Accepted: 12/21/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Linyuan Zhang
- Key Laboratory of Chemical Safety and Health; National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention; No. 29 Nanwei Road , Xicheng district Beijing 100050 China
| | - Sijin Ding
- Key Laboratory of Chemical Safety and Health; National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention; No. 29 Nanwei Road , Xicheng district Beijing 100050 China
| | - Peihuan Qiao
- Key Laboratory of Chemical Safety and Health; National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention; No. 29 Nanwei Road , Xicheng district Beijing 100050 China
| | - Li Dong
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Miao Yu
- Key Laboratory of Chemical Safety and Health; National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention; No. 29 Nanwei Road , Xicheng district Beijing 100050 China
| | - Chong Wang
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Ming Zhang
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Lixia Zhang
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Yimin Li
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Ning Tang
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Bing Chang
- Key Laboratory of Chemical Safety and Health; National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention; No. 29 Nanwei Road , Xicheng district Beijing 100050 China
| |
Collapse
|
64
|
Chen Q, Pan C, Li Y, Zhang M, Gu W. The Combined Effect of Methyl- and Ethyl-Paraben on Lifespan and Preadult Development Period of Drosophila melanogaster (Diptera: Drosophilidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iev146. [PMID: 28076277 PMCID: PMC5778983 DOI: 10.1093/jisesa/iev146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/24/2015] [Indexed: 05/05/2023]
Abstract
Parabens are widely used as preservative substances in foods, pharmaceuticals, industrial products, and cosmetics. But several studies have cautioned that parabens have estrogenic or endocrine-disrupting properties. Drosophila melanogaster is an ideal model in vivo to detect the toxic effects of chemistry. The study was designed to assess the potential additive toxic effects of methylparaben (MP) and ethylparaben (EP) mixture (MP + EP) on lifespan and preadult development period in D. melanogaster The data revealed that the MP + EP can reduce the longevity of flies compared with the control group, consistent with a significant reduction in malondialdehyde levels and an increase in superoxide dismutase activities. Furthermore, MP + EP may have a greater toxic effect on longevity of flies than separate using with the same concentration. Additionally, parabens had a nonmonotonic dose-response effect on D. melanogaster preadult development period, showing that MP + EP delayed preadult development period compared with control group while individual MP or EP significantly shortened (P < 0.01) at low concentration (300 mg/l). In conclusion, MP + EP had the potential additive toxicity on lifespan and preadult development period for D. melanogaster.
Collapse
Affiliation(s)
- Qi Chen
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an 710119, China (; ; ; ) and
| | - Chenguang Pan
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an 710119, China (; ; ; ) and
| | - Yajuan Li
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an 710119, China (; ; ; ) and
| | - Min Zhang
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an 710119, China (; ; ; ) and
| | - Wei Gu
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an 710119, China (; ; ; ) and
| |
Collapse
|
65
|
Abdel-Maksoud FM, Leasor KR, Butzen K, Braden TD, Akingbemi BT. Prenatal Exposures of Male Rats to the Environmental Chemicals Bisphenol A and Di(2-Ethylhexyl) Phthalate Impact the Sexual Differentiation Process. Endocrinology 2015; 156:4672-83. [PMID: 26372177 DOI: 10.1210/en.2015-1077] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The increasing incidence of reproductive anomalies, described as testicular dysgenesis syndrome, is thought to be related to the exposure of the population to chemicals in the environment. Bisphenol A (BPA) and di(2-ethylhexyl)phthalate (DEHP), which have hormonal and antihormonal activity, have attracted public attention due to their presence in consumer products. The present study investigated the effects of BPA and DEHP on reproductive development. Timed-pregnant female rats were exposed to BPA and DEHP by gavage from gestational days 12 to 21. Results showed that prenatal exposures to test chemicals exerted variable effects on steroidogenic factor 1 and GATA binding protein 4 protein expression and increased (P < .05) sex-determining region Y-box 9 and antimüllerian hormone protein in the infantile rat testis compared with levels in the control unexposed animals. Pituitary LHβ and FSHβ subunit protein expression was increased (P < .05) in BPA- and DEHP-exposed prepubertal male rats but were decreased (P < .05) in adult animals relative to control. Exposure to both BPA and DEHP in utero inhibited (P < .05) global DNA hydroxymethylation in the adult testis in association with altered DNA methyltransferase protein expression. Together the present data suggest that altered developmental programming in the testes associated with chemical exposures are related to the disruption of sexual differentiation events and DNA methylation patterns. The chemical-induced effects impact the development of steroidogenic capacity in the adult testis.
Collapse
Affiliation(s)
- Fatma M Abdel-Maksoud
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn, Auburn University, Alabama 36849
| | - Khrystyna R Leasor
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn, Auburn University, Alabama 36849
| | - Kate Butzen
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn, Auburn University, Alabama 36849
| | - Timothy D Braden
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn, Auburn University, Alabama 36849
| | - Benson T Akingbemi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn, Auburn University, Alabama 36849
| |
Collapse
|
66
|
Towers CV, Terry PD, Lewis D, Howard B, Chambers W, Armistead C, Weitz B, Porter S, Borman CJ, Kennedy RCM, Chen J. Transplacental passage of antimicrobial paraben preservatives. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2015; 25:604-7. [PMID: 25944699 DOI: 10.1038/jes.2015.27] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 05/27/2023]
Abstract
Parabens are widely used preservatives suspected of being endocrine disruptors, with implications for human growth and development. The most common paraben found in consumer products is methylparaben. To date, no study has examined whether these substances cross the human placenta. A total of 100 study subjects (50 mother-child pairs) were enrolled at two medical institutions, serving primarily African-American and Caucasian women, respectively. A maternal blood sample was drawn on admission and a paired cord blood sample was obtained at delivery. Of the 50 mothers, 47 (94%) showed methylparaben in their blood (mean level 20.41 ng/l), and 47 in cords bloods (mean level 36.54 ng/l). There were 45 mother-child pairs where methylparaben was found in both samples. Of these, the fetal level was higher than the maternal level in 23 (51%). For butylparaben, only 4 mothers (8%) showed detectable levels (mean 40.54 ng/l), whereas 8 cord blood samples (16%) were positive (mean 32.5 ng/l). African-American mothers and infants showed higher prevalence of detectable levels (P=0.017). Methylparaben and butylparaben demonstrate transplacental passage. Additional studies are needed to examine potential differences in exposure by geography and demographics, what products are used by pregnant women that contain these preservatives, as well as any potential long-term effects in the growth and development of exposed children.
Collapse
Affiliation(s)
- Craig V Towers
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal, Medicine, University of Tennessee Medical Center, Knoxville, TN, USA
| | - Paul D Terry
- Department of Surgery, University of Tennessee Medical Center, Knoxville, TN, USA
- Department of Public Health, University of Tennessee, Knoxville, TN, USA
| | - David Lewis
- Department of Obstetrics and Gynecology, University of South Alabama, Mobile, AL, USA
| | - Bobby Howard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal, Medicine, University of Tennessee Medical Center, Knoxville, TN, USA
| | - Wesley Chambers
- Department of Obstetrics and Gynecology, University of South Alabama, Mobile, AL, USA
| | - Casey Armistead
- Department of Obstetrics and Gynecology, University of South Alabama, Mobile, AL, USA
| | - Beth Weitz
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal, Medicine, University of Tennessee Medical Center, Knoxville, TN, USA
| | - Stephanie Porter
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal, Medicine, University of Tennessee Medical Center, Knoxville, TN, USA
| | - Christopher J Borman
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
| | | | - Jiangang Chen
- Department of Public Health, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
67
|
Xin F, Susiarjo M, Bartolomei MS. Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation? Semin Cell Dev Biol 2015; 43:66-75. [PMID: 26026600 DOI: 10.1016/j.semcdb.2015.05.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 01/21/2023]
Abstract
Increasing evidence has highlighted the critical role of early life environment in shaping the future health outcomes of an individual. Moreover, recent studies have revealed that early life perturbations can affect the health of subsequent generations. Hypothesized mechanisms of multi- and transgenerational inheritance of abnormal developmental phenotypes include epigenetic misregulation in germ cells. In this review, we will focus on the available data demonstrating the ability of endocrine disrupting chemicals (EDCs), including bisphenol A (BPA), phthalates, and parabens, to alter epigenetic marks in rodents and humans. These epigenetic marks include DNA methylation, histone post-translational modifications, and non-coding RNAs. We also review the current evidence for multi- and transgenerational inheritance of abnormal developmental changes in the offspring following EDC exposure. Based on published results, we conclude that EDC exposure can alter the mouse and human epigenome, with variable tissue susceptibilities. Although increasing data suggest that exposure to EDCs is linked to transgenerational inheritance of reproductive, metabolic, or neurological phenotypes, more studies are needed to validate these observations and to elucidate further whether these developmental changes are directly associated with the relevant epigenetic alterations.
Collapse
Affiliation(s)
- Frances Xin
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 9-123 Smilow Center for Translational Research, Philadelphia, PA 19104, United States; Center of Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine, 1316 Biomedical Research Building II/III, Philadelphia, PA 19104, United States
| | - Martha Susiarjo
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 9-123 Smilow Center for Translational Research, Philadelphia, PA 19104, United States; Center of Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine, 1316 Biomedical Research Building II/III, Philadelphia, PA 19104, United States
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 9-123 Smilow Center for Translational Research, Philadelphia, PA 19104, United States; Center of Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine, 1316 Biomedical Research Building II/III, Philadelphia, PA 19104, United States.
| |
Collapse
|