51
|
Cho J, Huh Y. Astrocytic Calcium Dynamics Along the Pain Pathway. Front Cell Neurosci 2020; 14:594216. [PMID: 33192331 PMCID: PMC7596274 DOI: 10.3389/fncel.2020.594216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/14/2020] [Indexed: 12/30/2022] Open
Abstract
Astrocytes, once thought to be passive cells merely filling the space between neurons in the nervous system, are receiving attention as active modulators of the brain and spinal cord physiology by providing nutrients, maintaining homeostasis, and modulating synaptic transmission. Accumulating evidence indicates that astrocytes are critically involved in chronic pain regulation. Injury induces astrocytes to become reactive, and recent studies suggest that reactive astrocytes can have either neuroprotective or neurodegenerative effects. While the exact mechanisms underlying the transition from resting astrocytes to reactive astrocytes remain unknown, astrocytic calcium increase, coordinated by inflammatory molecules, has been suggested to trigger this transition. In this mini review article, we will discuss the roles of astrocytic calcium, channels contributing to calcium dynamics in astrocytes, astrocyte activations along the pain pathway, and possible relationships between astrocytic calcium dynamics and chronic pain.
Collapse
Affiliation(s)
- Jeiwon Cho
- Brain and Cognitive Science, Scranton College, Ewha Womans University, Seoul, South Korea
| | - Yeowool Huh
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Incheon, South Korea.,Translational Brain Research Center, Catholic Kwandong University, International St. Mary's Hospital, Incheon, South Korea
| |
Collapse
|
52
|
Fatty acid suppression of glial activation prevents central neuropathic pain after spinal cord injury. Pain 2020; 160:2724-2742. [PMID: 31365471 DOI: 10.1097/j.pain.0000000000001670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
About half of patients with spinal cord injury (SCI) develop debilitating central neuropathic pain (CNP), with no effective treatments. Thus, effective, safe, and novel therapies are needed urgently. Previously, docosahexaenoic acid (DHA) was reported to confer neuroprotection in preclinical SCI models. However, its therapeutic potential on SCI-CNP remains to be elucidated. Here, we demonstrated for the first time that intravenous DHA administrations with 3-day intervals (250 nmol/kg; starting 30 minutes after injury and maintained for 6 weeks) effectively prevented SCI-CNP development in a clinically relevant rat contusion model. SCI-CNP was assessed by a novel sensory profiling approach combining evoked pain measures and pain-related ethologically relevant rodent behaviours (burrowing, thigmotaxis, and place/escape avoidance) to mimic those for measuring human (sensory, affective, cognitive, and spontaneous) pain. Strikingly, already established SCI-CNP could be abolished partially by similar DHA administrations, starting from the beginning of week 4 after injury and maintained for 4 weeks. At spinal (epicenter and L5 dorsal horns) and supraspinal (anterior cingulate cortex) levels, both treatment regimens potently suppressed microglial and astrocyte activation, which underpins SCI-CNP pathogenesis. Spinal microgliosis, a known hallmark associated with neuropathic pain behaviours, was reduced by DHA treatments. Finally, we revealed novel potential roles of peroxisome proliferator-activated and retinoid X receptors and docosahexaenoyl ethanolamide (DHA's metabolite) in mediating DHA's effects on microglial activation. Our findings, coupled with the excellent long-term clinical safety of DHA even in surgical and critically ill patients, suggest that systemic DHA treatment is a translatable, effective, safe, and novel approach for preventing and managing SCI-CNP.
Collapse
|
53
|
Lin B, Wang Y, Zhang P, Yuan Y, Zhang Y, Chen G. Gut microbiota regulates neuropathic pain: potential mechanisms and therapeutic strategy. J Headache Pain 2020; 21:103. [PMID: 32807072 PMCID: PMC7433133 DOI: 10.1186/s10194-020-01170-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
Neuropathic pain (NP) is a sustained and nonreversible condition characterized by long-term devastating physical and psychological damage. Therefore, it is urgent to identify an effective treatment for NP. Unfortunately, the precise pathogenesis of NP has not been elucidated. Currently, the microbiota-gut-brain axis has drawn increasing attention, and the emerging role of gut microbiota is investigated in numerous diseases including NP. Gut microbiota is considered as a pivotal regulator in immune, neural, endocrine, and metabolic signaling pathways, which participates in forming a complex network to affect the development of NP directly or indirectly. In this review, we conclude the current understanding of preclinical and clinical findings regarding the role of gut microbiota in NP and provide a novel therapeutic method for pain relief by medication and dietary interventions.
Collapse
Affiliation(s)
- Binbin Lin
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China
| | - Yuting Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China
| | - Yanyan Yuan
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China
| | - Ying Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China.
| |
Collapse
|
54
|
Kang J, Cho SS, Kim HY, Lee BH, Cho HJ, Gwak YS. Regional Hyperexcitability and Chronic Neuropathic Pain Following Spinal Cord Injury. Cell Mol Neurobiol 2020; 40:861-878. [PMID: 31955281 PMCID: PMC11448802 DOI: 10.1007/s10571-020-00785-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) causes maladaptive changes to nociceptive synaptic circuits within the injured spinal cord. Changes also occur at remote regions including the brain stem, limbic system, cortex, and dorsal root ganglia. These maladaptive nociceptive synaptic circuits frequently cause neuronal hyperexcitability in the entire nervous system and enhance nociceptive transmission, resulting in chronic central neuropathic pain following SCI. The underlying mechanism of chronic neuropathic pain depends on the neuroanatomical structures and electrochemical communication between pre- and postsynaptic neuronal membranes, and propagation of synaptic transmission in the ascending pain pathways. In the nervous system, neurons are the only cell type that transmits nociceptive signals from peripheral receptors to supraspinal systems due to their neuroanatomical and electrophysiological properties. However, the entire range of nociceptive signaling is not mediated by any single neuron. Current literature describes regional studies of electrophysiological or neurochemical mechanisms for enhanced nociceptive transmission post-SCI, but few studies report the electrophysiological, neurochemical, and neuroanatomical changes across the entire nervous system following a regional SCI. We, along with others, have continuously described the enhanced nociceptive transmission in the spinal dorsal horn, brain stem, thalamus, and cortex in SCI-induced chronic central neuropathic pain condition, respectively. Thus, this review summarizes the current understanding of SCI-induced neuronal hyperexcitability and maladaptive nociceptive transmission in the entire nervous system that contributes to chronic central neuropathic pain.
Collapse
Affiliation(s)
- Jonghoon Kang
- Department of Biology, Valdosta State University, Valdosta, GA, 31698, USA
| | - Steve S Cho
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hee Young Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea
| | - Bong Hyo Lee
- Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea
| | - Hee Jung Cho
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea.
| | - Young S Gwak
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea.
| |
Collapse
|
55
|
Chambel SS, Tavares I, Cruz CD. Chronic Pain After Spinal Cord Injury: Is There a Role for Neuron-Immune Dysregulation? Front Physiol 2020; 11:748. [PMID: 32733271 PMCID: PMC7359877 DOI: 10.3389/fphys.2020.00748] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating event with a tremendous impact in the life of the affected individual and family. Traumatic injuries related to motor vehicle accidents, falls, sports, and violence are the most common causes. The majority of spinal lesions is incomplete and occurs at cervical levels of the cord, causing a disruption of several ascending and descending neuronal pathways. Additionally, many patients develop chronic pain and describe it as burning, stabbing, shooting, or shocking and often arising with no stimulus. Less frequently, people with SCI also experience pain out of context with the stimulus (e.g., light touch). While abolishment of the endogenous descending inhibitory circuits is a recognized cause for chronic pain, an increasing number of studies suggest that uncontrolled release of pro- and anti-inflammatory mediators by neurons, glial, and immune cells is also important in the emergence and maintenance of SCI-induced chronic pain. This constitutes the topic of the present mini-review, which will focus on the importance of neuro-immune dysregulation for pain after SCI.
Collapse
Affiliation(s)
- Sílvia S Chambel
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,Translational NeuroUrology Group, Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal
| | - Isaura Tavares
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,Pain Research Group, Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal
| | - Célia D Cruz
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,Translational NeuroUrology Group, Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal
| |
Collapse
|
56
|
Pfyffer D, Wyss PO, Huber E, Curt A, Henning A, Freund P. Metabolites of neuroinflammation relate to neuropathic pain after spinal cord injury. Neurology 2020; 95:e805-e814. [PMID: 32591473 PMCID: PMC7605501 DOI: 10.1212/wnl.0000000000010003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To determine whether cervical cord levels of metabolites are associated with pain sensation after spinal cord injury (SCI) by performing magnetic resonance spectroscopy in patients with SCI with and without neuropathic pain (NP). METHODS Cervical cord single-voxel spectroscopic data of 24 patients with SCI (14 with NP, 10 pain-free) and 21 healthy controls were acquired at C2/3 to investigate metabolite ratios associated with neuroinflammation (choline-containing compounds to myoinositol [tCho/mI]) and neurodegeneration (total N-acetylaspartate to myo-inositol [tNAA/mI]). NP levels were measured, and Spearman correlation tests assessed associations between metabolite levels, cord atrophy, and pinprick score. RESULTS In patients with NP, tCho/mI levels were increased (p = 0.024) compared to pain-free patients and negatively related to cord atrophy (p = 0.006, r = 0.714). Better pinprick score was associated with higher tCho/mI levels (p = 0.032, r = 0.574). In pain-free patients, tCho/mI levels were not related to cord atrophy (p = 0.881, r = 0.055) or pinprick score (p = 0.676, r = 0.152). tNAA/mI levels were similar in both patient groups (p = 0.396) and were not associated with pinprick score in patients with NP (p = 0.405, r = 0.242) and pain-free patients (p = 0.117, r = 0.527). CONCLUSIONS Neuroinflammatory metabolite levels (i.e., tCho/mI) were elevated in patients with NP, its magnitude being associated with less cord atrophy and greater pain sensation (e.g., pinprick score). This suggests that patients with NP have more residual spinal tissue and greater metabolite turnover than pain-free patients. Neurodegenerative metabolite levels (i.e., tNAA/mI) were associated with greater cord atrophy but unrelated to NP. Identifying the metabolic NP signature provides new NP treatment targets and could improve patient stratification in interventional trials. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that levels of magnetic resonance spectroscopy-identified metabolites of neuroinflammation were elevated in patients with SCI with NP compared to those without NP.
Collapse
Affiliation(s)
- Dario Pfyffer
- From the Spinal Cord Injury Center (D.P., E.H., A.C., P.F.), Balgrist University Hospital, University of Zurich; Institute for Biomedical Engineering (A.H., P.O.W.), University and ETH, Zurich; Department of Radiology (P.O.W.), Swiss Paraplegic Centre, Nottwil, Switzerland; Max Planck Institute for Biological Cybernetics (P.O.W., A.H.), Tuebingen, Germany; Advanced Imaging Research Center (A.H.), UT Southwestern Medical Center, Dallas TX; Department of Brain Repair and Rehabilitation (P.F.) and Wellcome Trust Centre for Neuroimaging (P.F.), UCL Institute of Neurology, University College London, UK; and Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Patrik O Wyss
- From the Spinal Cord Injury Center (D.P., E.H., A.C., P.F.), Balgrist University Hospital, University of Zurich; Institute for Biomedical Engineering (A.H., P.O.W.), University and ETH, Zurich; Department of Radiology (P.O.W.), Swiss Paraplegic Centre, Nottwil, Switzerland; Max Planck Institute for Biological Cybernetics (P.O.W., A.H.), Tuebingen, Germany; Advanced Imaging Research Center (A.H.), UT Southwestern Medical Center, Dallas TX; Department of Brain Repair and Rehabilitation (P.F.) and Wellcome Trust Centre for Neuroimaging (P.F.), UCL Institute of Neurology, University College London, UK; and Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Eveline Huber
- From the Spinal Cord Injury Center (D.P., E.H., A.C., P.F.), Balgrist University Hospital, University of Zurich; Institute for Biomedical Engineering (A.H., P.O.W.), University and ETH, Zurich; Department of Radiology (P.O.W.), Swiss Paraplegic Centre, Nottwil, Switzerland; Max Planck Institute for Biological Cybernetics (P.O.W., A.H.), Tuebingen, Germany; Advanced Imaging Research Center (A.H.), UT Southwestern Medical Center, Dallas TX; Department of Brain Repair and Rehabilitation (P.F.) and Wellcome Trust Centre for Neuroimaging (P.F.), UCL Institute of Neurology, University College London, UK; and Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Armin Curt
- From the Spinal Cord Injury Center (D.P., E.H., A.C., P.F.), Balgrist University Hospital, University of Zurich; Institute for Biomedical Engineering (A.H., P.O.W.), University and ETH, Zurich; Department of Radiology (P.O.W.), Swiss Paraplegic Centre, Nottwil, Switzerland; Max Planck Institute for Biological Cybernetics (P.O.W., A.H.), Tuebingen, Germany; Advanced Imaging Research Center (A.H.), UT Southwestern Medical Center, Dallas TX; Department of Brain Repair and Rehabilitation (P.F.) and Wellcome Trust Centre for Neuroimaging (P.F.), UCL Institute of Neurology, University College London, UK; and Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Anke Henning
- From the Spinal Cord Injury Center (D.P., E.H., A.C., P.F.), Balgrist University Hospital, University of Zurich; Institute for Biomedical Engineering (A.H., P.O.W.), University and ETH, Zurich; Department of Radiology (P.O.W.), Swiss Paraplegic Centre, Nottwil, Switzerland; Max Planck Institute for Biological Cybernetics (P.O.W., A.H.), Tuebingen, Germany; Advanced Imaging Research Center (A.H.), UT Southwestern Medical Center, Dallas TX; Department of Brain Repair and Rehabilitation (P.F.) and Wellcome Trust Centre for Neuroimaging (P.F.), UCL Institute of Neurology, University College London, UK; and Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Patrick Freund
- From the Spinal Cord Injury Center (D.P., E.H., A.C., P.F.), Balgrist University Hospital, University of Zurich; Institute for Biomedical Engineering (A.H., P.O.W.), University and ETH, Zurich; Department of Radiology (P.O.W.), Swiss Paraplegic Centre, Nottwil, Switzerland; Max Planck Institute for Biological Cybernetics (P.O.W., A.H.), Tuebingen, Germany; Advanced Imaging Research Center (A.H.), UT Southwestern Medical Center, Dallas TX; Department of Brain Repair and Rehabilitation (P.F.) and Wellcome Trust Centre for Neuroimaging (P.F.), UCL Institute of Neurology, University College London, UK; and Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
57
|
Cao T, Matyas JJ, Renn CL, Faden AI, Dorsey SG, Wu J. Function and Mechanisms of Truncated BDNF Receptor TrkB.T1 in Neuropathic Pain. Cells 2020; 9:cells9051194. [PMID: 32403409 PMCID: PMC7290366 DOI: 10.3390/cells9051194] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a major focus for regenerative therapeutics, has been lauded for its pro-survival characteristics and involvement in both development and recovery of function within the central nervous system (CNS). However, studies of tyrosine receptor kinase B (TrkB), a major receptor for BDNF, indicate that certain effects of the TrkB receptor in response to disease or injury may be maladaptive. More specifically, imbalance among TrkB receptor isoforms appears to contribute to aberrant signaling and hyperpathic pain. A truncated isoform of the receptor, TrkB.T1, lacks the intracellular kinase domain of the full length receptor and is up-regulated in multiple CNS injury models. Such up-regulation is associated with hyperpathic pain, and TrkB.T1 inhibition reduces neuropathic pain in various experimental paradigms. Deletion of TrkB.T1 also limits astrocyte changes in vitro, including proliferation, migration, and activation. Mechanistically, TrkB.T1 is believed to act through release of intracellular calcium in astrocytes, as well as through interactions with neurotrophins, leading to cell cycle activation. Together, these studies support a potential role for astrocytic TrkB.T1 in hyperpathic pain and suggest that targeted strategies directed at this receptor may have therapeutic potential.
Collapse
Affiliation(s)
- Tuoxin Cao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (T.C.); (J.J.M.); (A.I.F.)
| | - Jessica J. Matyas
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (T.C.); (J.J.M.); (A.I.F.)
| | - Cynthia L. Renn
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD 21201, USA; (C.L.R.); (S.G.D.)
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Alan I. Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (T.C.); (J.J.M.); (A.I.F.)
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Susan G. Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD 21201, USA; (C.L.R.); (S.G.D.)
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (T.C.); (J.J.M.); (A.I.F.)
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-5189
| |
Collapse
|
58
|
Wood R, Durali P, Wall I. Impact of Dual Cell Co-culture and Cell-conditioned Media on Yield and Function of a Human Olfactory Cell Line for Regenerative Medicine. Bioengineering (Basel) 2020; 7:bioengineering7020037. [PMID: 32290611 PMCID: PMC7355638 DOI: 10.3390/bioengineering7020037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are a promising candidate therapy for neuronal tissue repair. However, appropriate priming conditions to drive a regenerative phenotype are yet to be determined. We first assessed the effect of using a human fibroblast feeder layer and fibroblast conditioned media on primary rat olfactory mucosal cells (OMCs). We found that OMCs cultured on fibroblast feeders had greater expression of the key OEC marker p75NTR (25.1 ± 10.7 cells/mm2) compared with OMCs cultured on laminin (4.0 ± 0.8 cells/mm2, p = 0.001). However, the addition of fibroblast-conditioned media (CM) resulted in a significant increase in Thy1.1 (45.9 ± 9.0 cells/mm2 versus 12.5 ± 2.5 cells/mm2 on laminin, p = 0.006), an undesirable cell marker as it is regarded to be a marker of contaminating fibroblasts. A direct comparison between human feeders and GMP cell line Ms3T3 was then undertaken. Ms3T3 cells supported similar p75NTR levels (10.7 ± 5.3 cells/mm2) with significantly reduced Thy1.1 expression (4.8 ± 2.1 cells/mm2). Ms3T3 cells were used as feeder layers for human OECs to determine whether observations made in the rat model were conserved. Examination of the OEC phenotype (S100β expression and neurite outgrowth from NG108-15 cells) revealed that co-culture with fibroblast feeders had a negative effect on human OECs, contrary to observations of rat OECs. CM negatively affected rat and human OECs equally. When the best and worst conditions in terms of supporting S100β expression were used in NG108-15 neuron co-cultures, those with the highest S100β expression resulted in longer and more numerous neurites (22.8 ± 2.4 μm neurite length/neuron for laminin) compared with the lowest S100β expression (17.9 ± 1.1 μm for Ms3T3 feeders with CM). In conclusion, this work revealed that neither dual co-culture nor fibroblast-conditioned media support the regenerative OEC phenotype. In our case, a preliminary rat model was not predictive of human cell responses.
Collapse
Affiliation(s)
- Rachael Wood
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Pelin Durali
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Correspondence:
| |
Collapse
|
59
|
Zhang ZW, Liang J, Yan JX, Ye YC, Wang JJ, Chen C, Sun HT, Chen F, Tu Y, Li XH. TBHQ improved neurological recovery after traumatic brain injury by inhibiting the overactivation of astrocytes. Brain Res 2020; 1739:146818. [PMID: 32275911 DOI: 10.1016/j.brainres.2020.146818] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury (TBI) is a major leading cause of death and long-term disability. Although astrocytes play a key role in neuroprotection after TBI in the early stage, the overactivation of astrocytes can lead to long-term functional deficits, and the underlying pathophysiological mechanisms remain unclear. In addition, it is unknown whether the nuclear factor erythroid 2-related factor2/haem oxygenase-1 (Nrf-2/HO-1) pathway could elicit a neuroprotective effect by decreasing astrocyte overactivation after TBI. We aimed to study the effects of tert-butylhydroquinone (TBHQ) in reducing astrocyte overactivation after TBI and explored the underlying mechanisms. We first established a controlled cortical impact (CCI) model in rats and performed Haematoxylin and eosin (H&E) staining to observe brain tissue damage. The cognitive function of rats was assessed by modified neurological severity scoring (mNSS) and Morris water maze (MWM) test. Astrocyte and microglia activation was detected by immunofluorescence staining. Oxidative stress conditions were investigated using Western blotting. An enzyme-linked immunosorbent assay (ELISA) was designed to assess the level of the proinflammatory factor tumour necrosis factor-alpha (TNF-α). Dihydroethidium (DHE) staining was used to detect reactive oxygen species (ROS). Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The results showed that the administration of TBHQ ameliorated motor function and cognitive deficits and decreased the lesion volume. In addition, TBHQ significantly decreased astrocyte overactivation, diminished the pro-inflammatory phenotype M1 and inflammatory cytokines production after TBI, increased Nrf-2 nuclear accumulation, and enhanced the levels of the Nrf-2 downstream antioxidative genes HO-1 and NADPH-quinone oxidoreductase-1 (NQO-1). Furthermore, TBHQ treatment alleviated apoptosis and neuronal death in the cerebral cortex. Overall, our data indicated that the upregulation of Nrf-2 expression could enhance neuroprotection and decrease astrocyte overactivation and might represent a new theoretical basis for treating TBI.
Collapse
Affiliation(s)
- Zhen-Wen Zhang
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China; Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China; Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Jun Liang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Jing-Xing Yan
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China; Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Yi-Chao Ye
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Jing-Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Chong Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Hong-Tao Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Feng Chen
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Yue Tu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China.
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
60
|
Bhattacharyya S, Sahu S, Kaur S, Jain S. Effect of Low Intensity Magnetic Field Stimulation on Calcium-Mediated Cytotoxicity After Mild Spinal Cord Contusion Injury in Rats. Ann Neurosci 2020; 27:49-56. [PMID: 33335356 PMCID: PMC7724432 DOI: 10.1177/0972753120950072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Magnetic field (MF) stimulation has the potential to reduce secondary damage and promote functional recovery after neural tissue injury. The study aimed to observe the effect of very low intensity (17.96µT) MF on general body condition, secondary damage, pain status, and locomotion. METHODS We exposed rats to MF (2 h/day × 3 weeks) after 6.25 mm contusion spinal injury. Locomotor behavior was evaluated by BBB score, pain assessment was done by recording threshold for tail flick, expression of voltage-gated calcium channels and extent of secondary damage in the spinal cord was assessed by immunofluorescence and Cresyl violet staining, respectively. RESULTS A significant (p ≤ .001) improvement in bladder function as well as BBB score was observed after MF exposure in comparison with sham and SCI over the observation period of 3 weeks. SCI group showed an increase in the threshold for vocalization after discharge, which decreased following MF exposure. Cresyl violet staining showed significantly higher tissue sparing (73%) at the epicenter after MF exposure when compared to SCI group. This was accompanied with a significant decrease in calcium channel expression in MF group as compared to SCI. CONCLUSION The results suggest facilitation of sensory-motor recovery after MF exposure, which could be due to attenuation of secondary damage and calcium-mediated excitotoxicity in a mild contusion rat model of SCI.
Collapse
Affiliation(s)
| | - Shivani Sahu
- Institute of Microbial Technology,
Chandigarh, India
| | - Sajeev Kaur
- Department of Physiology, All India
Institute of Medical Sciences, New Delhi, India
| | - Suman Jain
- Department of Physiology, All India
Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
61
|
Moraes TR, Elisei LS, Malta IH, Galdino G. Participation of CXCL1 in the glial cells during neuropathic pain. Eur J Pharmacol 2020; 875:173039. [PMID: 32119843 DOI: 10.1016/j.ejphar.2020.173039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/30/2022]
Abstract
Neuropathic pain is a chronic pain characterized by injury to the central or peripheral nervous system and that most often causes disability in individuals. Among the mechanisms involved in central sensitization during neuropathic pain are cytokines and chemokines released by spinal glial cells; however, these mechanisms are not well elucidated. Thus, the present study aimed to investigate the involvement of Chemokine (C-X-C motif) ligand 1 (CXCL1) and glial cells in this process. Male Wistar rats weighing 220-240 g were used and underwent a neuropathic pain model induced by chronic constriction injury (CCI). To investigate the involvement of CXCL1, chemokine receptor type 2 (CXCR2), mitogen-activated protein kinases (MAPK) p38, and microglia and astrocytes, the following drugs were used: SB225002, an CXCR2 antagonist; SML0543, a MAPK p38 inhibitor; minocycline, a microglia inhibitor; fluorocitrate, an astrocytes inhibitor; and recombinant CXCL1. The microglia, astrocytes, CXCL1, and MAPK p38 protein levels was evaluated by a Western blot assay. Furthermore, an immunofluorescence assay was performed to localize microglia and astrocytes immunoreactivity in the spinal cord. The results demonstrated that both CCI and CXCL1 induced nociception, and this effect was reversed by SB225002. In addition, minocycline, fluorocitrate, and SML0543 reversed the mechanical allodynia induced by CCI. Furthermore, there was an increase of spinal CXCL1 and microglial marker Iba1 protein levels , which was reversed by SB225002. This antagonist also reduced the Iba1 immunoreactivity in spinal cord. Thus, the present study suggests that the CXCL1 chemokine participates in neuropathic pain through CXCR2 activation in spinal microglia.
Collapse
Affiliation(s)
- Thamyris Reis Moraes
- Laboratory of Experimental Physiotherapy, Science of Motricity Institute, Federal University of Alfenas, Minas Gerais, Brazil
| | - Livia Silvestre Elisei
- Laboratory of Experimental Physiotherapy, Science of Motricity Institute, Federal University of Alfenas, Minas Gerais, Brazil
| | - Iago Henrique Malta
- Laboratory of Experimental Physiotherapy, Science of Motricity Institute, Federal University of Alfenas, Minas Gerais, Brazil
| | - Giovane Galdino
- Laboratory of Experimental Physiotherapy, Science of Motricity Institute, Federal University of Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
62
|
Chen G, Zhou Z, Sha W, Wang L, Yan F, Yang X, Qin X, Wu M, Li D, Tian S, Chen G. A novel CX3CR1 inhibitor AZD8797 facilitates early recovery of rat acute spinal cord injury by inhibiting inflammation and apoptosis. Int J Mol Med 2020; 45:1373-1384. [PMID: 32323731 PMCID: PMC7138267 DOI: 10.3892/ijmm.2020.4509] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to evaluate the effect of the CX3CR1 inhibitor AZD8797 in early recovery after acute SCI and elucidate its potential mechanism in blocking inflammation and apoptosis. Adult rats were sacrificed after 3, 7, 10, or 14 days of SCI. The injured spinal tissues were collected for assessing C-X3-C motif chemokine ligand 1(CX3CL1)/C-X3-C motif chemokine receptor 1 (CX3CR1) expression at each time point via western blotting (WB) and quantitative PCR. The cellular localization of the proteins was detected by immunofluorescence. Another batch of rats (subdivided into sham, injury model, AZD8797 and methylprednisolone groups) were used to evaluate locomotive recovery with a Basso Beattie Bresnahan score. Based on the expression level of CX3CR1, these rats were sacrificed at the most prominent stage of CX3CR1 expression (10 days after SCI), for assessing the serum levels of tumor necrosis factor-α/interleukin (IL)-6/IL-1β and the expression of CX3CL1/CX3CR1/caspase 3/Bcl-2/Bax in the spinal cord tissues through WB and ELISA. Additionally, apoptosis and necrosis in the injured spinal cord were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining/fluoro-jade B staining. Expression levels of both CX3CR1 and CX3CL1 reached their peak 10 days after the injury, followed by a dramatic downward trend at 14 days. The enhanced expression of CX3CR1 was detected in astrocytes and microglia of the injured spinal cord. AZD8797 improved locomotive recovery after 10 days of SCI and was as effective as methylprednisolone. The effect of AZD8797 was mediated by suppressing apoptosis, necrosis and inflammatory responses, as assessed by WB/ELISA and morphological examinations. The current study has demonstrated that AZD8797 can effectively block overwhelming inflammation, apoptosis and necrosis after SCI and facilitate early recovery of locomotive function.
Collapse
Affiliation(s)
- Guozhao Chen
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Zhiping Zhou
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Weiping Sha
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Liming Wang
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Fei Yan
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Xiaomei Yang
- Department of Emergency, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Xia Qin
- Department of ICU, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Di Li
- Department of Neurosurgery and Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Shoujin Tian
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital ofSoochow University, Suzhou, Jiangsu 215031, P.R. China
| |
Collapse
|
63
|
Williams MD, Lascelles BDX. Early Neonatal Pain-A Review of Clinical and Experimental Implications on Painful Conditions Later in Life. Front Pediatr 2020; 8:30. [PMID: 32117835 PMCID: PMC7020755 DOI: 10.3389/fped.2020.00030] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Modern health care has brought our society innumerable benefits but has also introduced the experience of pain very early in life. For example, it is now routine care for newborns to receive various injections or have blood drawn within 24 h of life. For infants who are sick or premature, the pain experiences inherent in the required medical care are frequent and often severe, with neonates requiring intensive care admission encountering approximately fourteen painful procedures daily in the hospital. Given that much of the world has seen a steady increase in preterm births for the last several decades, an ever-growing number of babies experience multiple painful events before even leaving the hospital. These noxious events occur during a critical period of neurodevelopment when the nervous system is very vulnerable due to immaturity and neuroplasticity. Here, we provide a narrative review of the literature pertaining to the idea that early life pain has significant long-term effects on neurosensory, cognition, behavior, pain processing, and health outcomes that persist into childhood and even adulthood. We refer to clinical and pre-clinical studies investigating how early life pain impacts acute pain later in life, focusing on animal model correlates that have been used to better understand this relationship. Current knowledge around the proposed underlying mechanisms responsible for the long-lasting consequences of neonatal pain, its neurobiological and behavioral effects, and its influence on later pain states are discussed. We conclude by highlighting that another important consequence of early life pain may be the impact it has on later chronic pain states-an area of research that has received little attention.
Collapse
Affiliation(s)
- Morika D. Williams
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Translational Research in Pain Program, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - B. Duncan X. Lascelles
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Translational Research in Pain Program, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Translational Pain Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
64
|
Central Plasticity of Cutaneous Afferents Is Associated with Nociceptive Hyperreflexia after Spinal Cord Injury in Rats. Neural Plast 2019; 2019:6147878. [PMID: 31827498 PMCID: PMC6885787 DOI: 10.1155/2019/6147878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/30/2019] [Accepted: 09/05/2019] [Indexed: 11/18/2022] Open
Abstract
Electrical stimulations of dorsal cutaneous nerves (DCNs) at each lumbothoracic spinal level produce the bilateral cutaneus trunci muscle (CTM) reflex responses which consist of two temporal components: an early and late responses purportedly mediated by Aδ and C fibers, respectively. We have previously reported central projections of DCN A and C fibers and demonstrated that different projection patterns of those afferent types contributed to the somatotopic organization of CTM reflex responses. Unilateral hemisection spinal cord injury (SCI) was made at T10 spinal segments to investigate the plasticity of early and late CTM responses 6 weeks after injury. Both early and late responses were drastically increased in response to both ipsi- and contralateral DCN stimulations both above (T6 and T8) and below (T12 and L1) the levels of injury demonstrating that nociceptive hyperreflexia developed at 6 weeks following hemisection SCI. We also found that DCN A and C fibers centrally sprouted, expanded their projection areas, and increased synaptic terminations in both T7 and T13, which correlated with the size of hemisection injury. These data demonstrate that central sprouting of cutaneous afferents away from the site of injury is closely associated with enhanced responses of intraspinal signal processing potentially contributing to nociceptive hyperreflexia following SCI.
Collapse
|
65
|
Zhu B, Gao J, Ouyang Y, Hu Z, Chen X. Overexpression Of miR138 Ameliorates Spared Sciatic Nerve Injury-Induced Neuropathic Pain Through The Anti-Inflammatory Response In Mice. J Pain Res 2019; 12:3135-3145. [PMID: 31819598 PMCID: PMC6874503 DOI: 10.2147/jpr.s219462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
Background The emerging role of inflammation in the initiation and maintenance of neuropathic pain has been confirmed. Previous studies have reported that miR138 has neuroprotective and anti-inflammatory effects in animal models of spinal cord injury and in human coronary artery endothelial cell injury, while its effect on neuropathic pain is still not known. As the mechanism of neuropathic pain remains unclear, we investigated whether miR138 is involved in the development of neuropathic pain and the role of miR138 in the modulation of inflammation in the spinal cord in a mouse model of neuropathic pain induced by spared sciatic nerve injury (SNI). Materials and methods Firstly, the expression of miR138 in spinal cord was evaluated on days 1, 3, 5, 7, 9 and 14 after SNI. And then, LV-miR-control and LV-miR138 were intrathecally injected 1 week before the surgery followed by investigation of the expression of miR138, mechanical allodynia and thermal hyperalgesia on day 1, 3, 5, 7, 9, 14 after SNI. Ipsilateral L4-L6 spinal cord tissue was harvested on day 14 post-SNI and detected by Western blotting, enzyme-linked immunosorbent assay or immunohischemistry. Results We observed decreased expression of miR138 and increased expression of proinflammatory cytokines, along with activated microglia, astrocytes and nuclear factor-κВ (NF-κВ), in the spinal cord dorsal horn after SNI. Moreover, the intrathecal upregulation of miR138 significantly alleviated SNI-induced mechanical allodynia and thermal hyperalgesia, downregulated the production of proinflammatory cytokines, and deactivated microglia, astrocytes and NF-κВ. Conclusion The results indicate that miR138 contributes to the development of neuropathic pain and that the overexpression of miR138 alleviates pain hypersensitivity by inhibiting proinflammatory cytokine production and glial activation, which suggests a novel target for reducing neuropathic pain.
Collapse
Affiliation(s)
- Benfan Zhu
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Jie Gao
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China.,Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China.,Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yeling Ouyang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
66
|
Takeura N, Nakajima H, Watanabe S, Honjoh K, Takahashi A, Matsumine A. Role of macrophages and activated microglia in neuropathic pain associated with chronic progressive spinal cord compression. Sci Rep 2019; 9:15656. [PMID: 31666661 PMCID: PMC6821913 DOI: 10.1038/s41598-019-52234-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022] Open
Abstract
Neuropathic pain (NeP) is commonly encountered in patients with diseases associated with spinal cord damage (e.g., spinal cord injury (SCI) and compressive myelopathy). Recent studies described persistent glial activation and neuronal hyperactivity in SCI, but the pathomechanisms of NeP in chronic compression of the spinal cord remains elusive. The purpose of the present study was to determine the roles of microglia and infiltrating macrophages in NeP. The study was conducted in chimeric spinal hyperostotic mice (ttw/ttw), characterized by chronic progressive compression of the spinal cord as a suitable model of human compressive myelopathy. The severity of spinal cord compression correlated with proportion of activated microglia and hematogenous macrophages. Spinal cord compression was associated with overexpression of mitogen-activated protein kinases (MAPKs) in infiltrating macrophages and reversible blood-spinal cord barrier (BSCB) disruption in the dorsal horns. Our results suggested that chronic neuropathic pain in long-term spinal cord compression correlates with infiltrating macrophages, activated microglial cells and the associated damage of BSCB, together with overexpression of p-38 MAPK and p-ERK1/2 in these cells. Our findings are potentially useful for the design of new therapies to alleviate chronic neuropathic pain associated with compressive myelopathy.
Collapse
Affiliation(s)
- Naoto Takeura
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan.
| | - Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Kazuya Honjoh
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Ai Takahashi
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| |
Collapse
|
67
|
Zhang G, Liu N, Zhu C, Ma L, Yang J, Du J, Zhang W, Sun T, Niu J, Yu J. Antinociceptive effect of isoorientin against neuropathic pain induced by the chronic constriction injury of the sciatic nerve in mice. Int Immunopharmacol 2019; 75:105753. [DOI: 10.1016/j.intimp.2019.105753] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/21/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
|
68
|
Abstract
Astrocytes are critical for maintaining the homeostasis of the CNS. Increasing evidence suggests that a number of neurological and neuropsychiatric disorders, including chronic pain, may result from astrocyte 'gliopathy'. Indeed, in recent years there has been substantial progress in our understanding of how astrocytes can regulate nociceptive synaptic transmission via neuronal-glial and glial-glial cell interactions, as well as the involvement of spinal and supraspinal astrocytes in the modulation of pain signalling and the maintenance of neuropathic pain. A role of astrocytes in the pathogenesis of chronic itch is also emerging. These developments suggest that targeting the specific pathways that are responsible for astrogliopathy may represent a novel approach to develop therapies for chronic pain and chronic itch.
Collapse
|
69
|
Caraci F, Merlo S, Drago F, Caruso G, Parenti C, Sortino MA. Rescue of Noradrenergic System as a Novel Pharmacological Strategy in the Treatment of Chronic Pain: Focus on Microglia Activation. Front Pharmacol 2019; 10:1024. [PMID: 31572196 PMCID: PMC6751320 DOI: 10.3389/fphar.2019.01024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Different types of pain can evolve toward a chronic condition characterized by hyperalgesia and allodynia, with an abnormal response to normal or even innocuous stimuli, respectively. A key role in endogenous analgesia is recognized to descending noradrenergic pathways that originate from the locus coeruleus and project to the dorsal horn of the spinal cord. Impairment of this system is associated with pain chronicization. More recently, activation of glial cells, in particular microglia, toward a pro-inflammatory state has also been implicated in the transition from acute to chronic pain. Both α2- and β2-adrenergic receptors are expressed in microglia, and their activation leads to acquisition of an anti-inflammatory phenotype. This review analyses in more detail the interconnection between descending noradrenergic system and neuroinflammation, focusing on drugs that, by rescuing the noradrenergic control, exert also an anti-inflammatory effect, ultimately leading to analgesia. More specifically, the potential efficacy in the treatment of neuropathic pain of different drugs will be analyzed. On one side, drugs acting as inhibitors of the reuptake of serotonin and noradrenaline, such as duloxetine and venlafaxine, and on the other, tapentadol, inhibitor of the reuptake of noradrenaline, and agonist of the µ-opioid receptor.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - Carmela Parenti
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, Catania, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
70
|
Tzschentke TM. Pharmacology of bisphosphonates in pain. Br J Pharmacol 2019; 178:1973-1994. [PMID: 31347149 DOI: 10.1111/bph.14799] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 01/15/2023] Open
Abstract
The treatment of pain, in particular, chronic pain, remains a clinical challenge. This is particularly true for pain associated with severe or rare conditions, such as bone cancer pain, vulvodynia, or complex regional pain syndrome. Over the recent years, there is an increasing interest in the potential of bisphosphonates in the treatment of pain, although there are few papers describing antinociceptive and anti-hypersensitizing effects of bisphosphonates in various animal models of pain. There is also increasing evidence for clinical efficacy of bisphosphonates in chronic pain states, although the number of well-controlled studies is still limited. However, the mechanisms underlying the analgesic effects of bisphosphonates are still largely elusive. This review provides an overview of preclinical and clinical studies of bisphosphonates in pain and discusses various pharmacological mechanisms that have been postulated to explain their analgesic effects. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.
Collapse
|
71
|
Chen G, Zhang YQ, Qadri YJ, Serhan CN, Ji RR. Microglia in Pain: Detrimental and Protective Roles in Pathogenesis and Resolution of Pain. Neuron 2019; 100:1292-1311. [PMID: 30571942 DOI: 10.1016/j.neuron.2018.11.009] [Citation(s) in RCA: 520] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Abstract
The previous decade has seen a rapid increase in microglial studies on pain, with a unique focus on microgliosis in the spinal cord after nerve injury and neuropathic pain. Numerous signaling molecules are altered in microglia and contribute to the pathogenesis of pain. Here, we discuss how microglial signaling regulates spinal cord synaptic plasticity in acute and chronic pain conditions with different degrees and variations of microgliosis. We highlight that microglial mediators such as pro- and anti-inflammatory cytokines are powerful neuromodulators that regulate synaptic transmission and pain via neuron-glial interactions. We also reveal an emerging role of microglia in the resolution of pain, in part via specialized pro-resolving mediators including resolvins, protectins, and maresins. We also discuss a possible role of microglia in chronic itch.
Collapse
Affiliation(s)
- Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yu-Qiu Zhang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yawar J Qadri
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Hale Transformative Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
72
|
Price TJ, Gold MS. From Mechanism to Cure: Renewing the Goal to Eliminate the Disease of Pain. PAIN MEDICINE 2019; 19:1525-1549. [PMID: 29077871 DOI: 10.1093/pm/pnx108] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective Persistent pain causes untold misery worldwide and is a leading cause of disability. Despite its astonishing prevalence, pain is undertreated, at least in part because existing therapeutics are ineffective or cause intolerable side effects. In this review, we cover new findings about the neurobiology of pain and argue that all but the most transient forms of pain needed to avoid tissue damage should be approached as a disease where a cure can be the goal of all treatment plans, even if attaining this goal is not yet always possible. Design We reviewed the literature to highlight recent advances in the area of the neurobiology of pain. Results We discuss barriers that are currently hindering the achievement of this goal, as well as the development of new therapeutic strategies. We also discuss innovations in the field that are creating new opportunities to treat and even reverse persistent pain, some of which are in late-phase clinical trials. Conclusion We conclude that the confluence of new basic science discoveries and development of new technologies are creating a path toward pain therapeutics that should offer significant hope of a cure for patients and practitioners alike. Classification of Evidence. Our review points to new areas of inquiry for the pain field to advance the goal of developing new therapeutics to treat chronic pain.
Collapse
Affiliation(s)
- Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas
| | - Michael S Gold
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
73
|
Sabirzhanov B, Li Y, Coll-Miro M, Matyas JJ, He J, Kumar A, Ward N, Yu J, Faden AI, Wu J. Inhibition of NOX2 signaling limits pain-related behavior and improves motor function in male mice after spinal cord injury: Participation of IL-10/miR-155 pathways. Brain Behav Immun 2019; 80:73-87. [PMID: 30807841 PMCID: PMC6660361 DOI: 10.1016/j.bbi.2019.02.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/11/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
NADPH oxidase (NOX2) is an enzyme that induces reactive oxygen species (ROS) and serves as a switch between the pro-inflammatory and neurorestorative microglial/macrophage phenotypes; such changes play an important role in neuropathic pain and motor dysfunction. Increased NOX2 expression after spinal cord injury (SCI) has been reported, and inhibition of NOX2 improves motor function. However, the underlying mechanisms of NOX2 in post-traumatic pain and motor deficit remain unexplored. In the present study, we report that depletion of NOX2 (NOX2-/-) or inhibition of NOX2 using NOX2ds-tat significantly reduced mechanical/thermal cutaneous hypersensitivity and motor dysfunction after moderate contusion SCI at T10 in male mice. Western blot (WB, 3 mm lesion area) and immunohistochemistry (IHC) showed that SCI elevates NOX2 expression predominantly in microglia/macrophages up to 8 weeks post-injury. Deletion of NOX2 significantly reduced CD11b+/CD45hiF4/80+ macrophage infiltration at 24 h post-injury detected by flow cytometry and 8-OHG+ ROS production at 8 weeks post-injury by IHC in both lesion area and lumbar enlargement. NOX2 deficiency also altered microglial/macrophage pro-inflammatory and anti-inflammatory balance towards the neurorestorative response. WB analysis showed robust increase of Arginase-1 and YM1 proteins in NOX2-/- mice. Furthermore, qPCR analysis showed significant up-regulation of anti-inflammatory cytokine IL-10 levels in NOX2-/- mice, associated with reduced microRNA-155 expression. These findings were confirmed in CD11b+ microglia/macrophages isolated from spinal cord at 3 days post-injury. Taken together, our data suggest an important role for IL-10/miR-155 pathway in regulating NOX2-mediated SCI-dysfunction. Thus, specific targeting of NOX2 may provide an effective strategy for treating neurological dysfunction in SCI patients.
Collapse
Affiliation(s)
- Boris Sabirzhanov
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Marino Coll-Miro
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Jessica J. Matyas
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Alok Kumar
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Nicole Ward
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Jingwen Yu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Alan I. Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201 USA,University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, 21201 USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201 USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA; University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201 USA.
| |
Collapse
|
74
|
Ishiguro H, Kaito T, Hashimoto K, Kushioka J, Okada R, Tsukazaki H, Kodama J, Bal Z, Ukon Y, Takenaka S, Makino T, Sakai Y, Yoshikawa H. Administration of ONO-2506 suppresses neuropathic pain after spinal cord injury by inhibition of astrocytic activation. Spine J 2019; 19:1434-1442. [PMID: 30974239 DOI: 10.1016/j.spinee.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Spinal cord injury (SCI) results in not only motor dysfunction but also chronic neuropathic pain. Allodynia, an abnormal sensation that evokes pain against non-noxious stimuli, is a major symptom of post-SCI neuropathic pain. Astrocytic activation is a cause of post-SCI neuropathic pain and is considered a key treatment target. However, no effective treatment for these problems is available to date. ONO-2506 is a novel agent that suppresses astrocytic activation by inhibition of S100B production from astrocytes. Recently, it has been demonstrated that ONO-2506 inhibits secondary injury and improves motor function after SCI. PURPOSE This study aimed to investigate the effect of ONO-2506 on post-SCI neuropathic pain. STUDY DESIGN Animal study of a rat model of spinal cord contusion. METHODS A total of 22 male Sprague-Dawley rats aged 6 weeks were used. Incomplete SCI was created at T10 level. Animals were divided into two groups: Saline group and ONO-2506 group. Nine animals in each group were finally included for this study. Intraperitoneal administration of ONO-2506 (20 mg/kg) or saline was continued daily for 1 week following SCI. Recovery of hind limb motor function was assessed using the Basso, Beattie, and Bresnahan (BBB) score. Mechanical and thermal allodynia of hind paws were evaluated by the withdrawal threshold using a von Frey filament and the withdrawal latency using the plantar test device. At 6 weeks after SCI, sagittal sections at the injured site and axial sections at L 4/5 were evaluated by fluorescent immunohistochemistry staining using S100B and glial fibrillary acidic protein (GFAP) antibodies. RESULTS The improvement course of BBB scores was similar between the two groups. However, the withdrawal thresholds for mechanical stimuli and the withdrawal latency for thermal stimuli were significantly higher in the ONO-2506 group than in the Saline group over 6 weeks after SCI. The histologic assessments at the injured site demonstrated a significant reduction in the cross-sectional area of the cysts and a high fluorescence intensity area of S100B and GFAP in the ONO-2506 group. By correlation analysis, a high absolute value of the correlation coefficient was confirmed between the intensity of S100B expression at the injured site and the allodynia severity. CONCLUSION Administration of ONO-2506 attenuated post-SCI neuropathic pain in a rat model of incomplete SCI. Histologic results support that the inhibition of S100B production and subsequent suppression of astrocytic activation contributed to the reduction in neuropathic pain.
Collapse
Affiliation(s)
- Hiroyuki Ishiguro
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Takashi Kaito
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan.
| | - Kunihiko Hashimoto
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Junichi Kushioka
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Rintaro Okada
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Hiroyuki Tsukazaki
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Joe Kodama
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Zeynep Bal
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Yuichiro Ukon
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Shota Takenaka
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Takahiro Makino
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Yusuke Sakai
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
75
|
Rezaee L, Manaheji H, Haghparast A. Role of spinal glial cells in excitability of wide dynamic range neurons and the development of neuropathic pain with the L5 spinal nerve transection in the rats: Behavioral and electrophysiological study. Physiol Behav 2019; 209:112597. [PMID: 31271834 DOI: 10.1016/j.physbeh.2019.112597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/29/2019] [Accepted: 06/29/2019] [Indexed: 12/24/2022]
Abstract
The activation of glial cells affects the neuronal excitability in the spinal cord. Therefore, in this study, we tried to find out the modulatory role of spinal glial cells in the excitability of wide dynamic range (WDR) neurons, induction of the long-term potentiation (LTP) and development of neuropathic pain by L5 spinal nerve transection model in the rats. Forty-eight adult male Wistar rats were used to measure the paw withdrawal threshold to mechanical stimuli and also, to carry out the spinal extracellular single unit recording experiments. In these experiments, spinal nerve ligation (SNL) and a daily injection of propentofylline (1 mg/kg, ip) as a glial cell inhibitor agent, 1 h following nerve ligation during 7-day post-SNL period, were performed. Our findings showed that the mechanical allodynia, and synaptically-evoked firing were caused LTP in the Aδ-fiber, C-fiber and lesser in the Aβ-fiber after high frequency stimulation. Daily injection of propentofylline considerably decreased LTP induction in the Aδ- and C-fibers (P < .001). It was concluded that glial cell activation mediates LTP induction in the spinal cord following peripheral nerve injury. It seems that pain modulatory role of glial cells is partly parallel to changes in neural excitability of the WDR neurons in the dorsal horn of spinal cord.
Collapse
Affiliation(s)
- Laleh Rezaee
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Manaheji
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
76
|
Wang A, Xu C. The role of connexin43 in neuropathic pain induced by spinal cord injury. Acta Biochim Biophys Sin (Shanghai) 2019; 51:555-561. [PMID: 31056639 DOI: 10.1093/abbs/gmz038] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain is caused by the damage or dysfunction of the nervous system. In many neuropathic pain models, there is an increase in the number of gap junction (GJ) channels, especially the upregulation of the expression of connexin43 (Cx43), leading to the secretion of various types of cytokines and involvement in the formation of neuropathic pain. GJs are widely distributed in mammalian organs and tissues, and Cx43 is the most abundant connexin (Cx) in mammals. Astrocytes are the most abundant glial cell type in the central nervous system (CNS), which mainly express Cx43. More importantly, GJs play an important role in regulating cell metabolism, signaling, and function. Many existing literatures showed that Cx43 plays an important role in the nervous system, especially in the CNS under normal and pathological conditions. However, many internal mechanisms have not yet been thoroughly explored. In this review, we summarized the current understanding of the role and association of Cx and pannexin channels in neuropathic pain, especially after spinal cord injury, as well as some of our own insights and thoughts which suggest that Cx43 may become an emerging therapeutic target for future neuropathic pain, bringing new hope to patients.
Collapse
Affiliation(s)
- Anhui Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| |
Collapse
|
77
|
Noble DJ, Martin KK, Parvin S, Garraway SM. Spontaneous and Stimulus-Evoked Respiratory Rate Elevation Corresponds to Development of Allodynia in Spinal Cord-Injured Rats. J Neurotrauma 2019; 36:1909-1922. [PMID: 30489202 DOI: 10.1089/neu.2018.5936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Respiratory complications frequently accompany spinal cord injury (SCI) and slowed breathing has been shown to mitigate pain sensitivity. It is possible that elevated respiratory rates (RRs) signal the emergence of chronic pain after SCI. We previously validated the use of remote electric field sensors to noninvasively track breathing in freely behaving rodents. Here, we examined spontaneous (resting) and stimulus-evoked RRs as potential indices of mechanical hypersensitivity following SCI. Adult male Long-Evans rats received a lower thoracic hemisection or contusion SCI, or sham surgery, and underwent weekly assessments of mechanical and thermal sensitivity using the von Frey and Hargreaves tests, respectively. Resting RRs were recorded with remote sensors prior to nociception assays as well as 1 day post-surgery. Evoked RRs were quantified weekly in response to at-level mechanical stimulation provided by a small brush at various stimulation speeds, including those corresponding to the distinct tuning properties of a sub-population of cutaneous afferents known as C-low threshold mechanoreceptors. SCI rats developed mechanical hypersensitivity, which peaked 2-3 weeks after SCI. Compared with at baseline, hemisection SCI rats showed significantly heightened resting RRs at 1 day and 7 days post-injury, and the latter predicted development of pain hypersensitivity. In contusion SCI rats, resting RR increases were less substantial but occurred at all weekly time-points. Increases in brush-evoked RR coincided with full expression of hypersensitivity at 14 (hemisection) or 21 (contusion) days after SCI, and these effects were restricted to the lowest brush speeds. Our results support the possibility that early changes in RR may convey pain information in rats.
Collapse
Affiliation(s)
- Donald J Noble
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Karmarcha K Martin
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Shangrila Parvin
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Sandra M Garraway
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
78
|
Turcato F, Almeida C, Mota C, Kusuda R, Carvalho A, Nascimento GC, Zanon S, Leite-Panissi CR, Lucas G. Dynamic expression of glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1 in the mouse spinal cord dorsal horn under pathological pain states. Neurol Res 2019; 41:633-643. [DOI: 10.1080/01616412.2019.1603804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Flavia Turcato
- Department of Physiology, Laboratory of Pain Neurobiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Cayo Almeida
- Federal University of ABC, São Bernardo do Campo, Brazil
| | - Clarissa Mota
- Department of Physiology, Laboratory of Pain Neurobiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Kusuda
- Department of Physiology, Laboratory of Pain Neurobiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Andrea Carvalho
- Department of Experimental Psychology, Neuroscience and Behavior Training Program, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - Glauce C Nascimento
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sonia Zanon
- Department of Physiology, Laboratory of Pain Neurobiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Christie R Leite-Panissi
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry School, University of São Paulo, Ribeirão Preto, Brazil
| | - Guilherme Lucas
- Department of Physiology, Laboratory of Pain Neurobiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
- Department of Experimental Psychology, Neuroscience and Behavior Training Program, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
79
|
Hu JZ, Rong ZJ, Li M, Li P, Jiang LY, Luo ZX, Duan CY, Cao Y, Lu HB. Silencing of lncRNA PKIA-AS1 Attenuates Spinal Nerve Ligation-Induced Neuropathic Pain Through Epigenetic Downregulation of CDK6 Expression. Front Cell Neurosci 2019; 13:50. [PMID: 30873006 PMCID: PMC6401634 DOI: 10.3389/fncel.2019.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/01/2019] [Indexed: 01/07/2023] Open
Abstract
Neuropathic pain (NP) is among the most intractable comorbidities of spinal cord injury. Dysregulation of non-coding RNAs has also been implicated in the development of neuropathic pain. Here, we identified a novel lncRNA, PKIA-AS1, by using lncRNA array analysis in spinal cord tissue of spinal nerve ligation (SNL) model rats, and investigated the role of PKIA-AS1 in SNL-mediated neuropathic pain. We observed that PKIA-AS1 was significantly upregulated in SNL model rats and that PKIA-AS1 knockdown attenuated neuropathic pain progression. Alternatively, overexpression of PKIA-AS1 was sufficient to induce neuropathic pain-like symptoms in uninjured rats. We also found that PKIA-AS1 mediated SNL-induced neuropathic pain by directly regulating the expression and function of CDK6, which is essential for the initiation and maintenance of neuroinflammation and neuropathic pain. Therefore, our study identifies PKIA-AS1 as a novel therapeutic target for neuroinflammation related neuropathic pain.
Collapse
Affiliation(s)
- Jian-Zhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Zi-Jie Rong
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Miao Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.,Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Li-Yuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Zi-Xiang Luo
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Chun-Yue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Bin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
80
|
Spinal Cord Stimulation for Pain Treatment After Spinal Cord Injury. Neurosci Bull 2018; 35:527-539. [PMID: 30560438 DOI: 10.1007/s12264-018-0320-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/11/2018] [Indexed: 12/30/2022] Open
Abstract
In addition to restoration of bladder, bowel, and motor functions, alleviating the accompanying debilitating pain is equally important for improving the quality of life of patients with spinal cord injury (SCI). Currently, however, the treatment of chronic pain after SCI remains a largely unmet need. Electrical spinal cord stimulation (SCS) has been used to manage a variety of chronic pain conditions that are refractory to pharmacotherapy. Yet, its efficacy, benefit profiles, and mechanisms of action in SCI pain remain elusive, due to limited research, methodological weaknesses in previous clinical studies, and a lack of mechanistic exploration of SCS for SCI pain control. We aim to review recent studies and outline the therapeutic potential of different SCS paradigms for traumatic SCI pain. We begin with an overview of its manifestations, classification, potential underlying etiology, and current challenges for its treatment. The clinical evidence for using SCS in SCI pain is then reviewed. Finally, future perspectives of pre-clinical research and clinical study of SCS for SCI pain treatment are discussed.
Collapse
|
81
|
Xu L, Liu Y, Sun Y, Li H, Mi W, Jiang Y. Analgesic effects of TLR4/NF-κB signaling pathway inhibition on chronic neuropathic pain in rats following chronic constriction injury of the sciatic nerve. Biomed Pharmacother 2018; 107:526-533. [PMID: 30114636 DOI: 10.1016/j.biopha.2018.07.116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Chronic neuropathic pain (CNP) is attributed to a lesion or disease of the somatosensory system, may be derived from the peripheral and central system. Recent study revealed that spinal cord stimulation attenuated CNP by inhibiting TLR4/NF-κB signaling pathway. The present study focuses on the potential analgesic effects of TLR4/NF-κB signaling pathway on CNP in a rat model of chronic constriction injury (CCI). METHODS We successfully established the rat model of CCI by Bennett method, and then inhibited the TLR4/NF-κB signaling pathway in rat models. Next, we measured the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) 0D, 2D, 6D, 8D and 12D after operation respectively. MTS510 100 mg/kg, an inhibitor of TLR4, was intrathecal injected into rats after 6D, 8D and 12D after operation. The experiment lasted for 12 days, and then the rats were sacrificed to collect the spinal cord tissues. Protein and mRNA expression levels of toll-like receptor 4 (TLR4), nuclear factor-kappaB (NF-κB), glial cell line-derived neurotrophic factor (GDNF), glial fibrillary acidic protein (GFAP) and nerve growth factor (NGF) were detected by western blot analysis and RT-qPCR, respectively. Immunohistochemistry was performed to detect GDNF, GFAP and NGF expression. RESULTS With the prolongation of MTS510 treatment time, MWT and TWL were increased and finally, the MWT and TWL were close to the baseline level. The levels of TLR4, NF-κB, GDNF, and GFAP as well as NGF increased in rats treated with CCI + Immunoglobulin G1 (IgG1) or CCI + MTS510, suggesting the model establishment was successful. Besides, with the prolongation of MTS510 treatment time, the protein level and mRNA expression of NF-kB, GDNF, GFAP and NGF decreased in rats treated with CCI + IgG1 or CCI + MTS510. Moreover, the GDNF, GFAP and NGF expression in spinal cord tissue in rats treated with CCI + IgG1 or CCI + MTS510 increased obviously, while the GDNF, GFAP and NGF expression decreased in spinal cord tissue in rats treated with CCI + IgG1 or CCI + MTS510 after MTS510 treatment. CONCLUSIONS Collectively, this study defines the role of TLR4 and NF-κB, and inhibition of TLR4/NF-κB signaling pathway might contribute to the alleviation of CNP and improvement of MWT and TWL in a rat model of CCI. Additionally, the results obtained from the study provided a promising basis that could aid as an experimental basis for the potential treatment of TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Longhe Xu
- Department of Anesthesiology, Hainan Branch of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, PR China
| | - Yuhui Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, PR China
| | - Hao Li
- Department of Anesthesiology, Hainan Branch of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Weidong Mi
- Center of Anesthesiology & Operation, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Yuge Jiang
- Department of Anesthesiology, Hainan Branch of Chinese PLA General Hospital, Sanya, 572013, PR China.
| |
Collapse
|
82
|
Norden DM, Faw TD, McKim DB, Deibert RJ, Fisher LC, Sheridan JF, Godbout JP, Basso DM. Bone Marrow-Derived Monocytes Drive the Inflammatory Microenvironment in Local and Remote Regions after Thoracic Spinal Cord Injury. J Neurotrauma 2018; 36:937-949. [PMID: 30014767 DOI: 10.1089/neu.2018.5806] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI) produces a toxic inflammatory microenvironment that negatively affects plasticity and recovery. Recently, we showed glial activation and peripheral myeloid cell infiltration extending beyond the epicenter through the remote lumbar cord after thoracic SCI. The presence and role of infiltrating monocytes is important, especially in the lumbar cord where locomotor central pattern generators are housed. Therefore, we compared the inflammatory profile of resident microglia and peripheral myeloid cells after SCI. Bone marrow chimeras received midthoracic contusive SCI, and trafficking was determined 1-7 days later. Fluorescence-activated cell (FAC) sorting showed similar infiltration timing of both neutrophils and macrophages in epicenter and lumbar regions. While neutrophil numbers were attenuated by day 3, macrophages remained unchanged at day 7, suggesting that macrophages have important long-term influence on the microenvironment. Nanostring gene array identified a strong proinflammatory profile of infiltrating macrophages relative to microglia at both epicenter and lumbar sites. Macrophages had elevated expression of inflammatory cytokines (IL-1β, IFNγ), chemokines (CCL2, CXCL2), mediators (COX-1, MMP-9), and receptors (CCR2, Ly6C), and decreased expression of growth promoting genes (GDNF, BDNF). Importantly, lumbar macrophages had elevated expression of active trafficking genes (CCR2, l-selectin, MMP-9) compared with epicenter macrophages. Further, acute rehabilitation exacerbated the inflammatory profile of infiltrated macrophages in the lumbar cord. Such high inflammatory potential and negative response to rehabilitation of infiltrating macrophages within lumbar locomotor central pattern generators likely impedes activity-dependent recovery. Therefore, limiting active trafficking of macrophages into the lumbar cord identifies a novel target for SCI therapies to improve locomotion.
Collapse
Affiliation(s)
- Diana M Norden
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| | - Timothy D Faw
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio.,3 Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio
| | - Daniel B McKim
- 3 Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio.,4 Department of Neuroscience, The Ohio State University, Columbus, Ohio.,5 Division of Biosciences, The Ohio State University, Columbus, Ohio
| | - Rochelle J Deibert
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| | - Lesley C Fisher
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| | - John F Sheridan
- 4 Department of Neuroscience, The Ohio State University, Columbus, Ohio.,5 Division of Biosciences, The Ohio State University, Columbus, Ohio
| | - Jonathan P Godbout
- 2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio.,4 Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - D Michele Basso
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| |
Collapse
|
83
|
Micheli L, Mattoli L, Maidecchi A, Pacini A, Ghelardini C, Di Cesare Mannelli L. Effect of Vitis vinifera hydroalcoholic extract against oxaliplatin neurotoxicity: in vitro and in vivo evidence. Sci Rep 2018; 8:14364. [PMID: 30254294 PMCID: PMC6156221 DOI: 10.1038/s41598-018-32691-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023] Open
Abstract
Oxaliplatin treatment is associated with the development of a dose-limiting painful neuropathy impairing patient's quality of life. Since oxidative unbalance is a relevant mechanism of oxaliplatin neurotoxicity, we assessed the potential antioxidant properties of Vitis vinifera extract in reducing oxaliplatin-induced neuropathy as a valuable therapeutic opportunity. A hydroalcoholic extract of Vitis vinifera red leaf was characterized and tested in primary rat astrocyte cells treated with oxaliplatin (100 μM). Oxaliplatin lethality in the human adenocarcinoma cell line HT-29 was evaluated in the absence and presence of the extract. In vivo, pain hypersensitivity was measured in a rat model of neuropathy induced by oxaliplatin and ex vivo molecular targets of redox balance were studied. Vitis vinifera extract (50 μg mL-1, 4 h incubation) significantly reduced the oxaliplatin-dependent superoxide anion increase and lipid peroxidation in rat astrocytes but did not interfere with the mortality elicited by oxaliplatin in HT-29 cancer cells. In oxaliplatin-treated rats, a repeated daily administration of the Vitis vinifera extract (300 mg kg-1, p.o.) significantly prevented mechanical and thermal hypersensitivity to noxious and non noxious stimuli. mRNA and protein levels of Nrf2 were normalized in spinal cord and DRGs. Moreover, in the spinal cord, the extract significantly decreased the activation of astrocytes. Vitis vinifera reduced oxidative damages and relieved pain without influencing oxaliplatin anti-cancer activity.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Viale Gaetano Pieraccini 6, 50139, Italy
| | - Luisa Mattoli
- Aboca S.p.A. Società Agricola, Località Aboca, Sansepolcro, Arezzo, 52100, Italy
| | - Anna Maidecchi
- Aboca S.p.A. Società Agricola, Località Aboca, Sansepolcro, Arezzo, 52100, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Largo Brambilla 1, 50134, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Viale Gaetano Pieraccini 6, 50139, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Viale Gaetano Pieraccini 6, 50139, Italy.
| |
Collapse
|
84
|
Acute and Chronic Pain Processing in the Thalamocortical System of Humans and Animal Models. Neuroscience 2018; 387:58-71. [DOI: 10.1016/j.neuroscience.2017.09.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/24/2017] [Accepted: 09/24/2017] [Indexed: 02/07/2023]
|
85
|
Kou D, Li T, Liu H, Liu C, Yin Y, Wu X, Yu T. Transplantation of rat-derived microglial cells promotes functional recovery in a rat model of spinal cord injury. ACTA ACUST UNITED AC 2018; 51:e7076. [PMID: 30066721 PMCID: PMC6075796 DOI: 10.1590/1414-431x20187076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 06/20/2018] [Indexed: 12/01/2022]
Abstract
This study evaluated the effect of microglia transplantation on neurological functional recovery in rats subjected to traumatic spinal cord injury (SCI). The rat model of SCI was established using a weight drop device. Forty SCI rats were randomly divided into the microglia group and the saline group. Then, rat-derived microglial cells or normal saline was injected into the injured site 7 days after surgery. The Basso-Beattie-Bresnahan (BBB) score, inclined plate test, and motor-evoked potentials (MEPs) were applied to assess the recovery of motor function. Hematoxylin and eosin (H&E) staining was used to assess the therapeutic effect. Microglia transplantation significantly improved BBB scores and functional scores at 2, 3, 4, 6, and 8 weeks after surgery compared to saline injection (P<0.05). Meanwhile, a prolonged MEP latency and decreased MEP amplitude were observed at 4 and 8 weeks in the microglia group (P<0.05). Histological analysis showed less damage and better prognosis in SCI rats of the microglia group. BrdU+ cell tracing experiments showed that microglia were recruited to the injured area of the spinal cord at 7 and 14 days after transplantation. The intensity of immunofluorescence was increased in CD68+ and OX42+ microglia at 2 days, 1 week, and 2 weeks, and then decreased at 3 and 4 weeks after transplantation in the microglia group. The transplantation of activated microglia played a key role in promoting the recovery of spinal cord function in a rat model of SCI.
Collapse
Affiliation(s)
- Dewei Kou
- Department of Pain, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianmi Li
- Operating Room, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Liu
- Department of Pain, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuansheng Liu
- Department of Pain, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanwei Yin
- Department of Pain, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xing Wu
- Department of Pain, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
86
|
Tashiro S, Nishimura S, Shinozaki M, Takano M, Konomi T, Tsuji O, Nagoshi N, Toyama Y, Liu M, Okano H, Nakamura M. The Amelioration of Pain-Related Behavior in Mice with Chronic Spinal Cord Injury Treated with Neural Stem/Progenitor Cell Transplantation Combined with Treadmill Training. J Neurotrauma 2018; 35:2561-2571. [PMID: 29790403 DOI: 10.1089/neu.2017.5537] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Progress in regenerative medicine is realizing the possibility of neural regeneration and functional recovery in spinal cord injury (SCI). Recently, rehabilitation has attracted much attention with respect to the synergistic promotion of functional recovery in combination with neural stem/progenitor cell (NS/PC) transplantation, even in the chronic refractory phase of SCI. Nevertheless, sensory disturbance is one of the most prominent sequelae, even though the effects of combination or single therapies have been investigated mostly in the context of motor recovery. To determine how combination therapy with treadmill training (TMT) and NS/PC transplantation affects the manifestation of thermal allodynia and tactile hyperalgesia in chronic phase SCI, four groups of SCI mice were used to assess pain-related behavior and histological changes: combined transplantation and TMT therapy, transplantation only, TMT only, and control groups. Thermal allodynia and coarse touch-pressure hyperalgesia exhibited significant recovery in the combined therapy group in comparison with controls, whereas there were no significant differences with fine touch-pressure hyperalgesia and motor function. Further investigation revealed fewer fibers remaining in the posterior funiculus, which contained the tracts associated with the two modalities showing less recovery; that is, touch-pressure hyperalgesia and motor function. A significant correlation was only observed between these two modalities. Although no remarkable histological recovery was found within the lesion epicenter, changes indicating amelioration of pain were observed in the lumbar enlargement of the combination therapy group. Our results suggest that amelioration of thermal allodynia and tactile hyperalgesia can be brought about by the additive effect of NS/PC transplantation and TMT. The degree of recovery seems dependent on the distribution of damage.
Collapse
Affiliation(s)
- Syoichi Tashiro
- 1 Department of Rehabilitation Medicine, Keio University School of Medicine , Tokyo, Japan
| | - Soraya Nishimura
- 2 Department of Orthopaedic Surgery, Keio University School of Medicine , Tokyo, Japan
| | - Munehisa Shinozaki
- 3 Department of Physiology, Keio University School of Medicine , Tokyo, Japan
| | - Morito Takano
- 2 Department of Orthopaedic Surgery, Keio University School of Medicine , Tokyo, Japan
| | - Tsunehiko Konomi
- 2 Department of Orthopaedic Surgery, Keio University School of Medicine , Tokyo, Japan .,4 Department of Orthopaedic Surgery, Murayama Medical Center , National Hospital Organization, Tokyo, Japan
| | - Osahiko Tsuji
- 2 Department of Orthopaedic Surgery, Keio University School of Medicine , Tokyo, Japan
| | - Narihito Nagoshi
- 2 Department of Orthopaedic Surgery, Keio University School of Medicine , Tokyo, Japan
| | - Yoshiaki Toyama
- 2 Department of Orthopaedic Surgery, Keio University School of Medicine , Tokyo, Japan
| | - Meigen Liu
- 1 Department of Rehabilitation Medicine, Keio University School of Medicine , Tokyo, Japan
| | - Hideyuki Okano
- 3 Department of Physiology, Keio University School of Medicine , Tokyo, Japan
| | - Masaya Nakamura
- 2 Department of Orthopaedic Surgery, Keio University School of Medicine , Tokyo, Japan
| |
Collapse
|
87
|
Shiao R, Lee-Kubli CA. Neuropathic Pain After Spinal Cord Injury: Challenges and Research Perspectives. Neurotherapeutics 2018; 15:635-653. [PMID: 29736857 PMCID: PMC6095789 DOI: 10.1007/s13311-018-0633-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that remains difficult to treat because underlying mechanisms are not yet fully understood. In part, this is due to limitations of evaluating neuropathic pain in animal models in general, and SCI rodents in particular. Though pain in patients is primarily spontaneous, with relatively few patients experiencing evoked pains, animal models of SCI pain have primarily relied upon evoked withdrawals. Greater use of operant tasks for evaluation of the affective dimension of pain in rodents is needed, but these tests have their own limitations such that additional studies of the relationship between evoked withdrawals and operant outcomes are recommended. In preclinical SCI models, enhanced reflex withdrawal or pain responses can arise from pathological changes that occur at any point along the sensory neuraxis. Use of quantitative sensory testing for identification of optimal treatment approach may yield improved identification of treatment options and clinical trial design. Additionally, a better understanding of the differences between mechanisms contributing to at- versus below-level neuropathic pain and neuropathic pain versus spasticity may shed insights into novel treatment options. Finally, the role of patient characteristics such as age and sex in pathogenesis of neuropathic SCI pain remains to be addressed.
Collapse
Affiliation(s)
- Rani Shiao
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines, La Jolla, California, 92073, USA
| | - Corinne A Lee-Kubli
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines, La Jolla, California, 92073, USA.
| |
Collapse
|
88
|
Sliwinski C, Nees TA, Puttagunta R, Weidner N, Blesch A. Sensorimotor Activity Partially Ameliorates Pain and Reduces Nociceptive Fiber Density in the Chronically Injured Spinal Cord. J Neurotrauma 2018; 35:2222-2238. [PMID: 29706124 DOI: 10.1089/neu.2017.5431] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A large proportion of patients suffering from spinal cord injury (SCI) develop chronic central neuropathic pain. Previously, we and others have shown that sensorimotor training early after SCI can prevent the development of mechanical allodynia. To determine whether training initiated in the subchronic/chronic phase remains effective, correlates of below-level neuropathic pain were analyzed in the hindpaws 5-10 weeks after a moderate T11 contusion SCI (50 kDyn) in adult female C57BL/6 mice. In a comparison of SCI and sham mice 5 weeks post-injury, about 80% of injured animals developed mechanical hypersensitivity to light mechanical stimuli, whereas testing of noxious stimuli revealed hypo-responsiveness. Thermal sensitivity testing showed a decreased response latency after injury. Without intervention, mechanical and thermal hyper-responsiveness were evident until the end of the experiment (10 weeks). In contrast, treadmill training (2 × 15 min/day; 5 × /week) initiated 6 weeks post-injury resulted in partial amelioration of pain behavior and this effect remained stable. Analysis of calcitonin gene-related peptide (CGRP)-labeled fibers in lamina III-IV of the lumbar dorsal horn revealed an increase in labeling density after SCI. This was not due to changes in the number or size distribution of CGRP-labeled lumbar dorsal root ganglion neurons. Treadmill training reduced the CGRP-labeling density in the spinal cord of injured mice, whereas the density of non-peptidergic isolectin-B4 (IB4)+ fibers showed no changes in lamina IIi and a slight reduction of sparse IB4 labeling in laminae III-IV. Thus, sensorimotor activity initiated in the subchronic/chronic phase of SCI remains effective in ameliorating pain behavior and influencing structural changes of the nociceptive system.
Collapse
Affiliation(s)
| | - Timo A Nees
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany .,2 Center for Orthopedic and Trauma Surgery, Heidelberg University Hospital , Heidelberg, Germany
| | - Radhika Puttagunta
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany
| | - Norbert Weidner
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany
| | - Armin Blesch
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany .,3 Department of Neurological Surgery and Goodman Campbell Brain and Spine, Stark Neurosciences Research Institute, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
89
|
Pallottie A, Ratnayake A, Ni L, Acioglu C, Li L, Mirabelli E, Heary RF, Elkabes S. A toll-like receptor 9 antagonist restores below-level glial glutamate transporter expression in the dorsal horn following spinal cord injury. Sci Rep 2018; 8:8723. [PMID: 29880832 PMCID: PMC5992189 DOI: 10.1038/s41598-018-26915-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/18/2018] [Indexed: 01/04/2023] Open
Abstract
Spinal cord (SC) trauma elicits pathological changes at the primary lesion and in regions distant from the injury epicenter. Therapeutic agents that target mechanisms at the injury site are likely to exert additional effects in these remote regions. We previously reported that a toll-like receptor 9 (TLR9) antagonist, oligodeoxynucleotide 2088 (ODN 2088), improves functional deficits and modulates the milieu at the epicenter in mice sustaining a mid-thoracic contusion. The present investigations use the same paradigm to assess ODN 2088-elicited alterations in the lumbar dorsal horn (LDH), a region remote from the injury site where SCI-induced molecular alterations have been well defined. We report that ODN 2088 counteracts the SCI-elicited decrease in glial glutamate aspartate transporter (GLAST) and glutamate transporter 1 (GLT1) levels, whereas the levels of the neuronal glutamate transporter excitatory amino acid carrier 1 (EAAC1) and astroglial GABA transporter 3 (GAT3) were unaffected. The restoration of GLAST and GLT1 was neither paralleled by a global effect on astrocyte and microglia activation nor by changes in the expression of cytokines and growth factors reported to regulate these transporters. We conclude that the effects of intrathecal ODN 2088 treatment extend to loci beyond the epicenter by selectively targeting glial glutamate transporters.
Collapse
Affiliation(s)
- Alexandra Pallottie
- The Reynolds Family Spine Laboratory, New Jersey Medical School, Department of Neurological Surgery, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.,The School of Graduate Studies, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Ayomi Ratnayake
- The Reynolds Family Spine Laboratory, New Jersey Medical School, Department of Neurological Surgery, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Li Ni
- The Reynolds Family Spine Laboratory, New Jersey Medical School, Department of Neurological Surgery, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Cigdem Acioglu
- The Reynolds Family Spine Laboratory, New Jersey Medical School, Department of Neurological Surgery, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Lun Li
- The Reynolds Family Spine Laboratory, New Jersey Medical School, Department of Neurological Surgery, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.,The School of Graduate Studies, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Ersilia Mirabelli
- The Reynolds Family Spine Laboratory, New Jersey Medical School, Department of Neurological Surgery, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.,The School of Graduate Studies, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Robert F Heary
- The Reynolds Family Spine Laboratory, New Jersey Medical School, Department of Neurological Surgery, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.,The School of Graduate Studies, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Stella Elkabes
- The Reynolds Family Spine Laboratory, New Jersey Medical School, Department of Neurological Surgery, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA. .,The School of Graduate Studies, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
90
|
Yoon MS, Koh CS, Lee J, Shin J, Kong C, Jung HH, Chang JW. Injecting NMDA and Ro 25-6981 in insular cortex induce neuroplastic changes and neuropathic pain-like behaviour. Eur J Pain 2018; 22:1691-1700. [PMID: 29862605 DOI: 10.1002/ejp.1254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neuropathic pain is associated with abnormal sensitivity of the central nervous system. Although the mechanism underlying the development of sensitization remains to be fully elucidated, recent studies have reported that neuroplastic changes in the pain circuitry may be involved in hypersensitivity associated with neuropathic pain. However, it is difficult to investigate such phenomena in existing animal pain model. Therefore, in this study, we developed a novel animal model - the circuit plasticity reconstruction (CPR) model - to mimic central sensitization associated with neuroplastic changes. METHOD NMDA and Ro 25-6981 were injected into the right insular cortex of Sprague-Dawley rats, while electrical stimulation was delivered to the contralateral hind paw. Mechanical allodynia was tested by von Frey test with up-down method, and neuroplastic changes were confirmed by PSA-NCAM-positive immunostaining. RESULT The mechanical withdrawal threshold of the left hind paw decreased beginning 1 day after CPR modelling and persisted until day 21 comparing to the modified CPR 1 (mod-CPR 1) group (CPR: 91.68 ± 1.8%, mod-CPR 1: 42.71 ± 3.4%, p < 0.001). In contrast, mod-CPR 2 surgery without electrical stimulation did not induce mechanical allodynia. Immunostaining for PSA-NCAM also revealed that neuroplastic changes had occurred in the CPR group. CONCLUSION Our results demonstrated that CPR modelling induced neuroplasticity within the insular cortex, leading to alterations in the neural circuitry and central sensitization. SIGNIFICANCE This article represents that the CPR model can mimic the neuropathic pain derived by neuroplastic changes. Our findings indicate that the CPR model may aid the development of novel therapeutic strategies for neuropathic pain and in elucidating the mechanisms underlying pain induced by central sensitization and neuroplastic changes.
Collapse
Affiliation(s)
- M S Yoon
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - C S Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - J Lee
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - J Shin
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - C Kong
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - H H Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - J W Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
91
|
Botulinum Toxin for Central Neuropathic Pain. Toxins (Basel) 2018; 10:toxins10060224. [PMID: 29857568 PMCID: PMC6024683 DOI: 10.3390/toxins10060224] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
Abstract
Botulinum toxin (BTX) is widely used to treat muscle spasticity by acting on motor neurons. Recently, studies of the effects of BTX on sensory nerves have been reported and several studies have been conducted to evaluate its effects on peripheral and central neuropathic pain. Central neuropathic pain includes spinal cord injury-related neuropathic pain, post-stroke shoulder pain, multiple sclerosis-related pain, and complex regional pain syndrome. This article reviews the mechanism of central neuropathic pain and assesses the effect of BTX on central neuropathic pain.
Collapse
|
92
|
Stewart AN, Matyas JJ, Welchko RM, Goldsmith AD, Zeiler SE, Hochgeschwender U, Lu M, Nan Z, Rossignol J, Dunbar GL. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury. Restor Neurol Neurosci 2018; 35:395-411. [PMID: 28598857 DOI: 10.3233/rnn-160678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Utilizing genetic overexpression of trophic molecules in cell populations has been a promising strategy to develop cell replacement therapies for spinal cord injury (SCI). Over-expressing the chemokine, stromal derived factor-1 (SDF-1α), which has chemotactic effects on many cells of the nervous system, offers a promising strategy to promote axonal regrowth following SCI. The purpose of this study was to explore the effects of human SDF-1α, when overexpressed by mesenchymal stem cells (MSCs), on axonal growth and motor behavior in a contusive rat model of SCI. METHODS Using a transwell migration assay, the paracrine effects of MSCs, which were engineered to secrete human SDF-1α (SDF-1-MSCs), were assessed on cultured neural stem cells (NSCs). For in vivo analyses, the SDF-1-MSCs, unaltered MSCs, or Hanks Buffered Saline Solution (vehicle) were injected into the lesion epicenter of rats at 9-days post-SCI. Behavior was analyzed for 7-weeks post-injury, using the Basso, Beattie, and Bresnahan (BBB) scale of locomotor functions. Immunohistochemistry was performed to evaluate major histopathological outcomes, including gliosis, inflammation, white matter sparing, and cavitation. New axonal outgrowth was characterized using immunohistochemistry against the neuron specific growth-associated protein-43 (GAP-43). RESULTS The results of these experiments demonstrate that the overexpression of SDF-1α by MSCs can enhance the migration of NSCs in vitro. Although only modest functional improvements were observed following transplantation of SDF-1-MSCs, a significant reduction in cavitation surrounding the lesion, and an increased density of GAP-43-positive axons inside the SCI lesion/graft site were found. CONCLUSION The results from these experiments support the potential role for utilizing SDF-1α as a treatment for enhancing growth and regeneration of axons after traumatic SCI.
Collapse
Affiliation(s)
- Andrew Nathaniel Stewart
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Jessica Jane Matyas
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
| | - Ryan Matthew Welchko
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Alison Delanie Goldsmith
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Sarah Elizabeth Zeiler
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Ute Hochgeschwender
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA.,College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Ming Lu
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
| | - Zhenhong Nan
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA.,College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Gary Leo Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA.,Field Neurosciences Inst., 4677 Towne Centre Rd. Suite 101 Saginaw, MI, USA
| |
Collapse
|
93
|
Jokinen V, Sidorova Y, Viisanen H, Suleymanova I, Tiilikainen H, Li Z, Lilius TO, Mätlik K, Anttila JE, Airavaara M, Tian L, Rauhala PV, Kalso EA. Differential Spinal and Supraspinal Activation of Glia in a Rat Model of Morphine Tolerance. Neuroscience 2018; 375:10-24. [DOI: 10.1016/j.neuroscience.2018.01.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/10/2018] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
|
94
|
Wang YR, Mao XF, Wu HY, Wang YX. Liposome-encapsulated clodronate specifically depletes spinal microglia and reduces initial neuropathic pain. Biochem Biophys Res Commun 2018; 499:499-505. [PMID: 29596830 DOI: 10.1016/j.bbrc.2018.03.177] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022]
Abstract
Liposome-encapsulated clodronate (LEC) is a specific depletor of macrophages. Our study characterized the LEC depletory effects, given intrathecally, on spinal microglia and assessed its effects on initiation and maintenance of neuropathic pain. Measured by using the MTT assay, LEC treatment specifically inhibited cell viability of cultured primary microglia, but not astrocytes or neurons, from neonatal rats, with an IC50 of 43 μg/mL. In spinal nerve ligation-induced neuropathic rats, pretreatment (1 day but not 5 days earlier) with intrathecal LEC specifically depleted microglia (but not astrocytes or neurons) in both contralateral and ipsilateral dorsal horns by the same degree (63% vs. 71%). Intrathecal injection of LEC reversibly blocked the antinociceptive effects of the GLP-1 receptor agonist exenatide and dynorphin A stimulator bulleyaconitine, which have been claimed to be mediated by spinal microglia, whereas it failed to alter morphine- or the glycine receptor agonist gelsemine-induced mechanical antiallodynia which was mediated via the neuronal mechanisms. Furthermore, intrathecal LEC injection significantly attenuated initial (one day after nerve injury) but not existing (2 weeks after nerve injury) mechanical allodynia. Our study demonstrated that LEC, given intrathecally, is a specific spinal microglial inhibitor and significantly reduces initiation but not maintenance of neuropathic pain, highlighting an opposite role of spinal microglia in different stages of neuropathic pain.
Collapse
Affiliation(s)
- Yi-Rui Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240, China
| | - Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240, China
| | - Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240, China.
| |
Collapse
|
95
|
Boadas-Vaello P, Homs J, Portero-Tresserra M, Álvarez-Pérez B, Deulofeu M, Verdú E. Graded photochemical spinal cord injury results in chronic hyperalgesia and depression-like behaviour but no anxiety exacerbation in female BALB/c mice. Neurosci Lett 2018; 664:98-106. [DOI: 10.1016/j.neulet.2017.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/29/2017] [Accepted: 11/06/2017] [Indexed: 11/27/2022]
|
96
|
Jergova S, Gordon CE, Gajavelli S, Sagen J. Experimental Gene Therapy with Serine-Histogranin and Endomorphin 1 for the Treatment of Chronic Neuropathic Pain. Front Mol Neurosci 2017; 10:406. [PMID: 29276474 PMCID: PMC5727090 DOI: 10.3389/fnmol.2017.00406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
Abstract
The insufficient pain relief provided by current pharmacotherapy for chronic neuropathic pain is a serious medical problem. The enhanced glutamate signaling via NMDA receptors appears to be one of the key events in the development of chronic pain. Although effective, clinical use of systemic NMDA antagonists is limited by adverse effects such as hallucinations and motor dysfunction. Opioids are also potent analgesics but their chronic use is accompanied by tolerance and risk of addiction. However, combination of NMDA antagonists and opioids seems to provide a stable pain relieve at subthreshold doses of both substances, eliminating development of side effects. Our previous research showed that combined delivery of NMDA antagonist Serine histrogranin (SHG) and endomorphin1 (EM1) leads to attenuation of acute and chronic pain. The aim of this study was to design and evaluate an analgesic potency of the gene construct encoding SHG and EM1. Constructs with 1SHG copy in combination with EM1, 1SHG/EM1, and 6SHG/EM1 were intraspinally injected to animals with peripheral nerve injury-induced pain (chronic constriction injury, CCI) or spinal cord injury induced pain (clip compression model, SCI) and tactile and cold allodynia were evaluated. AAV2/8 particles were used for gene delivery. The results demonstrated 6SHG/EM1 as the most efficient for alleviation of pain-related behavior. The effect was observed up to 8 weeks in SCI animals, suggesting the lack of tolerance of possible synergistic effect between SHG and EM1. Intrathecal injection of SHG antibody or naloxone attenuated the analgesic effect in treated animals. Biochemical and histochemical evaluation confirmed the presence of both peptides in the spinal tissue. The results of this study showed that the injection of AAV vectors encoding combined SHG/EM constructs can provide long term attenuation of pain without overt adverse side effects. This approach may provide better treatment options for patients suffering from chronic pain.
Collapse
Affiliation(s)
- Stanislava Jergova
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Catherine E Gordon
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Shyam Gajavelli
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jacqueline Sagen
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
97
|
Driessen AK, McGovern AE, Narula M, Yang SK, Keller JA, Farrell MJ, Mazzone SB. Central mechanisms of airway sensation and cough hypersensitivity. Pulm Pharmacol Ther 2017; 47:9-15. [DOI: 10.1016/j.pupt.2017.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
|
98
|
Nam Y, Kim JH, Kim JH, Jha MK, Jung JY, Lee MG, Choi IS, Jang IS, Lim DG, Hwang SH, Cho HJ, Suk K. Reversible Induction of Pain Hypersensitivity following Optogenetic Stimulation of Spinal Astrocytes. Cell Rep 2017; 17:3049-3061. [PMID: 27974216 DOI: 10.1016/j.celrep.2016.11.043] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 10/17/2016] [Accepted: 11/12/2016] [Indexed: 12/30/2022] Open
Abstract
While glial activation is an integral part of pain pathogenesis, the existence of a causal relationship between glia and pain processing has yet to be demonstrated in vivo. Here, we have investigated whether the activation of spinal astrocytes could directly evoke pain hypersensitivity in vivo via the use of optogenetic techniques. Optogenetic stimulation of channelrhopdopsin-2 (ChR)-expressing spinal astrocytes induced pain hypersensitivity in a reversible and time-dependent manner, which was accompanied by glial activation, NR1 phosphorylation, ATP release, and the production of proalgesic mediators. Photostimulation of ChR2-expressing astrocytes in culture and spinal slices recapitulated in vivo findings, demonstrating the release of proalgesic mediators and electrophysiological disinhibition of spinal projection neurons. These findings deepen our understanding of the role of astrocytes in pain pathogenesis and provide the scientific basis for an astrocyte-oriented pain treatment.
Collapse
Affiliation(s)
- Youngpyo Nam
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Jae-Hong Kim
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Ji Young Jung
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - In-Sun Choi
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Dong Gun Lim
- Department of Anesthesiology and Pain Medicine, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Sung-Hun Hwang
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Hee-Jung Cho
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea.
| |
Collapse
|
99
|
Chen D, Pan D, Tang S, Tan Z, Zhang Y, Fu Y, Lü G, Huang Q. Administration of chlorogenic acid alleviates spinal cord injury via TLR4/NF‑κB and p38 signaling pathway anti‑inflammatory activity. Mol Med Rep 2017; 17:1340-1346. [PMID: 29115619 DOI: 10.3892/mmr.2017.7987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 07/25/2017] [Indexed: 11/06/2022] Open
Abstract
Chlorogenic acid, as a secondary metabolite of plants, exhibits a variety of effects including free radical scavenging, antiseptic, anti‑inflammatory and anti‑viral, in addition to its ability to reduce blood glucose, protect the liver and act as an anti‑hyperlipidemic agent and cholagogue. The present study demonstrated that administration of chlorogenic acid alleviated spinal cord injury (SCI) via anti‑inflammatory activity mediated by nuclear factor (NF)‑κB and p38 signaling pathways. Wistar rats were used to structure a SCI model rat to explore the effects of administration of chlorogenic acid on SCI. The Basso, Beattie and Bresnahan test was executed for assessment of neuronal functional recovery and then spinal cord tissue wet/dry weight ratio was recorded. The present study demonstrated that chlorogenic acid increased SCI‑inhibition of BBB scores and decreased SCI‑induction of spinal cord wet/dry weight ratio in rats. In addition, chlorogenic acid suppressed SCI‑induced inflammatory activity, inducible nitric oxide synthase activity and cyclooxygenase‑2 protein expression in the SCI rat. Furthermore, chlorogenic acid suppressed Toll like receptor (TLR)‑4/myeloid differentiation primary response 88 (MyD88)/NF‑κB/IκB signaling pathways and downregulated p38 mitogen activated protein kinase protein expression in SCI rats. The findings suggest that administration of chlorogenic acid alleviates SCI via anti‑inflammatory activity mediated by TLR4/MyD88/NF‑κB and p38 signaling pathways.
Collapse
Affiliation(s)
- Dayong Chen
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Dan Pan
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Shaolong Tang
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Zhihong Tan
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Yanan Zhang
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Yunfeng Fu
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Guohua Lü
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Qinghua Huang
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| |
Collapse
|
100
|
Microglia and astrocyte activation in the spinal cord of lame horses. Vet Anaesth Analg 2017; 45:92-102. [PMID: 29223561 DOI: 10.1016/j.vaa.2017.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To determine the microglial and astrocyte response to painful lameness in horses. STUDY DESIGN Ionized calcium binding adaptor molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP) expression, cell density and morphology were determined through immunofluorescence within the dorsal horn of equine spinal cord. ANIMALS A total of five adult horses with acute or chronic unilateral lameness, previously scheduled for euthanasia. METHODS Musculoskeletal lameness was evaluated in five horses through visual evaluation according to clinical guidelines. Spinal cord samples were obtained immediately after euthanasia, and distal limb lesions were confirmed through dissection and radiography. Iba-1 immunostaining was used for detection and characterization of dorsal horn microglia. GFAP was used for immunostaining of dorsal horn astrocytes. Iba-1 and GFAP labeled cells were quantified in the dorsal horn, and intensity of fluorescence was compared between the ipsi- and contralateral dorsal horn to the affected limb, and between dorsal horn segments of all horses. RESULTS Iba-1 expression was higher in the ipsilateral dorsal horn of the affected limb in contrast to the contralateral side dorsal horn. GFAP markers did not demonstrate increased astrocytic activity on the dorsal horn ipsilateral side to the distal limb lesion of affected horses. Horses with acute lameness predominantly had a spherical shape microglial phenotype, while cells from chronic lameness cases had variable morphology. Astrocytes evidenced small somas and large processes in both acute and chronic lameness, with higher GFAP localization in the main branches. As in the case of rodents, the localization of microglia and astrocytes in horses was mainly situated within laminae I, II and III. CONCLUSIONS AND CLINICAL RELEVANCE Iba-1 and GFAP are functional and morphological markers of spinal microglial cells and astrocytes in horses with lameness.
Collapse
|