51
|
Seydi E, Salimi A, Rasekh HR, Mohsenifar Z, Pourahmad J. Selective Cytotoxicity of Luteolin and Kaempferol on Cancerous Hepatocytes Obtained from Rat Model of Hepatocellular Carcinoma: Involvement of ROS-Mediated Mitochondrial Targeting. Nutr Cancer 2018; 70:594-604. [PMID: 29693446 DOI: 10.1080/01635581.2018.1460679] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To evaluate the cytotoxicity effects of luteolin (LUT) and kaempferol (KAE) via reactive oxygen species (ROS) mediated mitochondrial targeting on hepatocytes obtained from the liver of hepatocellular carcinoma (HCC) rats. In this study, HCC induced by diethylnitrosamine (DEN) and 2-acetylaminofluorene (2-AAF). In the following, rat liver hepatocytes and mitochondria were isolated and tested for every eventual apoptotic and anti-HCC effects of LUT and KAE. The results of MTT assay showed that LUT and KAE were able to induce selective cytotoxicity in hepatocytes of HCC group in a dose- and time-dependent manner. Treatment of mitochondria from hepatocytes of HCC group with LUT and KAE were accompanied by loss of mitochondrial membrane potential (MMP) and mitochondrial swelling and release of cytochrome c (P < 0.001) via reactive oxygen species (ROS) generation before cytotoxicity ensued. LUT and KAE also increased activation of caspase-3 (P < 0.001 and P < 0.01, respectively). Flow-cytometry analysis indicated that the mode of cell death induced by these flavonoids were mostly apoptosis. Importantly, LUT and KAE were nontoxic for healthy hepatocytes and mitochondria. Therefore, we suggest that LUT and KAE are a good candidate for the complementary therapeutic agent against HCC.
Collapse
Affiliation(s)
- Enayatollah Seydi
- a Research Center for Health, Safety and Environment, Alborz University of Medical Sciences , Karaj , Iran.,b Department of Occupational Health Engineering , Alborz University of Medical Sciences , Karaj , Iran
| | - Ahmad Salimi
- c Department of Pharmacology and Toxicology , School of Pharmacy, Ardabil University of Medical Sciences , Ardabil , Iran
| | - Hamid Reza Rasekh
- d Department of Pharmacology and Toxicology , Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Zhaleh Mohsenifar
- e Ayatollah Taleghani Educational Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Jalal Pourahmad
- d Department of Pharmacology and Toxicology , Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
52
|
Moosavi MA, Haghi A, Rahmati M, Taniguchi H, Mocan A, Echeverría J, Gupta VK, Tzvetkov NT, Atanasov AG. Phytochemicals as potent modulators of autophagy for cancer therapy. Cancer Lett 2018; 424:46-69. [PMID: 29474859 DOI: 10.1016/j.canlet.2018.02.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
The dysregulation of autophagy is involved in the pathogenesis of a broad range of diseases, and accordingly universal research efforts have focused on exploring novel compounds with autophagy-modulating properties. While a number of synthetic autophagy modulators have been identified as promising cancer therapy candidates, autophagy-modulating phytochemicals have also attracted attention as potential treatments with minimal side effects. In this review, we firstly highlight the importance of autophagy and its relevance in the pathogenesis and treatment of cancer. Subsequently, we present the data on common phytochemicals and their mechanism of action as autophagy modulators. Finally, we discuss the challenges associated with harnessing the autophagic potential of phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, P.O Box:14965/161, Tehran, Iran.
| | - Atousa Haghi
- Young Researchers & Elite Club, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Gheorghe Marinescu 23 Street, 400337 Cluj-Napoca, Romania
| | - Javier Echeverría
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Nikolay T Tzvetkov
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; NTZ Lab Ltd., Krasno Selo 198, Sofia 1618, Bulgaria
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
53
|
Xu M, Zheng M, Liu G, Zhang M, Kang J. Screening of break point cluster region Abelson tyrosine kinase inhibitors by capillary electrophoresis. J Chromatogr A 2018; 1537:128-134. [DOI: 10.1016/j.chroma.2018.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
|
54
|
Zhang H, Mu Y, Wang F, Song L, Sun J, Liu Y, Sun J. Synthesis of gypsogenin derivatives with capabilities to arrest cell cycle and induce apoptosis in human cancer cells. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171510. [PMID: 29410854 PMCID: PMC5792931 DOI: 10.1098/rsos.171510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/15/2017] [Indexed: 06/08/2023]
Abstract
Thirty-two gypsogenin derivatives were synthesized and screened for their cytotoxic activities. Their structures were established using IR, 1H NMR, 13C NMR, and LC-MS spectroscopic data. In MTT assays nearly all the compounds displayed good cytotoxicity in the low μM range for several human tumour cell lines (A549, LOVO, SKOV3 and HepG2). Low IC50 values were obtained especially for the carboxamides 7a-7j, for an oxime derivative 3 and a (2,4-dinitrophenyl)hydrazono derivative 4. In particular, the IC50 values of compounds 4 (IC50 = 2.97 ± 1.13 µΜ) and 7 g (IC50 = 3.59 ± 2.04 µΜ) against LOVO cells were found to be much lower than those of the other derivatives and parent compound. These compounds were submitted to an extensive biological testing and proved compounds 4 and 7 g to act mainly by an arrest of the tumour cells in the S phase of the cell cycle. In addition, compounds 4 and 7 g triggered the apoptotic pathway in cancer cells, showing high apoptosis ratios.
Collapse
Affiliation(s)
- Haochao Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Yanling Mu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China
| | - Fengling Wang
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China
| | - Leling Song
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Jie Sun
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China
| | - Yongjun Liu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China
| | - Jingyong Sun
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China
| |
Collapse
|
55
|
Effect of luteolin on inflammatory responses in RAW264.7 macrophages activated with LPS and IFN-γ. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
56
|
Shrivastava S, Jeengar MK, Thummuri D, Koval A, Katanaev VL, Marepally S, Naidu VGM. Cardamonin, a chalcone, inhibits human triple negative breast cancer cell invasiveness by downregulation of Wnt/β-catenin signaling cascades and reversal of epithelial-mesenchymal transition. Biofactors 2017; 43:152-169. [PMID: 27580587 DOI: 10.1002/biof.1315] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022]
Abstract
Cardamonin (CD), an active chalconoid, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of CD for the treatment of triple negative breast cancer (TNBC) is unclear. This study aims to examine the cytotoxic effects of CD and investigate the underlying mechanism in human TNBC cells. The results show that CD exhibits cytotoxicity by inducing apoptosis and cell cycle arrest in TNBC cells via modulation of Bcl-2, Bax, cyt-C, cleaved caspase-3, and PARP. We find that CD significantly increases expression of the epithelial marker E-cadherin, while reciprocally decreasing expression of mesenchymal markers such as snail, slug, and vimentin in BT-549 cells. In parallel with epithelial-mesenchymal transition (EMT) reversal, CD down regulates invasion and migration of BT-549 cells. CD markedly reduces stability and nuclear translocation of β-catenin, accompanied with downregulation of β-catenin target genes. Using the TopFlash luciferase reporter assay, we reveal CD as a specific inhibitor of the Wnt3a-induced signaling. These results suggest the involvement of the Wnt/β-catenin signaling in the CD-induced EMT reversion of BT-549 cells. Notably, CD restores the glycogen synthase kinase-3β (GSK3β) activity, required for β-catenin destruction via the proteasome-mediated system, by inhibiting the phosphorylation of GSK3β by Akt. These occurrences ultimately lead to the blockage of EMT and the invasion of TNBC cells. Further antitumor activity of CD was tested in 4T1 (TNBC cells) induced tumor and it was found that CD significantly inhibited the tumor volume at dose of 5 mg/kg-treated mice. © 2016 BioFactors, 43(2):152-169, 2017.
Collapse
Affiliation(s)
- Shweta Shrivastava
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER-Hyderabad), Hyderabad, Telangana, India
| | - Manish Kumar Jeengar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER-Hyderabad), Hyderabad, Telangana, India
| | - Dinesh Thummuri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER-Hyderabad), Hyderabad, Telangana, India
| | - Alexey Koval
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vladimir L Katanaev
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Srujan Marepally
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), NCBS-TIFR, UAS-GKVK, Bengaluru, Karnataka, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER-Hyderabad), Hyderabad, Telangana, India
| |
Collapse
|
57
|
Aka JA, Calvo EL, Lin SX. Estradiol-independent modulation of breast cancer transcript profile by 17beta-hydroxysteroid dehydrogenase type 1. Mol Cell Endocrinol 2017; 439:175-186. [PMID: 27544780 DOI: 10.1016/j.mce.2016.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/29/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022]
Abstract
17beta-hydroxysteroid dehydrogenase type 1 (17β-HSD1) is a steroidal enzyme which, in breast cancer cells, mainly synthesizes 17-beta-estradiol (E2), an estrogenic hormone that stimulates breast cancer cell growth. We previously showed that the enzyme increased breast cancer cell proliferation via a dual effect on E2 and 5α-dihydrotestosterone (DHT) levels and impacted gene expression and protein profile of breast cancer cells cultured in E2-contained medium. Here, we used RNA interference technique combined with microarray analyses to investigate the effect of 17β-HSD1 expression on breast cancer cell transcript profile in steroid-deprived condition. Our data revealed that knockdown of 17β-HSD1 gene, HSD17B1, modulates the transcript profile of the hormone-dependent breast cancer cell line T47D, with 105 genes regulated 1.5 fold or higher (p < 0.05) in estradiol-independent manner. Using Ingenuity Pathway Analysis (IPA), we additionally assessed functional enrichment analyses, including biological functions and canonical pathways, and found that, in concordance with the role of 17β-HSD1 in cancer cell growth, most regulated genes are cancer-related genes. Genes that primarily involved in the cell cycle progression, such as the cyclin A2 gene, CCNA2, are generally down-regulated whereas genes involved in apoptosis and cell death, including the pro-apoptotic gene XAF1, IFIH1 and FGF12, are on the contrary up-regulated by 17β-HSD1 knockdown, and 21% of the modulated genes belong to this latter functional category. This indicates that 17β-HSD1 may be involved in oncogenesis by favoring anti-apoptosis pathway in breast cancer cells and correborates with its previously shown role in increasing breast cancer cell proliferation. The gene regulation occurring in steroid-deprived conditions showed that 17β-HSD1 can modulate endogenous gene expression in steroid-independent manners. Besides, we tested the ability of estrogen to induce or repress endogenous genes of T47D by microarray analysis. Expression of a total of 130 genes were found to increase or decrease 1.5-fold or higher (p < 0.05) in response to E2 treatment (1 nM for 48 h), revealing a list of potential new estrogen-responsive genes and providing useful information for further studies of estrogen-dependent breast cancer mechanisms. In conclusion, in breast cancer cells, in addition to its implication in the E2-dependent gene transcription, the present study demonstrates that 17β-HSD1 also modulates gene expression via mechanisms independent of steroid actions. Those mechanisms that may include the ligand-independent gene transcription of estrogen receptor alpha (ERα), whose expression is positively correlated with that of the enzyme, and that may implicate 17β-HSD1 in anti-apoptosis pathways, have been discussed.
Collapse
Affiliation(s)
- Juliette A Aka
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | - Ezequiel-Luis Calvo
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada.
| |
Collapse
|
58
|
Cook MT, Liang Y, Besch-Williford C, Hyder SM. Luteolin inhibits lung metastasis, cell migration, and viability of triple-negative breast cancer cells. BREAST CANCER-TARGETS AND THERAPY 2016; 9:9-19. [PMID: 28096694 PMCID: PMC5207335 DOI: 10.2147/bctt.s124860] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most breast cancer-related deaths from triple-negative breast cancer (TNBC) occur following metastasis of cancer cells and development of tumors at secondary sites. Because TNBCs lack the three receptors targeted by current chemotherapeutic regimens, they are typically treated with extremely aggressive and highly toxic non-targeted treatment strategies. Women with TNBC frequently develop metastatic lesions originating from drug-resistant residual cells and have poor prognosis. For this reason, novel therapeutic strategies that are safer and more effective are sought. Luteolin (LU) is a naturally occurring, non-toxic plant compound that has proven effective against several types of cancer. With this in mind, we conducted in vivo and in vitro studies to determine whether LU might suppress metastasis of TNBC. In an in vivo mouse metastasis model, LU suppressed metastasis of human MDA-MB-435 and MDA-MB-231 (4175) LM2 TNBC cells to the lungs. In in vitro assays, LU inhibited cell migration and viability of MDA-MB-435 and MDA-MB-231 (4175) LM2 cells. Further, LU induced apoptosis in MDA-MB-231 (4175) LM2 cells. Relatively low levels (10 µM) of LU significantly inhibited vascular endothelial growth factor (VEGF) secretion in MDA-MB-231 (4175) LM2 cells, suggesting that it has the ability to suppress a potent angiogenic and cell survival factor. In addition, migration of MDA-MB-231 (4175) LM2 cells was inhibited upon exposure to an antibody against the VEGF receptor, KDR, but not by exposure to a VEGF165 antibody. Collectively, these data suggest that the anti-metastatic properties of LU may, in part, be due to its ability to block VEGF production and KDR-mediated activity, thereby inhibiting tumor cell migration. These studies suggest that LU deserves further investigation as a potential treatment option for women with TNBC.
Collapse
Affiliation(s)
- Matthew T Cook
- Department of Biomedical Sciences; Dalton Cardiovascular Research Center, University of Missouri
| | - Yayun Liang
- Department of Biomedical Sciences; Dalton Cardiovascular Research Center, University of Missouri
| | | | - Salman M Hyder
- Department of Biomedical Sciences; Dalton Cardiovascular Research Center, University of Missouri
| |
Collapse
|
59
|
Li J, Cheng X, Chen Y, He W, Ni L, Xiong P, Wei M. Vitamin E TPGS modified liposomes enhance cellular uptake and targeted delivery of luteolin: An in vivo/in vitro evaluation. Int J Pharm 2016; 512:262-272. [DOI: 10.1016/j.ijpharm.2016.08.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 01/12/2023]
|
60
|
Abstract
Many food-derived phytochemical compounds and their derivatives represent a cornucopia of new anticancer compounds. Despite extensive study of luteolin, the literature has no information on the exact mechanisms or molecular targets through which it deters cancer progression. This review discusses existing data on luteolin's anticancer activities and then offers possible explanations for and molecular targets of its cancer-preventive action. Luteolin prevents tumor development largely by inactivating several signals and transcription pathways essential for cancer cells. This review also offers insights into the molecular mechanisms and targets through which luteolin either prevents cancer or mediates cancer cell death.
Collapse
|
61
|
Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016; 8:nu8080515. [PMID: 27556486 PMCID: PMC4997428 DOI: 10.3390/nu8080515] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 02/06/2023] Open
Abstract
There is much epidemiological evidence that a diet rich in fruits and vegetables could lower the risk of certain cancers. The effect has been attributed, in part, to natural polyphenols. Besides, numerous studies have demonstrated that natural polyphenols could be used for the prevention and treatment of cancer. Potential mechanisms included antioxidant, anti-inflammation as well as the modulation of multiple molecular events involved in carcinogenesis. The current review summarized the anticancer efficacy of major polyphenol classes (flavonoids, phenolic acids, lignans and stilbenes) and discussed the potential mechanisms of action, which were based on epidemiological, in vitro, in vivo and clinical studies within the past five years.
Collapse
|
62
|
Meng G, Chai K, Li X, Zhu Y, Huang W. Luteolin exerts pro-apoptotic effect and anti-migration effects on A549 lung adenocarcinoma cells through the activation of MEK/ERK signaling pathway. Chem Biol Interact 2016; 257:26-34. [PMID: 27474067 DOI: 10.1016/j.cbi.2016.07.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/03/2016] [Accepted: 07/24/2016] [Indexed: 11/17/2022]
Abstract
An increasing amount of evidence suggests that luteolin, a common dietary flavonoid that is widely distributed in plants and foods, has been shown to be protective against cancer. However, the precise underlying mechanisms of its action against lung cancer are still poorly understood. In the present study, we investigated whether luteolin exhibits the anti-cancer effect in lung cancer through the induction of cell apoptosis and inhibition of cell migration, and whether mitogen-activated protein kinases (MAPKs) and Akt signaling pathways are required. Results revealed that luteolin exerted an anti-proliferation effect in a dose- and time-dependent manner in A549 lung adenocarcinoma cells, and induced apoptosis with a concomitant increase in the activation of caspases-3 and -9, diminution of Bcl-2, elevation in Bax expression, and the phosphorylation of MEK and its down-stream kinase ERK, as well as the activation of Akt. Luteolin also dramatically inhibited cell motility and migration in A549 cells. The inhibitor of MEK-ERK pathway protected against luteolin-induced cell death and suppressed the apoptosis-inducing and anti-migratory effects of luteolin, suggesting MEK-ERK signaling pathway plays an important role in mediating the pro-apoptotic effect and anti-migration effects of luteolin. Taken together, this study provides a new insight into the mode of action of luteolin on lung cancer.
Collapse
Affiliation(s)
- Guanmin Meng
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kequn Chai
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xinda Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Yongqiang Zhu
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Weihua Huang
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
63
|
Han K, Meng W, Zhang JJ, Zhou Y, Wang YL, Su Y, Lin SC, Gan ZH, Sun YN, Min DL. Luteolin inhibited proliferation and induced apoptosis of prostate cancer cells through miR-301. Onco Targets Ther 2016; 9:3085-94. [PMID: 27307749 PMCID: PMC4888721 DOI: 10.2147/ott.s102862] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Luteolin is a falvonoid compound derived from Lonicera japonica Thunb. Numerous reports have demonstrated that luteolin has anticancer effects on many kinds of tumors. This study investigated the effects of luteolin on prostate cancer (PCa), assessing the PC3 and LNCaP cells. The cell viability and apoptosis were assessed by performing Cell Counting Kit-8 assay and Annexin V–fluorescein isothiocyanate/propidium iodide double staining. Luteolin was found to inhibit androgen-sensitive and androgen-independent PCa cell lines’ growth and induced apoptosis. To uncover the exact mechanisms and molecular targets, microRNA (miR) array analysis was performed. miR-301 was found to be markedly downregulated. Then, the expression of miR-301 was retrospectively analyzed in the primary PCa tissues by quantitative reverse transcription polymerase chain reaction and in situ hybridization methods. According to the quantitative reverse transcription polymerase chain reaction results of miR-301, the 54 PCa patients were divided into two groups: high and low miR-301 groups. The division indicator is a relative expression ≥5. Compared to the low-expression group, high miR-301 expression was associated with a significantly shorter overall survival (P=0.029). The proapoptotic gene, DEDD2, was predicted to be the direct target of miR-301. It was clarified in accordance with bioinformatics and luciferase activity analyses. The overexpression of miR-301 by plasmid decreased the luteolin effect. Taken together, these results suggest that luteolin inhibits PCa cell proliferation through miR-301, the poor predictive factor of PCa.
Collapse
Affiliation(s)
- Kun Han
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Wei Meng
- Institute of Genetic Engineering of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jian-Jun Zhang
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yan Zhou
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Ya-Ling Wang
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yang Su
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Shu-Chen Lin
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Zhi-Hua Gan
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yong-Ning Sun
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Da-Liu Min
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
64
|
Naso LG, Lezama L, Valcarcel M, Salado C, Villacé P, Kortazar D, Ferrer EG, Williams PAM. Bovine serum albumin binding, antioxidant and anticancer properties of an oxidovanadium(IV) complex with luteolin. J Inorg Biochem 2016; 157:80-93. [PMID: 26828287 DOI: 10.1016/j.jinorgbio.2016.01.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/16/2016] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
Chemotherapy using metal coordination compounds for cancer treatment is the work of the ongoing research. Continuing our research on the improvement of the anticancer activity of natural flavonoids by metal complexation, a coordination compound of the natural antioxidant flavone luteolin (lut) and the oxidovanadium(IV) cation has been synthesized and characterized. Using different physicochemical measurements some structural aspects of [VO(lut)(H2O)2]Na·3H2O (VOlut) were determined. The metal coordinated to two cis-deprotonated oxygen atoms (ArO(-)) of the ligand and two H2O molecules. Magnetic measurements in solid state indicated the presence of an effective exchange pathway between adjacent vanadium ions. VOlut improved the antioxidant capacity of luteolin only against hydroxyl radical. The antitumoral effects were evaluated on MDAMB231 breast cancer and A549 lung cancer cell lines. VOlut exhibited higher viability inhibition (IC50=17 μM) than the ligand on MDAMB231 cells but they have the same behavior on A549 cells (ca. IC50=60 μM). At least oxidative stress processes were active during cancer cell-killing. When metals chelated through the carbonyl group and one adjacent OH group of the flavonoid an effective improvement of the biological properties has been observed. In VOlut the different coordination may be the cause of the small improvement of some of the tested properties of the flavonoid. Luteolin and VOlut could be distributed and transported in vivo. Luteolin interacted in the microenvironment of the tryptophan group of the serum binding protein, BSA, by means of electrostatic forces and its complex bind the protein by H bonding and van der Waals interactions.
Collapse
Affiliation(s)
- Luciana G Naso
- Centro de Química Inorgánica (CEQUINOR, CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115-C.C.962-(B1900AVV), 1900 La Plata, Argentina
| | - Luis Lezama
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain; BCMaterials, Parque científico y Tecnológico de Bizkaia, Edificio 500-1, 48160 Derio, Spain
| | - María Valcarcel
- Innoprot SL, Parque científico y Tecnológico de Bizkaia, Edificio 502-P1, 48160 Derio, Spain
| | - Clarisa Salado
- Innoprot SL, Parque científico y Tecnológico de Bizkaia, Edificio 502-P1, 48160 Derio, Spain
| | - Patricia Villacé
- Innoprot SL, Parque científico y Tecnológico de Bizkaia, Edificio 502-P1, 48160 Derio, Spain
| | - Danel Kortazar
- Innoprot SL, Parque científico y Tecnológico de Bizkaia, Edificio 502-P1, 48160 Derio, Spain
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR, CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115-C.C.962-(B1900AVV), 1900 La Plata, Argentina
| | - Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR, CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115-C.C.962-(B1900AVV), 1900 La Plata, Argentina.
| |
Collapse
|
65
|
Aroui S, Aouey B, Chtourou Y, Meunier AC, Fetoui H, Kenani A. Naringin suppresses cell metastasis and the expression of matrix metalloproteinases (MMP-2 and MMP-9) via the inhibition of ERK-P38-JNK signaling pathway in human glioblastoma. Chem Biol Interact 2015; 244:195-203. [PMID: 26721195 DOI: 10.1016/j.cbi.2015.12.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/02/2015] [Accepted: 12/17/2015] [Indexed: 01/25/2023]
Abstract
Naringin (4',5,7-trihydroxyflavanone 7-rhamnoglucoside), a natural flavonoid, has pharmacological properties. In the present study, we investigated the anti-metastatic activity of naringin and its molecular mechanism(s) of action in human glioblastoma cells. Naringin exhibits inhibitory effects on the invasion and adhesion of U87 cells in a concentration-dependent manner by Matrigel Transwell and cell adhesion assays. Naringin also inhibited the migration of U87 cells in a concentration-dependent manner by wound-healing assay. Additional experiments showed that naringin treatment reduced the enzymatic activities and protein levels of matrix metalloproteinase (MMP)-2 and MMP-9 using a gelatin zymography assay and western blot analyses. Furthermore, naringin was able to reduce the protein phosphorylation of extracellular signal-regulated kinase ERK, p38 mitogen-activated protein kinase and c-Jun N-terminal kinase by western blotting. Collectively, our data showed that naringin attenuated the MAPK signaling pathways including ERK, JNK and p38 and resulted in the downregulation of the expression and enzymatic activities of MMP-2, MMP-9, contributing to the inhibition of metastasis in U87 cells. These findings proved that naringin may offer further application as an antimetastatic agent.
Collapse
Affiliation(s)
- Sonia Aroui
- Laboratory of Biochemistry, Molecular Mechanisms and Diseases Research Unit, UR12ES08, Faculty of Medicine, University of Monastir, BP5019, 5000 Monsatir, Tunisia.
| | - Bakhta Aouey
- Laboratory of Toxicology-Microbiology and Environmental Health, UR11ES70, Sciences Faculty of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Yassine Chtourou
- Laboratory of Toxicology-Microbiology and Environmental Health, UR11ES70, Sciences Faculty of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Annie-Claire Meunier
- ERL CNRS/University of Poitiers n°7368, Georges Bonnet Street N°1, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health, UR11ES70, Sciences Faculty of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Abderraouf Kenani
- Laboratory of Biochemistry, Molecular Mechanisms and Diseases Research Unit, UR12ES08, Faculty of Medicine, University of Monastir, BP5019, 5000 Monsatir, Tunisia
| |
Collapse
|
66
|
Lin CH, Chang CY, Lee KR, Lin HJ, Chen TH, Wan L. Flavones inhibit breast cancer proliferation through the Akt/FOXO3a signaling pathway. BMC Cancer 2015; 15:958. [PMID: 26675309 PMCID: PMC4682224 DOI: 10.1186/s12885-015-1965-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Flavones found in plants display various biological activities, including anti-allergic, anti-viral, anti-inflammatory, anti-oxidation, and anti-tumor effects. In this study, we investigated the anti-tumor effects of flavone, apigenin and luteolin on human breast cancer cells. METHODS The anti-cancer activity of flavone, apigenin and luteolin was investigated using the MTS assay. Apoptosis was analyzed by Hoechst 33342 staining, flow cytometry and western blot. Cell migration was determined using the culture inserts and xCELLigence real-time cell analyzer instrument equipped with a CIM-plate 16. Real-time quantitative PCR and western blot were used to determine the signaling pathway elicited by flavone, apigenin and luteolin. RESULTS Flavone, apigenin and luteolin showed potent inhibitory effects on the proliferation of Hs578T, MDA-MB-231 and MCF-7 breast cancer cells in a concentration and time-dependent manner. The ability of flavone, apigenin and luteolin to inhibit the growth of breast cancer cells through apoptosis was confirmed by Hoechst33342 staining and the induction of sub-G1 phase of the cell cycle. Flavone, apigenin and luteolin induced forkhead box O3 (FOXO3a) expression by inhibiting Phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB)/Akt. This subsequently elevated the expression of FOXO3a target genes, including the Cyclin-dependent kinase inhibitors p21Cip1 (p21) and p27kip1 (p27), which increased the levels of activated poly(ADP) polymerase (PARP) and cytochrome c. CONCLUSION Taken together, these data demonstrated that flavone, apigenin and luteolin induced cell cycle arrest and apoptosis in breast cancer cells through inhibiting PI3K/Akt activation and increasing FOXO3a activation, which suggest that flavone, apigenin and luteolin will be the potential leads for the preventing and treating of breast cancer.
Collapse
Affiliation(s)
- Chia-Hung Lin
- Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| | - Ching-Yao Chang
- Department of Biotechnology, Asia University, Taichung, Taiwan.
| | - Kuan-Rong Lee
- Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| | - Hui-Ju Lin
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan.
- School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan.
| | - Lei Wan
- Department of Biotechnology, Asia University, Taichung, Taiwan.
- School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
- Department of Gynecology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
67
|
Nabavi SF, Braidy N, Gortzi O, Sobarzo-Sanchez E, Daglia M, Skalicka-Woźniak K, Nabavi SM. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res Bull 2015; 119:1-11. [PMID: 26361743 DOI: 10.1016/j.brainresbull.2015.09.002] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022]
Abstract
According to the World Health Organization, two billion people will be aged 60 years or older by 2050. Aging is a major risk factor for a number of neurodegenerative disorders. These age-related disorders currently represent one of the most important and challenging health problems worldwide. Therefore, much attention has been directed towards the design and development of neuroprotective agents derived from natural sources. These phytochemicals have demonstrated high efficacy and low adverse effects in multiple in vitro and in vivo studies. Among these phytochemicals, dietary flavonoids are an important and common chemical class of bioactive products, found in several fruits and vegetables. Luteolin is an important flavone, which is found in several plant products, including broccoli, pepper, thyme, and celery. Numerous studies have shown that luteolin possesses beneficial neuroprotective effects both in vitro and in vivo. Despite this, an overview of the neuroprotective effects of luteolin has not yet been accomplished. Therefore, the aim of this paper is to provide a review of the available literature regarding the neuroprotective effects of luteolin and its molecular mechanisms of action. Herein, we also review the available literature regarding the chemistry of luteolin, its herbal sources, and bioavailability as a pharmacological agent for the treatment and management of age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Olga Gortzi
- Department of Food Technology, Technological Educational Institution of Thessaly, Terma N. Temponera Str., Greece
| | - Eduardo Sobarzo-Sanchez
- Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostel, 15782 Santiago de Compostela, Spain
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
68
|
Du Y, Feng J, Wang R, Zhang H, Liu J. Effects of Flavonoids from Potamogeton crispus L. on Proliferation, Migration, and Invasion of Human Ovarian Cancer Cells. PLoS One 2015; 10:e0130685. [PMID: 26098839 PMCID: PMC4476667 DOI: 10.1371/journal.pone.0130685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022] Open
Abstract
In order to explore the efficient utilization of plant resources from constructed wetlands, the potential anti-metastatic effects of flavonoids from Potamogeton crispus L. were investigated in human ovarian cancer cells (ES-2). Two major flavonoids, luteolin-3'-O-β-D-glucopyranoside and flavone-6-C-β-D-glucopyranoside, were isolated from P. crispus and identified. The effects of these flavonoids on cell proliferation, cell morphology, cell cycle, apoptosis, and cell migration and invasion were then investigated. Furthermore, reverse transcriptase polymerase chain reaction assays and western blotting analysis were conducted to examine the expression level of mRNA and protein. Results indicated that Luteolin-3'-O-β-D-glucopyranoside inhibited ES-2 cell migration and invasion and suppressed the expression of two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and Flavone-6-C-β-D-glucopyranoside had no significant inhibitory effects on ES-2 cells. Thus, this study demonstrated the potential anti-metastatic properties of a P. crispus flavonoid, and provided a scientific approach for the screening of promising natural resources from constructed wetlands to identify useful products for use in the pharmaceutical and healthcare industries.
Collapse
Affiliation(s)
- Yuanda Du
- Institute of Environmental Research, Shandong University, Jinan, 250100, China
| | - Jinhong Feng
- Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, 250014, China
| | - Renqing Wang
- Institute of Environmental Research, Shandong University, Jinan, 250100, China
- School of Life Sciences, Shandong University, Jinan, 250100, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan, 250100, China
| | - Haijie Zhang
- Institute of Environmental Research, Shandong University, Jinan, 250100, China
| | - Jian Liu
- Institute of Environmental Research, Shandong University, Jinan, 250100, China
| |
Collapse
|
69
|
Rafacho BPM, Stice CP, Liu C, Greenberg AS, Ausman LM, Wang XD. Inhibition of diethylnitrosamine-initiated alcohol-promoted hepatic inflammation and precancerous lesions by flavonoid luteolin is associated with increased sirtuin 1 activity in mice. Hepatobiliary Surg Nutr 2015; 4:124-34. [PMID: 26005679 DOI: 10.3978/j.issn.2304-3881.2014.08.06] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/21/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chronic and excessive alcohol consumption is an established risk for hepatic inflammation and carcinogenesis. Luteolin is one of the most common flavonoids present in plants and has potential beneficial effects against cancer. In this study, we examined the effect and potential mechanisms of luteolin supplementation in a carcinogen initiated alcohol-promoted pre-neoplastic liver lesion mouse model. METHODS C57BL/6 mice were injected with diethylnitrosamine (DEN) [i.p. 25 mg/kg of body weight (BW)] at 14 days of age. At 8 weeks of age mice were group pair-fed with Lieber-DeCarli liquid control diet or alcoholic diet [ethanol (EtOH) diet, 27% total energy from ethanol] and supplemented with a dose of 30 mg luteolin/kg BW per day for 21 days. RESULTS DEN-injected mice fed EtOH diet displayed a significant induction of pre-neoplastic lesions, a marker associated with presence of steatosis and inflammation. Dietary luteolin significantly reduced the severity and incidence of hepatic inflammatory foci and steatosis in DEN-injected mice fed EtOH diet, as well the presence of preneoplastic lesions. There was no difference on hepatic protein levels of sirtuin 1 (SIRT1) among all groups; however, luteolin supplementation significantly reversed alcohol-reduced SIRT1 activity assessed by the ratio of acetylated and total forkhead box protein O1 (FoXO1) and SIRT1 target proliferator-activated receptor gamma, coactivator 1 alpha (PGC1α). CONCLUSIONS Dietary intake of luteolin prevents alcohol promoted pre-neoplastic lesions, potentially mediated by SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Bruna Paola Murino Rafacho
- 1 Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 2 Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil ; 3 Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 4 Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Camilla Peach Stice
- 1 Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 2 Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil ; 3 Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 4 Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Chun Liu
- 1 Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 2 Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil ; 3 Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 4 Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Andrew S Greenberg
- 1 Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 2 Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil ; 3 Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 4 Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Lynne M Ausman
- 1 Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 2 Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil ; 3 Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 4 Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Xiang-Dong Wang
- 1 Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 2 Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil ; 3 Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 4 Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
70
|
Kwon EY, Jung UJ, Park T, Yun JW, Choi MS. Luteolin attenuates hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue in mice with diet-induced obesity. Diabetes 2015; 64:1658-69. [PMID: 25524918 DOI: 10.2337/db14-0631] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 12/11/2014] [Indexed: 11/13/2022]
Abstract
The flavonoid luteolin has various pharmacological activities. However, few studies exist on the in vivo mechanism underlying the actions of luteolin in hepatic steatosis and obesity. The aim of the current study was to elucidate the action of luteolin on obesity and its comorbidity by analyzing its transcriptional and metabolic responses, in particular the luteolin-mediated cross-talk between liver and adipose tissue in diet-induced obese mice. C57BL/6J mice were fed a normal, high-fat, and high-fat + 0.005% (weight for weight) luteolin diet for 16 weeks. In high fat-fed mice, luteolin improved hepatic steatosis by suppressing hepatic lipogenesis and lipid absorption. In adipose tissue, luteolin increased PPARγ protein expression to attenuate hepatic lipotoxicity, which may be linked to the improvement in circulating fatty acid (FA) levels by enhancing FA uptake genes and lipogenic genes and proteins in adipose tissue. Interestingly, luteolin also upregulated the expression of genes controlling lipolysis and the tricarboxylic acid (TCA) cycle prior to lipid droplet formation, thereby reducing adiposity. Moreover, luteolin improved hepatic insulin sensitivity by suppressing SREBP1 expression that modulates Irs2 expression through its negative feedback and gluconeogenesis. Luteolin ameliorates the deleterious effects of diet-induced obesity and its comorbidity via the interplay between liver and adipose tissue.
Collapse
Affiliation(s)
- Eun-Young Kwon
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Republic of Korea
| | - Un Ju Jung
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, Yonsei University, Seoul, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, Republic of Korea
| | - Myung-Sook Choi
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
71
|
Anticancer effect of celastrol on human triple negative breast cancer: possible involvement of oxidative stress, mitochondrial dysfunction, apoptosis and PI3K/Akt pathways. Exp Mol Pathol 2015; 98:313-27. [PMID: 25818165 DOI: 10.1016/j.yexmp.2015.03.031] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/23/2015] [Indexed: 02/07/2023]
Abstract
Signaling via the phosphatidylinositol-3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) is crucial for divergent physiological processes including transcription, translation, cell-cycle progression and apoptosis. The aim of work was to elucidate the anti-cancer effect of celastrol and the signal transduction pathways involved. Cytotoxic effect of celastrol was assessed by MTT assay on human triple negative breast cancer cells (TNBCs) and compared with that of MCF-7. Apoptosis induction was determined by AO/EtBr staining, mitochondrial membrane potential by JC-1, Annexin binding assays and modulation of apoptotic proteins and its effect on PI3K/Akt/mTOR pathway by western blotting. Celastrol induced apoptosis in TNBC cells, were supported by DNA fragmentation, caspase-3 activation and PARP cleavage. Meanwhile, celastrol triggered reactive oxygen species production with collapse of mitochondrial membrane potential, down-regulation of Bcl-2 and up-regulation of Bax expression. Celastrol effectively decreased PI3K 110α/85α enzyme activity, phosphorylation of Akt(ser473) and p70S6K1 and 4E-BP1. Although insulin treatment increased the phosphorylation of Akt(ser473), p70S6K1, 4E-BP1, celastrol abolished the insulin mediated phosphorylation. It clearly indicates that celastrol acts through PI3k/Akt/mTOR axis. We also found that celastrol inhibited the Akt/GSK3β and Akt/NFkB survival pathway. PI3K/Akt/mTOR inhibitor, PF-04691502 and mTOR inhibitor rapamycin enhanced the apoptosis-inducing effect of celastrol. These data demonstrated that celastrol induces apoptosis in TNBC cells and indicated that apoptosis might be mediated through mitochondrial dysfunction and PI3K/Akt signaling pathway.
Collapse
|
72
|
Vini R, Sreeja S. Punica granatum and its therapeutic implications on breast carcinogenesis: A review. Biofactors 2015; 41:78-89. [PMID: 25857627 DOI: 10.1002/biof.1206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/26/2015] [Indexed: 12/12/2022]
Abstract
Punica granatum has a recorded history of pharmacological properties which can be attributed to its rich reservoir of phytochemicals. Investigations in recent years have established its tremendous potential as an antitumorogenic agent against various cancers including breast cancer, which is the second leading cause of cancer-related deaths in women. The plausible role of Punica as a therapeutic agent, as an adjuvant in chemotherapy, and its dietary implications as chemopreventive agent in breast cancer have been explored. Mechanistic studies have revealed that Punica extracts and its components, individually or in combination, can modulate and target key proteins and genes involved in breast cancer. Our earlier finding also demonstrated the role of methanolic extract of pomegranate pericarp in reducing proliferation in breast cancer by binding to estrogen receptor at the same time not affecting uterine weight unlike estradiol or tamoxifen. This review analyses other plausible mechanisms of Punica in preventing the progression of breast cancer and how it can possibly be a therapeutic agent by acting at various steps of carcinogenesis including proliferation, invasion, migration, metastasis, angiogenesis, and inflammation via various molecular mechanisms.
Collapse
Affiliation(s)
- Ravindran Vini
- Cancer Research Programme, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | | |
Collapse
|
73
|
Lu J, Li G, He K, Jiang W, Xu C, Li Z, Wang H, Wang W, Wang H, Teng X, Teng L. Luteolin exerts a marked antitumor effect in cMet-overexpressing patient-derived tumor xenograft models of gastric cancer. J Transl Med 2015; 13:42. [PMID: 25638174 PMCID: PMC4320638 DOI: 10.1186/s12967-015-0398-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/14/2015] [Indexed: 11/10/2022] Open
Abstract
Background Aberrated activation of cMet in gastric cancer contributes to tumor growth, angiogenesis and metastasis. cMet-overexpressing gastric cancer has a poor prognosis because of high tumor metastasis and limited therapeutic options. Luteolin is a common dietary flavonoid with antitumor properties. However, the antitumor effect of luteolin on cMet-overexpressing gastric cancer remain unclear. Methods Two cMet-overexpressing patient-derived human tumor xenograft (PDTX) models of gastric cancer were established, and treated with luteolin or vehicle to evaluate the antitumor effects of luteolin. Tumor specimens were subjected to H&E staining and immunohistochemistry. MKN45 and SGC7901 cells that show high cMet expression were treated with varying concentrations of luteolin and evaluated by western blot, cell viability, apoptosis, migration, and invasion assays. Results Luteolin inhibited the tumor growth in cMet-overexpressing PDTX models. Immunohistochemistry demonstrated that expression of cMet, MMP9 and Ki-67 were significantly down-regulated. Luteolin inhibited proliferation, promoted apoptosis and reduced the invasiveness of MKN45 and SGC7901 cells. Western blot revealed that luteolin promoted the activation of apoptosis-related proteins, caspase-3 and PARP-1, and down-regulated the invasion-associated protein, MMP9. Further studies demonstrated that luteolin decreased the expression and phosphorylation of cMet, and downstream phosphorylation of Akt and ERK. In addition, luteolin down-regulated phosphorylated Akt independently of cMet. Blocking Akt and/or ERK with the PI3K inhibitor, LY294002, or the ERK inhibitor, PD98059, induced down-regulation of MMP9 and up-regulation of cleaved caspase-3 and PARP-1, resembling the effects of luteolin. Conclusions Our findings ,for the first time, demonstrate that luteolin exerts marked antitumor effects in cMet-overexpressing PDTX models of gastric cancer, through a mechanism likely involving cMet/Akt/ERK signaling. These findings indicate that luteolin may act as a potential therapeutic option for cMet-overexpressing gastric cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0398-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Lu
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Guangliang Li
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Kuifeng He
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Weiqin Jiang
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Cong Xu
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Zhongqi Li
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Haohao Wang
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Weibin Wang
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Haiyong Wang
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Xiaodong Teng
- Department of Pathology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Lisong Teng
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
74
|
Hepatoprotective, Antioxidant, and Anticancer Effects of the Tragopogon porrifolius Methanolic Extract. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:161720. [PMID: 25694787 PMCID: PMC4324983 DOI: 10.1155/2015/161720] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/02/2015] [Indexed: 02/02/2023]
Abstract
Tragopogon porrifolius (Asteraceae), commonly referred to as white salsify, is an edible herb used in Lebanese folk medicine to treat cancer and liver dysfunction. In this study, we investigated the antioxidant activity of Tragopogon porrifolius methanolic extract, both in vitro and in vivo, in addition to its hepatoprotective and anticancer activities. Total phenolic and flavonoid contents were measured and found to be 37.0 ± 1.40 mg GAE/g and 16.6 ± 0.42 mg QE/g dry weight, respectively. In vitro antioxidant assays revealed an FRAP value of 659 ± 13.8 µmol Fe(2+)/g of extract and DPPH IC50 value 15.2 µg/mL. In rats subjected to CCl4-induced hepatotoxicity, significant increase in CAT, SOD, and GST levels was detected. The highest dose of the extract (250 mg/kg) recorded a fold increase of 1.68 for SOD, 2.49 for GST, and 3.2 for CAT. The extract also showed substantial decrease in AST (57%), ALT (56%), and LDH (65%) levels. Additionally, the extract caused a dose-dependent decrease in cell viability and proliferation. In conclusion, the methanolic extract of T. porrifolius displayed a relatively high antioxidant activity both in vitro and in vivo as well as hepatoprotective potential against liver toxicity in rats and anticancer effect on MDA-MB-231 and Caco-2 cells.
Collapse
|
75
|
Shi F, Zhao P, Li X, Pan H, Ma S, Ding L. Cytotoxicity of luteolin in primary rat hepatocytes: the role of CYP3A-mediatedortho-benzoquinone metabolite formation and glutathione depletion. J Appl Toxicol 2015; 35:1372-80. [DOI: 10.1002/jat.3106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Fuguo Shi
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance affiliated to Ministry of Education; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 China
| | - Peng Zhao
- Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 China
| | - Xiaobing Li
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance affiliated to Ministry of Education; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 China
| | - Hong Pan
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance affiliated to Ministry of Education; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 China
| | - Shiping Ma
- Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 China
| | - Li Ding
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance affiliated to Ministry of Education; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 China
| |
Collapse
|
76
|
Prajapti SK, Shrivastava S, Bihade U, Gupta AK, Naidu VGM, Banerjee UC, Babu BN. Synthesis and biological evaluation of novel Δ2-isoxazoline fused cyclopentane derivatives as potential antimicrobial and anticancer agents. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00525b] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel Δ2-isoxazoline fused cyclopentane derivatives have been synthesized and evaluated for their antimicrobial and anticancer activities.
Collapse
Affiliation(s)
- Santosh Kumar Prajapti
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500037
- India
| | - Shweta Shrivastava
- Department of Pharmacology and Toxicology
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500037
- India
| | - Umesh Bihade
- Department of Pharmaceutical Technology
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar
- India
| | - Ajay Kumar Gupta
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500037
- India
| | - V. G. M. Naidu
- Department of Pharmacology and Toxicology
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500037
- India
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar
- India
| | - Bathini Nagendra Babu
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500037
- India
| |
Collapse
|
77
|
Safdari Y, Khalili M, Ebrahimzadeh MA, Yazdani Y, Farajnia S. Natural inhibitors of PI3K/AKT signaling in breast cancer: emphasis on newly-discovered molecular mechanisms of action. Pharmacol Res 2014; 93:1-10. [PMID: 25533812 DOI: 10.1016/j.phrs.2014.12.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 01/08/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays a critical role in the initiation and progression of a variety of human cancers, including breast cancer. An important signaling pathway downstream of EGFR is the PI3K/AKt pathway, which regulates cellular processes as diverse as cell growth, survival, proliferation and migration. Deregulated activity of this pathway may lead to uncontrolled cell growth, survival, migration and invasion, contributing to tumor formation. In this review, we evaluate natural compounds that, in vitro (breast cancer cell lines) and/or in vivo (animal model, clinical) studies, suppress breast cancer cells or tumors mainly by suppressing the PI3K/AKT signaling pathway. The effect of these compounds on cell cycle arrest, inhibition of cell migration and invasion, tumor angiogenesis and metastasis in breast cancer are discussed.
Collapse
Affiliation(s)
- Yaghoub Safdari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Masoumeh Khalili
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yaghoub Yazdani
- Infectious Diseases Research Center and Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
78
|
Barrajón-Catalán E, Taamalli A, Quirantes-Piné R, Roldan-Segura C, Arráez-Román D, Segura-Carretero A, Micol V, Zarrouk M. Differential metabolomic analysis of the potential antiproliferative mechanism of olive leaf extract on the JIMT-1 breast cancer cell line. J Pharm Biomed Anal 2014; 105:156-162. [PMID: 25560707 DOI: 10.1016/j.jpba.2014.11.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
A new differential metabolomic approach has been developed to identify the phenolic cellular metabolites derived from breast cancer cells treated with a supercritical fluid extracted (SFE) olive leaf extract. The SFE extract was previously shown to have significant antiproliferative activity relative to several other olive leaf extracts examined in the same model. Upon SFE extract incubation of JIMT-1 human breast cancer cells, major metabolites were identified by using HPLC coupled to electrospray ionization quadrupole-time-of-flight mass spectrometry (ESI-Q-TOF-MS). After treatment, diosmetin was the most abundant intracellular metabolite, and it was accompanied by minor quantities of apigenin and luteolin. To identify the putative antiproliferative mechanism, the major metabolites and the complete extract were assayed for cell cycle, MAPK and PI3K proliferation pathways modulation. Incubation with only luteolin showed a significant effect in cell survival. Luteolin induced apoptosis, whereas the whole olive leaf extract incubation led to a significant cell cycle arrest at the G1 phase. The antiproliferative activity of both pure luteolin and olive leaf extract was mediated by the inactivation of the MAPK-proliferation pathway at the extracellular signal-related kinase (ERK1/2). However, the flavone concentration of the olive leaf extract did not fully explain the strong antiproliferative activity of the extract. Therefore, the effects of other compounds in the extract, probably at the membrane level, must be considered. The potential synergistic effects of the extract also deserve further attention. Our differential metabolomics approach identified the putative intracellular metabolites from a botanical extract that have antiproliferative effects, and this metabolomics approach can be expanded to other herbal extracts or pharmacological complex mixtures.
Collapse
Affiliation(s)
- Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. Universidad s/n, 03202 Elche, Spain
| | - Amani Taamalli
- Laboratoire de Biotechnologie de l'Olivier, Centre de Biotechnologie de Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Rosa Quirantes-Piné
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain; Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Avda. del Conocimiento s/n, 18100 Granada, Spain
| | - Cristina Roldan-Segura
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain; Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Avda. del Conocimiento s/n, 18100 Granada, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain; Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Avda. del Conocimiento s/n, 18100 Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain; Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Avda. del Conocimiento s/n, 18100 Granada, Spain
| | - Vicente Micol
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. Universidad s/n, 03202 Elche, Spain.
| | - Mokhtar Zarrouk
- Laboratoire de Biotechnologie de l'Olivier, Centre de Biotechnologie de Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
79
|
Targeting epidermal growth factor receptors and downstream signaling pathways in cancer by phytochemicals. Target Oncol 2014; 10:337-53. [DOI: 10.1007/s11523-014-0339-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 09/25/2014] [Indexed: 12/27/2022]
|
80
|
Karakaş BR, Davran F, Elpek GÖ, Akbaş SH, Gülkesen KH, Bülbüller N. The effects of luteolin on the intestinal ischemia/reperfusion injury in mice. J INVEST SURG 2014; 27:249-255. [PMID: 24354416 DOI: 10.3109/08941939.2013.865819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The purpose of this study is to investigate the potential protective effect of the flavonoid Luteolin on ischemia-reperfusion (IR) injury in mouse intestine, which has not previously been studied. Twenty-four female C57BL/6 mice were randomly assigned to four groups, each consisting of 6 mice: a sham group (laparotomy, but no IR injury), a sham + Luteolin group (no IR, and Luteolin was administered intraperitoneally 30 min after laparotomy), IR group (30 min occlusion of the superior mesenteric artery (SMA) then 2 hr' reperfusion), IR + Luteolin (30 min occlusion of the SMA then 2 hr' reperfusion; Luteolin was administered intraperitoneally before reperfusion). Intestine tissues were harvested from the mice for histopathological and biochemical analysis. Total oxidant status (TOS) and total antioxidant capacity (TAC) of the intestinal tissues were measured using Erel's method. Oxidative stress index (OSI) was calculated using the TOS/TAC ratio. Intestinal histological changes were significantly decreased in the IR + Luteolin group compared with the IR group (p = .037). TOS tissue levels were also significantly decreased in the IR + Luteolin group compared with the IR group (p = .005). TAC levels did not increase significantly in the IR treatment group and were not affected by Luteolin treatment (p > .05). The results of this study show that Luteolin administration provides considerable protection against IR injury in the mouse intestine.
Collapse
Affiliation(s)
- Barış Rafet Karakaş
- 1Department of General Surgery, Antalya Training and Research Hospital, Antalya, Turkey
| | | | | | | | | | | |
Collapse
|
81
|
Sak K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev 2014; 8:122-146. [PMID: 25125885 PMCID: PMC4127821 DOI: 10.4103/0973-7847.134247] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/27/2014] [Accepted: 06/10/2014] [Indexed: 02/06/2023] Open
Abstract
Flavonoids are ubiquitous in nature. They are also in food, providing an essential link between diet and prevention of chronic diseases including cancer. Anticancer effects of these polyphenols depend on several factors: Their chemical structure and concentration, and also on the type of cancer. Malignant cells from different tissues reveal somewhat different sensitivity toward flavonoids and, therefore, the preferences of the most common dietary flavonoids to various human cancer types are analyzed in this review. While luteolin and kaempferol can be considered as promising candidate agents for treatment of gastric and ovarian cancers, respectively, apigenin, chrysin, and luteolin have good perspectives as potent antitumor agents for cervical cancer; cells from main sites of flavonoid metabolism (colon and liver) reveal rather large fluctuations in anticancer activity probably due to exposure to various metabolites with different activities. Anticancer effect of flavonoids toward blood cancer cells depend on their myeloid, lymphoid, or erythroid origin; cytotoxic effects of flavonoids on breast and prostate cancer cells are highly related to the expression of hormone receptors. Different flavonoids are often preferentially present in certain food items, and knowledge about the malignant tissue-specific anticancer effects of flavonoids could be purposely applied both in chemoprevention as well as in cancer treatment.
Collapse
Affiliation(s)
- Katrin Sak
- Non Government Organization Praeventio, Tartu, Estonia
| |
Collapse
|
82
|
Shrivastava S, Kulkarni P, Thummuri D, Jeengar MK, Naidu VGM, Alvala M, Redddy GB, Ramakrishna S. Piperlongumine, an alkaloid causes inhibition of PI3 K/Akt/mTOR signaling axis to induce caspase-dependent apoptosis in human triple-negative breast cancer cells. Apoptosis 2014; 19:1148-64. [PMID: 24729100 DOI: 10.1007/s10495-014-0991-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3 K)/Akt/mammalian target of rapamycin (mTOR) signaling axis plays a central role in cell proliferation, growth and survival under physiological conditions. However, aberrant PI3 K/Akt/mTOR signaling has been implicated in many human cancers, including human triple negative breast cancer. Therefore, dual inhibitors of PI3 K/Akt and mTOR signaling could be valuable agents for treating breast cancer. The objective of this study was to investigate the effect of piperlongumine (PPLGM), a natural alkaloid on PI3 K/Akt/mTOR signaling, Akt mediated regulation of NF-kB and apoptosis evasion in human breast cancer cells. Using molecular docking studies, we found that PPLGM physically interacts with the conserved domain of PI3 K and mTOR kinases and the results were comparable with standard dual inhibitor PF04691502. Our results demonstrated that treatment of different human triple-negative breast cancer cells with PPLGM resulted in concentration- and time-dependent growth inhibition. The inhibition of cancer cell growth was associated with G1-phase cell cycle arrest and down-regulation of the NF-kB pathway leads to activation of the mitochondrial apoptotic pathway. It was also found that PPLGM significantly decreased the expression of p-Akt, p70S6K1, 4E-BP1, cyclin D1, Bcl-2, p53 and increased expression of Bax, cytochrome c in human triple-negative breast cancer cells. Although insulin treatment increased the phosphorylation of Akt (Ser473), p70S6K1, 4E-BP1, PPLGM abolished the insulin mediated phosphorylation, it clearly indicates that PPLGM acts through PI3 k/Akt/mTOR axis. Our results suggest that PPLGM may be an effective therapeutic agent for the treatment of human triple negative breast cancer.
Collapse
Affiliation(s)
- Shweta Shrivastava
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER-Hyderabad), Balanagar, Hyderabad, 500037, A.P, India
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Thummuri D, Jeengar MK, Shrivastava S, Areti A, Yerra VG, Yamjala S, Komirishetty P, Naidu VGM, Kumar A, Sistla R. Boswellia ovalifoliolata abrogates ROS mediated NF-κB activation, causes apoptosis and chemosensitization in Triple Negative Breast Cancer cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:58-70. [PMID: 24908637 DOI: 10.1016/j.etap.2014.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 03/25/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
The present study was aimed to evaluvate the apoptogenic potential of ethanolic extract of leaves from Boswellia ovalifoliolata (BL EthOH) and to unravel the molecular mechanisms implicated in apoptosis of Triple Negative Breast Cancer (TNBC) cells. BL EthOH was cytotoxic against TNBC cells like MDA-MB-231 and MDA-MB-453 with IC₅₀ concentrations 67.48 ± 5.45 and 70.03 ± 4.76 μg/ml, respectively. Apoptotic studies showed that BL EthOH was able to induce apoptosis and western blot studies demonstrated that BL EthOH significantly decreased the Phospho-NF-κB (ser536), PCNA, anti-apoptotic protein Bcl-2 expression and increased the expression of pro-apoptotic protein Bax, in MDA-MB-231 and MDA-MB-453 cell lines when compared with untreated cells. Besides, BL EthOH has synergistic chemosensitizing effects on TNBC cells and increased the cytotoxicity of doxorubicin and cisplatin.
Collapse
Affiliation(s)
- Dinesh Thummuri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Balanagar, Hyderabad, Andhra Pradesh 500 037, India
| | - Manish Kumar Jeengar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Balanagar, Hyderabad, Andhra Pradesh 500 037, India
| | - Shweta Shrivastava
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Balanagar, Hyderabad, Andhra Pradesh 500 037, India
| | - Aparna Areti
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Balanagar, Hyderabad, Andhra Pradesh 500 037, India
| | - Veera Ganesh Yerra
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Balanagar, Hyderabad, Andhra Pradesh 500 037, India
| | - Samyuktha Yamjala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Balanagar, Hyderabad, Andhra Pradesh 500 037, India
| | - Prashanth Komirishetty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Balanagar, Hyderabad, Andhra Pradesh 500 037, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Balanagar, Hyderabad, Andhra Pradesh 500 037, India.
| | - Ashutosh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Balanagar, Hyderabad, Andhra Pradesh 500 037, India
| | - Ramakrishna Sistla
- Pharmacology Division, Indian Institute of Chemical Technology, Habsiguda, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
84
|
Mallavadhani UV, Prasad CV, Shrivastava S, Naidu VGM. Synthesis and anticancer activity of some novel 5,6-fused hybrids of juglone based 1,4-naphthoquinones. Eur J Med Chem 2014; 83:84-91. [PMID: 24953027 DOI: 10.1016/j.ejmech.2014.06.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/01/2014] [Accepted: 06/08/2014] [Indexed: 12/22/2022]
Abstract
Six novel 5,6-fused hybrids such as dihydrobenzofuran-quinone (4a and 4b), benzofuran-quinone (5a and 5b) and chromene-quinone (6a and 6b) of juglone based 1,4-naphthoquinones were synthesized by employing a three step protocol with the cyclisation of o-allyl phenol as the key step. The anticancer activity of the newly synthesized compounds was evaluated in vitro against seven human cancer cell lines including cervix (ME-180 and HeLa), breast (MCF-7, MDA-MB-453 and MDA-MB-231), prostate (PC-3) and colon (HT-29) by using MTT assay. The screening results showed that majority of the synthesized compounds exhibited significant anticancer activity. In particular, compounds 6a and 6b showed potent activities than the standard drug etoposide against prostate and breast cancer cell lines respectively. Flow cytometric analysis revealed that compounds 6a and 6b induced apoptosis and arrested the cell cycle at G2/M phase in PC-3 and MDA-MB-453 cells respectively.
Collapse
Affiliation(s)
| | - Chakka Vara Prasad
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Shweta Shrivastava
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education& Research, Hyderabad 500037, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education& Research, Hyderabad 500037, India
| |
Collapse
|
85
|
High-throughput screen of natural product libraries for hsp90 inhibitors. BIOLOGY 2014; 3:101-38. [PMID: 24833337 PMCID: PMC4009755 DOI: 10.3390/biology3010101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 02/07/2023]
Abstract
Hsp90 has become the target of intensive investigation, as inhibition of its function has the ability to simultaneously incapacitate proteins that function in pathways that represent the six hallmarks of cancer. While a number of Hsp90 inhibitors have made it into clinical trials, a number of short-comings have been noted, such that the search continues for novel Hsp90 inhibitors with superior pharmacological properties. To identify new potential Hsp90 inhibitors, we have utilized a high-throughput assay based on measuring Hsp90-dependent refolding of thermally denatured luciferase to screen natural compound libraries. Over 4,000 compounds were screen with over 100 hits. Data mining of the literature indicated that 51 compounds had physiological effects that Hsp90 inhibitors also exhibit, and/or the ability to downregulate the expression levels of Hsp90-dependent proteins. Of these 51 compounds, seven were previously characterized as Hsp90 inhibitors. Four compounds, anthothecol, garcinol, piplartine, and rottlerin, were further characterized, and the ability of these compounds to inhibit the refolding of luciferase, and reduce the rate of growth of MCF7 breast cancer cells, correlated with their ability to suppress the Hsp90-dependent maturation of the heme-regulated eIF2α kinase, and deplete cultured cells of Hsp90-dependent client proteins. Thus, this screen has identified an additional 44 compounds with known beneficial pharmacological properties, but with unknown mechanisms of action as possible new inhibitors of the Hsp90 chaperone machine.
Collapse
|
86
|
Synthesis of novel ring-A fused hybrids of oleanolic acid with capabilities to arrest cell cycle and induce apoptosis in breast cancer cells. Eur J Med Chem 2014; 74:398-404. [PMID: 24487188 DOI: 10.1016/j.ejmech.2013.12.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/29/2013] [Accepted: 12/31/2013] [Indexed: 12/17/2022]
Abstract
Six novel oleanolic acid ring-A fused hybrids (5-10) have been synthesized by employing a four step protocol with the introduction of benzylidene functionality at C-2 as the key step. Their structures were established by high resolution NMR and Mass spectral data. The synthesized compounds have been screened against seven human cancer cell lines including ME-180 & HeLa (cervix), MCF-7, MDA-MB-453 & MDA-MB-231 (breast), PC-3 (prostate) and HT-29 (colon) using MTT assay. Most significantly, compound 10 showed potent activity against the three breast cancer cell lines. The IC₅₀ value (10.60 μM) of compound 10 against MCF-7 found to be much lower than that of the standards and parent compound. Flow cytometric analysis reveals that compound 10 arrests cell cycle in S phase and induces apoptosis in MCF cells.
Collapse
|
87
|
Aneknan P, Kukongviriyapan V, Prawan A, Kongpetch S, Sripa B, Senggunprai L. Luteolin arrests cell cycling, induces apoptosis and inhibits the JAK/STAT3 pathway in human cholangiocarcinoma cells. Asian Pac J Cancer Prev 2014; 15:5071-5076. [PMID: 24998588 DOI: 10.7314/apjcp.2014.15.12.5071] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025] Open
Abstract
Cholangiocarcinoma (CCA) is one of the aggressive cancers with a very poor prognosis. Several efforts have been made to identify and develop new agents for prevention and treatment of this deadly disease. In the present study, we examined the anticancer effect of luteolin on human CCA, KKU-M156 cells. Sulforhodamine B assays showed that luteolin had potent cytotoxicity on CCA cells with IC50 values of 10.5±5.0 and 8.7±3.5 μM at 24 and 48 h, respectively. Treatment with luteolin also caused a concentration-dependent decline in colony forming ability. Consistent with growth inhibitory effects, luteolin arrested cell cycle progression at the G2/M phase in a dose-dependent manner as assessed by flow cytometry analysis. Protein expression of cyclin A and Cdc25A was down-regulated after luteolin treatment, supporting the arrest of cells at the G2/M boundary. Besides evident G2/M arrest, luteolin induced apoptosis of KKU-M156 cells, demonstrated by a distinct sub-G1 apoptotic peak and fluorescent dye staining. A decrease in the level of anti-apoptotic Bcl-2 protein was implicated in luteolin- induced apoptosis. We further investigated the effect of luteolin on JAK/STAT3, which is an important pathway involved in the development of CCA. The results showed that interleukin-6 (IL-6)-induced JAK/STAT3 activation in KKU-M156 cells was suppressed by treatment with luteolin. Treatment with a specific JAK inhibitor, AG490, and luteolin diminished IL-6-stimulated CCA cell migration as assessed by wound healing assay. These data revealed anticancer activity of luteolin against CCA so the agent might have potential for CCA prevention and therapy.
Collapse
Affiliation(s)
- Ploypailin Aneknan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand E-mail :
| | | | | | | | | | | |
Collapse
|
88
|
Carini JP, Klamt F, Bassani VL. Flavonoids from Achyrocline satureioides: promising biomolecules for anticancer therapy. RSC Adv 2014. [DOI: 10.1039/c3ra43627f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
89
|
Bashandy MS, Alsaid MS, Arafa RK, Ghorab MM. Design, synthesis and molecular docking of novel N,N-dimethylbenzenesulfonamide derivatives as potential antiproliferative agents. J Enzyme Inhib Med Chem 2013; 29:619-27. [DOI: 10.3109/14756366.2013.833197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mahmoud S. Bashandy
- Department of Chemistry, Faculty of Science, Al-Azhar University
Nasr City, CairoEgypt
| | - Mansour S. Alsaid
- Department of Pharmacognosy, College of Pharmacy, King Saud University
RiyadhKingdom of Saudi Arabia
| | - Reem K. Arafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University
CairoEgypt
| | - Mostafa M. Ghorab
- Department of Pharmacognosy, College of Pharmacy, King Saud University
RiyadhKingdom of Saudi Arabia
- Deprtment of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy
CairoEgypt
| |
Collapse
|
90
|
Chun J, Kim YS. Platycodin D inhibits migration, invasion, and growth of MDA-MB-231 human breast cancer cells via suppression of EGFR-mediated Akt and MAPK pathways. Chem Biol Interact 2013; 205:212-21. [DOI: 10.1016/j.cbi.2013.07.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/22/2013] [Accepted: 07/05/2013] [Indexed: 02/08/2023]
|
91
|
Foolad F, Khodagholi F. Dietary supplementation with Salvia sahendica attenuates acetylcholinesterase activity and increases mitochondrial transcription factor A and antioxidant proteins in the hippocampus of amyloid beta-injected rats. ACTA ACUST UNITED AC 2013; 65:1555-62. [PMID: 24028623 DOI: 10.1111/jphp.12116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/20/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVES We evaluated the acetylcholinesterase (AChE) inhibitory and potential antioxidant effects of Salvia sahendica extract to investigate whether these molecules are involved in learning and memory improvement in rats injected with fibrillar amyloid beta (Aβ) peptide in the CA1 region of their hippocampus. METHODS Rats were fed with S. sahendica (100 mg/kg/day) for 1 week before Aβ injection. Western blot analysis and enzymatic assays were carried out 7 days after injections. KEY FINDINGS Our results indicated that S. sahendica extract decreased AChE activity. Besides, S. sahendica prevented reduction in the level of nuclear respiratory factor-1 and mitochondrial transcription factor A (TFAM). Our data indicated the lack of sensitivity in citrate synthase and reduction in the activity of malate dehydrogenase in the presence of Aβ that was prevented with S. sahendica consumption. Pretreatment with S. sahendica extract impeded reduction of glutathione redox ratio, catalase and superoxide dismutase activity, while decreased the malondialdehyde level. CONCLUSIONS Based on the importance of AChE activity inhibition and increased TFAM level in the prevention of cognitive impairment, the use of S. sahendica could open a new protective issue in therapeutic fields of neurodegenerative disease.
Collapse
Affiliation(s)
- Forough Foolad
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
92
|
Domitrović R, Cvijanović O, Pugel EP, Zagorac GB, Mahmutefendić H, Škoda M. Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney. Toxicology 2013; 310:115-23. [PMID: 23770416 DOI: 10.1016/j.tox.2013.05.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 12/31/2022]
Abstract
The aim of this study was to investigate the effects of flavone luteolin against cisplatin (CP)-induced kidney injury in mice. Luteolin at doses of 10mg/kg was administered intraperitoneally (ip) once daily for 3 days following single CP (10 or 20mg/kg) ip injection. Mice were sacrificed 24h after the last dose of luteolin. The CP treatment significantly increased serum creatinine and blood urea nitrogen and induced pathohistological changes in the kidneys. Renal oxidative/nitrosative stress was evidenced by decreased glutathione (GSH) levels and increased 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE) formation as well as cytochrome P450 2E1 (CYP2E1) expression. The CP administration triggered inflammatory response in mice kidneys through activation of nuclear factor-kappaB (NF-κB) and overexpression of tumor necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2). Simultaneously, the increase in renal p53 and caspase-3 expression indicated apoptosis of tubular cells. The administration of luteolin significantly reduced histological and biochemical changes induced by CP, decreased platinum (Pt) levels and suppressed oxidative/nitrosative stress, inflammation and apoptosis in the kidneys. These results suggest that luteolin is an effective nephroprotective agent, with potential to reduce Pt accumulation in the kidneys and ameliorate CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Robert Domitrović
- Department of Chemistry and Biochemistry, Medical Faculty, University of Rijeka, Rijeka, Croatia.
| | | | | | | | | | | |
Collapse
|
93
|
Luteolin sensitises drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem 2013; 141:1553-61. [PMID: 23790951 DOI: 10.1016/j.foodchem.2013.04.077] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/27/2013] [Accepted: 04/23/2013] [Indexed: 12/31/2022]
Abstract
Luteolin is a flavonoid that has been identified in many plant tissues and exhibits chemopreventive or chemosensitising properties against human breast cancer. However, the oncogenic molecules in human breast cancer cells that are inhibited by luteolin treatment have not been identified. This study found that the level of cyclin E2 (CCNE2) mRNA was higher in tumour cells (4.89-fold, (∗)P=0.005) than in normal paired tissue samples as assessed using real-time reverse-transcriptase polymerase chain reaction (RT-PCR) analysis (n=257). Further, relatively high levels of CCNE2 protein expression were detected in tamoxifen-resistant (TAM-R) MCF-7 cells. These results showed that the level of CCNE2 protein expression was specifically inhibited in luteolin-treated (5μM) TAM-R cells, either in the presence or absence of 4-OH-TAM (100nM). Combined treatment with 4-OH-TAM and luteolin synergistically sensitised the TAM-R cells to 4-OH-TAM. The results of this study suggest that luteolin can be used as a chemosensitiser to target the expression level of CCNE2 and that it could be a novel strategy to overcome TAM resistance in breast cancer patients.
Collapse
|
94
|
Kapoor S. Luteolin and its inhibitory effect on tumor growth in systemic malignancies. Exp Cell Res 2013; 319:777-8. [PMID: 23333558 DOI: 10.1016/j.yexcr.2013.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 12/19/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
Lamy et al have provided interesting data in their recent article in your esteemed journal. Luteolin augments apoptosis in a number of systemic malignancies. Luteolin reduces tumor growth in breast carcinomas. Luteolin mediates this effect by up-regulating the expression of Bax and down-regulating the expression of Bcl-xL. EGFR-induced MAPK activation is also attenuated. As a result there is increased G2/ M phase arrest. These effects have been seen both in vivo as well as in vitro. It also reduces ERα expression and causes inhibition of IGF-1 mediated PI3K-Akt pathway. Luteolin also activates p38 resulting in nuclear translocation of the apoptosis-inducing factor. Simultaneously it also activates ERK. As a result there is increased intra-tumoral apoptosis which is caspase dependent as well as caspase independent.
Collapse
|
95
|
Tian J, Chen H, Chen S, Xing L, Wang Y, Wang J. Comparative studies on the constituents, antioxidant and anticancer activities of extracts from different varieties of corn silk. Food Funct 2013; 4:1526-34. [DOI: 10.1039/c3fo60171d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|