51
|
Application of the QuEChERS Strategy as a Useful Sample Preparation Tool for the Multiresidue Determination of Pyrrolizidine Alkaloids in Food and Feed Samples: A Critical Overview. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The identification of concerning high levels of pyrrolizidine alkaloids (PAs) in a wide variety of food products has raised the occurrence of these natural toxins as one of the main current issues of the food safety field. Consequently, a regulation with maximum concentration levels of these alkaloids has recently been published to monitor their occurrence in several foodstuffs. According to legislation, the analytical methodologies developed for their determination must include multiresidue extractions with high selectivity and sensitivity, as a set of 21 + 14 PAs should be simultaneously monitored. However, the multiresidue extraction of these alkaloids is a difficult task due to the high complexity of food and feed samples. Accordingly, although solid-phase extraction is still the technique most widely used for sample preparation, the QuEChERS method can be a suitable alternative for the simultaneous determination of multiple analytes, providing green extraction and clean-up of samples in a quick and cost-effective way. Hence, this review proposes an overview about the QuEChERS concept and its evolution through different modifications that have broadened its applicability over time, focusing mainly on its application regarding the determination of PAs in food and feed, including the revision of published works within the last 11 years.
Collapse
|
52
|
Mahmoudzadeh E, Nazemiyeh H, Hamedeyazdan S. Anti-inflammatory Properties of the Genus Symphytum L.: A Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e123949. [PMID: 36060906 PMCID: PMC9420230 DOI: 10.5812/ijpr.123949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022]
Abstract
: The Symphytum genus has been mainly used in traditional medicine, containing its anti-inflammatory activity. Symphytum spp.’s active components, such as allantoin, polyphenols, flavonoids, and alkaloids, can act on several intentions in the signaling pathway, constrain pro-inflammatory enzymes, reducing the construction of inflammatory chemokine’s and cytokines, and decreasing oxidative stress, which afterward suppresses inflammation procedures. Preclinical and clinical trials have reported the prevailing anti-inflammatory effect of several Symphytum species. This review presents an overview of the anti-inflammatory activities of different products and bioactive constituents in this genus. The papers with the English language were gathered from 2000 to 2021. This review may provide a scientific base for establishing innovative and alternative techniques for isolating a single individual from this genus to attenuate inflammatory disorders. The Symphytum genus is waiting for researchers to develop safe and effective anti-inflammatory agents for additional investigation of other different mechanisms of action.
Collapse
Affiliation(s)
- Elaheh Mahmoudzadeh
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Nazemiyeh
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hamedeyazdan
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Corresponding Author: Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
53
|
Veit M. Quality Requirements for Medicinal Cannabis and Respective Products in the European Union - Status Quo. PLANTA MEDICA 2022. [PMID: 35338476 DOI: 10.1055/a-1808-9708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Medicinal cannabis and respective products have been available in EU member states as single-patient prescriptions without regular marketing authorizations for a couple of years. The Netherlands was the first member state to realize this; in the meantime other member states have followed. Today, aside from the Netherlands, Germany is the most important market for such products. The regulatory framework for the approval of medicinal cannabis and its distribution to patients in the EU member states is, however, not harmonized at all, and there are distinct national regulations. Regarding the quality of such products, the general requirements for herbal medicinal products as defined in the European Pharmacopoeia, national pharmacopoeias, and the EMA guidance documents in place beside GMP requirements in the EU are applicable. However, for a couple of aspects, every EU member state follows its own interpretation of these requirements. To facilitate free distribution of such products between EU member states in future and to harmonize requirements for quality and GMP, an EU-wide approach is needed. As a first step, this should be realized by implementing monographs for cannabis medicinal products in the European Pharmacopoeia.
Collapse
|
54
|
Utilization of Biomasses from Landscape Conservation Growths Dominated by Common Ragwort (Jacobaea vulgaris Gaertn.) for Biomethanization. PLANTS 2022; 11:plants11060813. [PMID: 35336694 PMCID: PMC8953157 DOI: 10.3390/plants11060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
The highly toxic species common ragwort (Jacobaea vulgaris Gaertn.) prefers to migrate into protected dry grassland biotopes and limits the use of the resulting biomass as animal feed. There is an urgent need for a safe alternative use of the contaminated biomass apart from landfill disposal. We investigated the optional utilization of biomethanization of fresh and ensiled common ragwort biomasses and evaluated their energetic potentials by estimation models based on biochemical characteristics and by standardized batch experiments. The fresh and ensiled substrates yielded 174 LN∙kg−1 oDM methane and 185 LN∙kg−1 oDM, respectively. Ensiling reduced the toxic pyrrolizidine alkaloid content by 76.6%; a subsequent wet fermentation for an additional reduction is recommended. In comparison with other biomasses from landscape cultivation, ragwort biomass can be ensiled readily but has a limited energy potential if harvested at its peak flowering stage. Considering these properties and limitations, the energetic utilization is a promising option for a sustainable handling of Senecio-contaminated biomasses in landscape conservation practice and represents a safe alternative for reducing pyrrolizidine alkaloid entry into the agri-food sector.
Collapse
|
55
|
Wang Z, Ma J, Yao S, He Y, Miu KK, Xia Q, Fu PP, Ye Y, Lin G. Liquorice Extract and 18β-Glycyrrhetinic Acid Protect Against Experimental Pyrrolizidine Alkaloid-Induced Hepatotoxicity in Rats Through Inhibiting Cytochrome P450-Mediated Metabolic Activation. Front Pharmacol 2022; 13:850859. [PMID: 35370657 PMCID: PMC8966664 DOI: 10.3389/fphar.2022.850859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Misuse of pyrrolizidine alkaloid (PA)-containing plants or consumption of PA-contaminated foodstuffs causes numerous poisoning cases in humans yearly, while effective therapeutic strategies are still limited. PA-induced liver injury was initiated by cytochrome P450 (CYP)-mediated metabolic activation and subsequent formation of adducts with cellular proteins. Liquorice, a hepato-protective herbal medicine, is commonly used concurrently with PA-containing herbs in many compound traditional Chinese medicine formulas, and no PA-poisoning cases have been reported with this combination. The present study aimed to investigate hepato-protective effects of liquorice aqueous extract (EX) and 18β-glycyrrhetinic acid (GA, the primary bioactive constituent of liquorice) against PA-induced hepatotoxicity and the underlying mechanism. Histopathological and biochemical analysis demonstrated that both single- and multiple-treatment of EX (500 mg/kg) or GA (50 mg/kg) significantly attenuated liver damage caused by retrorsine (RTS, a representative hepatotoxic PA). The formation of pyrrole-protein adducts was significantly reduced by single- (30.3% reduction in liver; 50.8% reduction in plasma) and multiple- (32.5% reduction in liver; 56.5% reduction in plasma) treatment of GA in rats. Single- and multiple-treatment of EX also decreased the formation of pyrrole-protein adducts, with 30.2 and 31.1% reduction in rat liver and 51.8 and 53.1% reduction in rat plasma, respectively. In addition, in vitro metabolism assay with rat liver microsomes demonstrated that GA reduced the formation of metabolic activation-derived pyrrole-glutathione conjugate in a dose-dependent manner with the estimated IC50 value of 5.07 µM. Further mechanism study showed that GA inhibited activities of CYPs, especially CYP3A1, the major CYP isoform responsible for the metabolic activation of RTS in rats. Enzymatic kinetic study revealed a competitive inhibition of rat CYP3A1 by GA. In conclusion, our findings demonstrated that both EX and GA exhibited significant hepato-protective effects against RTS-induced hepatotoxicity, mainly through the competitive inhibition of CYP-mediated metabolic activation of RTS.
Collapse
Affiliation(s)
- Zhangting Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sheng Yao
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kai-Kei Miu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Peter P. Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Yang Ye
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
56
|
Ren Z, Zhang H, Wang Z, Chen X, Yang L, Jiang H. Progress in Immunoassays of Toxic Alkaloids in Plant-Derived Medicines: A Review. Toxins (Basel) 2022; 14:toxins14030165. [PMID: 35324662 PMCID: PMC8948709 DOI: 10.3390/toxins14030165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Plants are the cradle of the traditional medicine system, assuaging human or animal diseases, and promoting health for thousands of years. However, many plant-derived medicines contain toxic alkaloids of varying degrees of toxicity that pose a direct or indirect threat to human and animal health through accidental ingestion, misuse of plant materials, or through the food chain. Thus, rapid, easy, and sensitive methods are needed to effectively screen these toxic alkaloids to guarantee the safety of plant-derived medicines. Antibodies, due to their inherent specificity and high affinity, have been used as a variety of analytical tools and techniques. This review describes the antigen synthesis and antibody preparation of the common toxic alkaloids in plant-derived medicines and discusses the advances of antibody-based immunoassays in the screening and detection of toxic alkaloids in plants or other related matrices. Finally, the limitations and prospects of immunoassays for toxic alkaloids are discussed.
Collapse
|
57
|
Widjaja F, Alhejji Y, Rietjens IMCM. The Role of Kinetics as Key Determinant in Toxicity of Pyrrolizidine Alkaloids and Their N-Oxides. PLANTA MEDICA 2022; 88:130-143. [PMID: 34741297 PMCID: PMC8807025 DOI: 10.1055/a-1582-9794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a large group of plant constituents of which especially the 1,2- unsaturated PAs raise a concern because of their liver toxicity and potential genotoxic carcinogenicity. This toxicity of PAs depends on their kinetics. Differences in absorption, distribution, metabolism, and excretion (ADME) characteristics of PAs may substantially alter the relative toxicity of PAs. As a result, kinetics will also affect relative potency (REP) values. The present review summarizes the current state-of-the art on PA kinetics and resulting consequences for toxicity and illustrates how physiologically-based kinetic (PBK) modelling can be applied to take kinetics into account when defining the relative differences in toxicity between PAs in the in vivo situation. We conclude that toxicokinetics play an important role in the overall toxicity of pyrrolizidine alkaloids. and that kinetics should therefore be considered when defining REP values for combined risk assessment. New approach methodologies (NAMs) can be of use to quantify these kinetic differences between PAs and their N-oxides, thus contributing to the 3Rs (Replacement, Reduction and Refinement) in animal studies.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University and Research, The Netherlands
| | - Yasser Alhejji
- Division of Toxicology, Wageningen University and Research, The Netherlands
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | | |
Collapse
|
58
|
Han H, Jiang C, Wang C, Wang Z, Chai Y, Zhang X, Liu X, Lu C, Chen H. Development, optimization, validation and application of ultra high performance liquid chromatography tandem mass spectrometry for the analysis of pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides in teas and weeds. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
59
|
Plaza A, Toner F, Harris J, Ottersbach P, Roper C, Mahony C. Support for Regulatory Assessment of Percutaneous Absorption of Retronecine-type Pyrrolizidine Alkaloids through Human Skin. PLANTA MEDICA 2022; 88:144-151. [PMID: 34116569 DOI: 10.1055/a-1505-8524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
1,2-unsaturated pyrrolizidine alkaloids are found naturally in Symphytum officinale, well known as comfrey, which has a longstanding use for the topical treatment of painful muscle and joint complaints. Pyrrolizidine alkaloids (PA) are a relevant concern for the safety assessment due to their liver genotoxicity profile, and close attention is paid during manufacturing to minimizing their levels. Current regulatory risk assessment approaches include setting limits that derive from toxicity data coming from the oral route of exposure. This study investigated to what extent pyrrolizidine alkaloids are bioavailable following topical exposure, assessing penetration of retronecine-type PAs in an in vitro human skin model. A single comfrey root formulation was spiked with 3 different congeners (a 7R-monoester, an open-chained 7R-diester, and a cyclic diester) and percutaneous absorption measured per OECD guidelines and good laboratory practices. The measured penetration for all 3 PAs was low and compared favourably with existing in vitro data. Although consideration of different regulatory guidance influences the determination of dermally absorbed dose, these data facilitate the understanding of absorption differences following topical exposure, which in turn can be taken into account in the risk assessment.
Collapse
Affiliation(s)
- Alberto Plaza
- Procter & Gamble, Health Germany GmbH, Darmstadt, Germany
| | - Frank Toner
- Department of In Vitro Toxicology, Charles River Laboratories, Edinburgh, UK
| | - James Harris
- Department of Chemistry, Charles River Laboratories, Edinburgh, UK
| | | | - Clive Roper
- Roper Toxicology Consulting Limited, Edinburgh, UK
| | | |
Collapse
|
60
|
|
61
|
Salting-out Assisted Liquid-Liquid Extraction for the rapid and simple simultaneous analysis of pyrrolizidine alkaloids and related N-oxides in honey and pollen. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
62
|
Herb-Induced Liver Injury—A Challenging Diagnosis. Healthcare (Basel) 2022; 10:healthcare10020278. [PMID: 35206892 PMCID: PMC8872293 DOI: 10.3390/healthcare10020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 12/02/2022] Open
Abstract
Herb-induced liver injury (HILI) can be caused by supplements containing herbs, natural products, and products used in traditional medicine. Herbal products’ most common adverse reaction is hepatotoxicity. Almost every plant part can be used to make herbal products, and these products can come in many different forms, such as teas, powders, oils, creams, capsules, and injectables. HILI incidence and prevalence are hard to estimate and vary from study to study because of insufficient large-scale prospective studies. The diagnosis of HILI is a challenging process that requires not only insight but also a high degree of suspicion by the clinician. HILI presents with unspecific symptoms and is a diagnosis of exclusion. For diagnosis, it is necessary to make a causality assessment; the Council for International Organizations of Medical Sciences assessment is the preferred method worldwide. The most effective treatment is the suspension of the use of the suspected herbal product and close monitoring of liver function. The objective of this review is to highlight the necessary steps for the clinician to follow to reach a correct diagnosis of herb-induced liver injury. Further studies of HILI are needed to better understand its complexity and prevent increased morbidity and mortality.
Collapse
|
63
|
Ma J, Li M, Li N, Chan WY, Lin G. Pyrrolizidine Alkaloid-Induced Hepatotoxicity Associated with the Formation of Reactive Metabolite-Derived Pyrrole-Protein Adducts. Toxins (Basel) 2021; 13:723. [PMID: 34679016 PMCID: PMC8540779 DOI: 10.3390/toxins13100723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) with 1,2-unsaturated necine base are hepatotoxic phytotoxins. Acute PA intoxication is initiated by the formation of adducts between PA-derived reactive pyrrolic metabolites with cellular proteins. The present study aimed to investigate the correlation between the formation of hepatic pyrrole-protein adducts and occurrence of PA-induced liver injury (PA-ILI), and to further explore the use of such adducts for rapidly screening the hepatotoxic potency of natural products which contain PAs. Aqueous extracts of Crotalaria sessiliflora (containing one PA: monocrotaline) and Gynura japonica (containing two PAs: senecionine and seneciphylline) were orally administered to rats at different doses for 24 h to investigate PA-ILI. Serum alanine aminotransferase (ALT) activity, hepatic glutathione (GSH) level, and liver histological changes of the treated rats were evaluated to assess the severity of PA-ILI. The levels of pyrrole-protein adducts formed in the rats' livers were determined by a well-established spectrophotometric method. The biological and histological results showed a dose-dependent hepatotoxicity with significantly different toxic severity among groups of rats treated with herbal extracts containing different PAs. Both serum ALT activity and the amount of hepatic pyrrole-protein adducts increased in a dose-dependent manner. Moreover, the elevation of ALT activity correlated well with the formation of hepatic pyrrole-protein adducts, regardless of the structures of different PAs. The findings revealed that the formation of hepatic pyrrole-protein adducts-which directly correlated with the elevation of serum ALT activity-was a common insult leading to PA-ILI, suggesting a potential for using pyrrole-protein adducts to screen hepatotoxicity and rank PA-containing natural products, which generally contain multiple PAs with different structures.
Collapse
Affiliation(s)
- Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 4054577, China; (J.M.); (M.L.); (N.L.); (W.Y.C.)
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Mi Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 4054577, China; (J.M.); (M.L.); (N.L.); (W.Y.C.)
| | - Na Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 4054577, China; (J.M.); (M.L.); (N.L.); (W.Y.C.)
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 4054577, China; (J.M.); (M.L.); (N.L.); (W.Y.C.)
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 4054577, China; (J.M.); (M.L.); (N.L.); (W.Y.C.)
| |
Collapse
|
64
|
Jumai A, Rouzimaimaiti R, Zou GA, Aisa HA. Pyrrolizidine alkaloids and unusual millingtojanine A-B from Jacobaea vulgaris (syn. Senecio jacobaea L.). PHYTOCHEMISTRY 2021; 190:112862. [PMID: 34245985 DOI: 10.1016/j.phytochem.2021.112862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Four undescribed pyrrolizidine alkaloids (seneciojanine A-D), two enantiomeric pairs of unusual alkaloids (millingtojanine A-B) with a unique tricyclic core, and nine known pyrrolizidine alkaloids were isolated from whole plant extracts of Jacobaea vulgaris Gaertn. The structures of the undescribed compounds were established by extensive spectroscopic and spectrometric analyses and comparison of theoretical and experimental ECD data. Several of the structures were also confirmed by X-ray diffraction analysis. Seneciojanine A-D possess a rare natural necine moiety with an α,β-unsaturated carbonyl group located at C-3 and a hydroxyl substituent at C-8.
Collapse
Affiliation(s)
- Aikebaier Jumai
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ruxianguli Rouzimaimaiti
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Guo-An Zou
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
65
|
Zhu L, Zhang C, Zhang W, Xia Q, Ma J, He X, He Y, Fu PP, Jia W, Zhuge Y, Lin G. Developing urinary pyrrole-amino acid adducts as non-invasive biomarkers for identifying pyrrolizidine alkaloids-induced liver injury in human. Arch Toxicol 2021; 95:3191-3204. [PMID: 34390356 PMCID: PMC8364305 DOI: 10.1007/s00204-021-03129-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/29/2021] [Indexed: 01/24/2023]
Abstract
Pyrrolizidine alkaloids (PAs) have been found in over 6000 plants worldwide and represent the most common hepatotoxic phytotoxins. Currently, a definitive diagnostic method for PA-induced liver injury (PA-ILI) is lacking. In the present study, using a newly developed analytical method, we identified four pyrrole-amino acid adducts (PAAAs), namely pyrrole-7-cysteine, pyrrole-9-cysteine, pyrrole-9-histidine, and pyrrole-7-acetylcysteine, which are generated from reactive pyrrolic metabolites of PAs, in the urine of PA-treated male Sprague Dawley rats and PA-ILI patients. The elimination profiles, abundance, and persistence of PAAAs were systematically investigated first in PA-treated rat models via oral administration of retrorsine at a single dose of 40 mg/kg and multiple doses of 5 mg/kg/day for 14 consecutive days, confirming that these urinary excreted PAAAs were derived specifically from PA exposure. Moreover, we determined that these PAAAs were detected in ~ 82% (129/158) of urine samples collected from ~ 91% (58/64) of PA-ILI patients with pyrrole-7-cysteine and pyrrole-9-histidine detectable in urine samples collected at 3 months or longer times after hospital admission, indicating adequate persistence time for use as a clinical test. As direct evidence of PA exposure, we propose that PAAAs can be used as a biomarker of PA exposure and the measurement of urinary PAAAs could be used as a non-invasive test assisting the definitive diagnosis of PA-ILI in patients.
Collapse
Affiliation(s)
- Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chunyuan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qingsu Xia
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Peter P Fu
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
66
|
Metabolic Toxification of 1,2-Unsaturated Pyrrolizidine Alkaloids Causes Human Hepatic Sinusoidal Obstruction Syndrome: The Update. Int J Mol Sci 2021; 22:ijms221910419. [PMID: 34638760 PMCID: PMC8508847 DOI: 10.3390/ijms221910419] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Saturated and unsaturated pyrrolizidine alkaloids (PAs) are present in more than 6000 plant species growing in countries all over the world. They have a typical heterocyclic structure in common, but differ in their potential toxicity, depending on the presence or absence of a double bond between C1 and C2. Fortunately, most plants contain saturated PAs without this double bond and are therefore not toxic for consumption by humans or animals. In a minority of plants, however, PAs with this double bond between C1 and C2 exhibit strong hepatotoxic, genotoxic, cytotoxic, neurotoxic, and tumorigenic potentials. If consumed in error and in large emouns, plants with 1,2-unsaturated PAs induce metabolic breaking-off of the double bonds of the unsaturated PAs, generating PA radicals that may trigger severe liver injury through a process involving microsomal P450 (CYP), with preference of its isoforms CYP 2A6, CYP 3A4, and CYP 3A5. This toxifying CYP-dependent conversion occurs primarily in the endoplasmic reticulum of the hepatocytes equivalent to the microsomal fraction. Toxified PAs injure the protein membranes of hepatocytes, and after passing their plasma membranes, more so the liver sinusoidal endothelial cells (LSECs), leading to life-threatening hepatic sinusoidal obstruction syndrome (HSOS). This injury is easily diagnosed by blood pyrrolizidine protein adducts, which are perfect diagnostic biomarkers, supporting causality evaluation using the updated RUCAM (Roussel Uclaf Causality Assessment Method). HSOS is clinically characterized by weight gain due to fluid accumulation (ascites, pleural effusion, and edema), and may lead to acute liver failure, liver transplantation, or death. In conclusion, plant-derived PAs with a double bond between C1 and C2 are potentially hepatotoxic after metabolic removal of the double bond, and may cause PA-HSOS with a potential lethal outcome, even if PA consumption is stopped.
Collapse
|
67
|
Pyrrolizidine Alkaloids in the Food Chain: Is Horizontal Transfer of Natural Products of Relevance? Foods 2021; 10:foods10081827. [PMID: 34441604 PMCID: PMC8392022 DOI: 10.3390/foods10081827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/18/2022] Open
Abstract
Recent studies have raised the question whether there is a potential threat by a horizontal transfer of toxic plant constituents such as pyrrolizidine alkaloids (PAs) between donor-PA-plants and acceptor non-PA-plants. This topic raised concerns about food and feed safety in the recent years. The purpose of the study described here was to investigate and evaluate horizontal transfer of PAs between donor and acceptor-plants by conducting a series of field trials using the PA-plant Lappula squarrosa as model and realistic agricultural conditions. Additionally, the effect of PA-plant residues recycling in the form of composts or press-cakes were investigated. The PA-transfer and the PA-content of soil, plants, and plant waste products was determined in form of a single sum parameter method using high-performance liquid chromatography mass spectroscopy (HPLC-ESI-MS/MS). PA-transfer from PA-donor to acceptor-plants was frequently observed at low rates during the vegetative growing phase especially in cases of close spatial proximity. However, at the time of harvest no PAs were detected in the relevant field products (grains). For all investigated agricultural scenarios, horizontal transfer of PAs is of no concern with regard to food or feed safety.
Collapse
|
68
|
Zan K, Hu X, Li Y, Wang Y, Jin H, Zuo T, Ma S. Simultaneous determination of eight pyrrolizidine alkaloids in various parts of Eupatorium lindleyanum by ultra high performance liquid chromatography tandem mass spectrometry and risk assessments based on a real-life exposure scenario. J Sep Sci 2021; 44:3237-3247. [PMID: 34240803 DOI: 10.1002/jssc.202100286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 02/02/2023]
Abstract
Pyrrolizidine alkaloids are toxins having hepatotoxic and carcinogenic effects on human health. A ultra high performance liquid chromatography tandem mass spectrometry technique was developed for the first time for the simultaneous determination of eight pyrrolizidine alkaloids, including four diastereoisomers (intermedine, lycopsamine, rinderine, and echinatine) and their respective N-oxide forms, in different parts of Eupatorium lindleyanum. The risk assessment method for pyrrolizidine alkaloids in Eupatorium lindleyanum was explored using the margin of exposure strategy for the first time based on a real-life exposure scenario. Differences were found in all eight pyrrolizidine alkaloids in various parts of Eupatorium lindleyanum. Besides, the total levels of pyrrolizidine alkaloids in Eupatorium lindleyanum followed the order of root > flower > stem > leaf. Moreover, the risk assessment data revealed that the deleterious effects on human health were unlikely at exposure times of less than 200, 37, and 12 days during the lifetimes of Eupatorium lindleyanum leaves, stems, and flowers, respectively. This study reported both the contents of and risk associated with Eupatorium lindleyanum pyrrolizidine alkaloids. The comprehensive application of the novel ultra high performance liquid chromatography tandem mass spectrometry technique alongside the risk assessment approach provided a scientific basis for quality evaluation and rational utilization of toxic pyrrolizidine alkaloids in Eupatorium lindleyanum to improve public health safety.
Collapse
Affiliation(s)
- Ke Zan
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Xiaowen Hu
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Yaolei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Hongyu Jin
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Tiantian Zuo
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| |
Collapse
|
69
|
Pyrrolizidine-Derived Alkaloids: Highly Toxic Components in the Seeds of Crotalaria cleomifolia Used in Popular Beverages in Madagascar. Molecules 2021; 26:molecules26113464. [PMID: 34200328 PMCID: PMC8201287 DOI: 10.3390/molecules26113464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
Seeds of Crotalaria cleomifolia (Fabaceae) are consumed in Madagascar in preparation of popular beverages. The investigation of extracts from the seeds of this species revealed the presence of high amounts of alkaloids from which two pyrrolizidine-derived alkaloids were isolated. One of them was fully characterized by spectroscopic and spectrometric methods, which was found to be usaramine. Owing to the high toxicity of these alkaloids, issuing a strong warning among populations consuming the seeds of Crotalaria cleomifolia must be considered.
Collapse
|
70
|
He Y, Zhu L, Ma J, Lin G. Metabolism-mediated cytotoxicity and genotoxicity of pyrrolizidine alkaloids. Arch Toxicol 2021; 95:1917-1942. [PMID: 34003343 DOI: 10.1007/s00204-021-03060-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Pyrrolizidine alkaloids (PAs) and PA N-oxides are common phytotoxins produced by over 6000 plant species. Humans are frequently exposed to PAs via ingestion of PA-containing herbal products or PA-contaminated foods. PAs require metabolic activation to form pyrrole-protein adducts and pyrrole-DNA adducts which lead to cytotoxicity and genotoxicity. Individual PAs differ in their metabolic activation patterns, which may cause significant difference in toxic potency of different PAs. This review discusses the current knowledge and recent advances of metabolic pathways of different PAs, especially the metabolic activation and metabolism-mediated cytotoxicity and genotoxicity, and the risk evaluation methods of PA exposure. In addition, this review provides perspectives of precision toxicity assessment strategies and biomarker development for the risk control and translational investigations of human intoxication by PAs.
Collapse
Affiliation(s)
- Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
71
|
Karakteristik Fisiko-Kimia Ekstrak Etanolik Kulit Bawang Merah (Allium ascalonicum L.) yang Diekstrak Menggunakan Microwave-Assisted Extraction. JURNAL APLIKASI TEKNOLOGI PANGAN 2021. [DOI: 10.17728/jatp.7099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kulit bawang merah (Allium ascalonicum L.) mengandung senyawa fitokimia yang bisa berfungsi sebagai antioksidan. Tujuan penelitian ini adalah mempelajari pengaruh konsentrasi etanol dan lama ekstraksi terhadap karakteristik fisik-kimia ekstrak kulit bawang merah menggunakan microwave-assisted extraction. Penelitian ini menggunakan Rancangan Acak Kelompok (RAK) dengan dua faktor yaitu faktor konsentrasi etanol (70, 80, dan 90%) dan lama waktu ekstraksi (10, 20 dan 30 menit). Setiap kombinasi perlakuan diulang tiga kali. Hasil penelitian menunjukkan konsentrasi etanol memberikan pengaruh yang nyata (α=0,05) terhadap total fenol, total flavonoid, aktivitas antioksidan, sifat kemerahan (a*) dan kekuningan (b*). Kondisi ekstraksi yang optimum untuk kulit bawang merah adalah 70% etanol dan lama ekstraksi 20 menit. Ekstrak yang dihasilkan mempunyai karakteristik sebagai berikut: total fenol 31,34±2,28 mg GAE/g; total flavonoid 26,12±0,75 mg QE/g; dan aktivitas antioksidan sebesar 65,94±0,55 %, nilai kecerahan (L*) 26,2 ± 0,12; nilai kemerahan (a*) -1,0 ± 0,44; nilai kekuningan (b*) 3,6 ± 0,17. Kesimpulannya, konsentrasi etanol dan lama ekstraksi mempengaruhi sifat fisik-kimia ekstrak kulit bawang merah.AbstractShallot skin (Allium ascalonicum L.) contains phytochemicals that can be a source of natural antioxidants. This research was done to study ethanol concentration and extraction time on the physicochemical characteristic of shallot skin extract using microwave-assisted extraction. This research used Randomized Block Design with two factors that were ethanol concentration (70, 80 and 90%) and extraction time (10, 20 and 30 min.). Each combination of the treatment was repeated in three times. The results showed that ethanol concentration and extraction time gave significant effect (α=0.05) on total phenol, total flavonoids, antioxidant activity, redness (a*), and yellowish (b*). The optimum extraction condition for shallot skin was 70% ethanol and 20 min of extraction. The extract had characteristics as follows: total phenol 31.34±2.28 mg GAE/g; total flavonoid 26.12±0.75 mg QE/g; antioxidant activity 65.94±0.55 %, brightness value (L*) of 26.2 ± 0.12; redness value (a*) of -1.0 ± 0.44; yellowish value (b*) of 3.6 ± 0.17. As conclusion, ethanol concentration and extraction time affected physicochemical characteristic of shallot skin extract.
Collapse
|
72
|
Pyrrolizidine alkaloids cause cell cycle and DNA damage repair defects as analyzed by transcriptomics in cytochrome P450 3A4-overexpressing HepG2 clone 9 cells. Cell Biol Toxicol 2021; 38:325-345. [PMID: 33884520 PMCID: PMC8986750 DOI: 10.1007/s10565-021-09599-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/02/2021] [Indexed: 10/26/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are a large group of highly toxic chemical compounds, which are found as cross-contaminants in numerous food products (e.g., honey), dietary supplements, herbal teas, and pharmaceutical herbal medicines. PA contaminations are responsible for serious hepatotoxicity and hepatocarcinogenesis. Health authorities have to set legal limit values to guarantee the safe consumption of plant-based nutritional and medical products without harmful health. Toxicological and chemical analytical methods are conventionally applied to determine legally permitted limit values for PAs. In the present investigation, we applied a highly sensitive transcriptomic approach to investigate the effect of low concentrations of five PAs (lasiocarpine, riddelliine, lycopsamine, echimidine, and monocrotaline) on human cytochrome P450 3A4-overexpressing HepG2 clone 9 hepatocytes. The transcriptomic profiling of deregulated gene expression indicated that the PAs disrupted important signaling pathways related to cell cycle regulation and DNA damage repair in the transfected hepatocytes, which may explain the carcinogenic PA effects. As PAs affected the expression of genes that involved in cell cycle regulation, we applied flow cytometric cell cycle analyses to verify the transcriptomic data. Interestingly, PA treatment led to an arrest in the S phase of the cell cycle, and this effect was more pronounced with more toxic PAs (i.e., lasiocarpine and riddelliine) than with the less toxic monocrotaline. Using immunofluorescence, high fractions of cells were detected with chromosome congression defects upon PA treatment, indicating mitotic failure. In conclusion, the tested PAs revealed threshold concentrations, above which crucial signaling pathways were deregulated resulting in cell damage and carcinogenesis. Cell cycle arrest and DNA damage repair point to the mutagenicity of PAs. The disturbance of chromosome congression is a novel mechanism of Pas, which may also contribute to PA-mediated carcinogenesis. Transcriptomic, cell cycle, and immunofluorescence analyses should supplement the standard techniques in toxicology to unravel the biological effects of PA exposure in liver cells as the primary target during metabolization of PAs.
Collapse
|
73
|
Zhang Y, Yang FF, Chen H, Qi YD, Si JY, Wu Q, Liao YH. Analysis of pyrrolizidine alkaloids in Eupatorium fortunei Turcz. and their in vitro neurotoxicity. Food Chem Toxicol 2021; 151:112151. [PMID: 33774095 DOI: 10.1016/j.fct.2021.112151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
This study was to analyze the pyrrolizidine alkaloids (PAs) in Eupatorium fortunei herbs and its derived finished products with a view to evaluating their effects on the proliferation and oligodendrogenesis of neural progenitor cells (NPCs). Using a LC-MS/MS method with 32 PAs reference standards, 8 PAs including intermedine, intermedine N-oxide, lycopsamine, lycopsamine N-oxide, retronecine, seneciphylline and senkirkine and 7-acetylintermedine N-oxide were identified with intermedine N-oxide and lycopsamine N-oxide being most abundant. The total PA amounts were found to vary from 0.18 to 61.81 μg/g in 30 batches of herbs and from 0.86 to 36.96 μg/g in 4 commercial finished products, respectively. Risk assessments indicated that the short-term intake seemed unlikely lead to acute toxic effects but the chronic use warranted cautions. Using NPCs derived from mouse induced pluripotent stem cells as an in vitro testing model, intermedine, intermedine N-oxide and lycopsamine N-oxide appeared to decrease cell viability at 30 μM whereas intermedine N-oxide inhibited oligodendrogenesis of NPCs at 10 μM. The present results suggested that the PAs in the majority of E. fortunei herbs and the derived products not only resulted in their exposure far exceeding the acceptable intake limit (i. e. 1.0 μg PA per day for adults) in herbal medicinal products recommended by the European Medicines Agency but also induced neurotoxicity to NPCs in vitro.
Collapse
Affiliation(s)
- Yan Zhang
- Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102488, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China
| | - Fei-Fei Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China
| | - Huan Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China
| | - Yao-Dong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China
| | - Jian-Yong Si
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China
| | - Qing Wu
- Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102488, PR China.
| | - Yong-Hong Liao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China.
| |
Collapse
|
74
|
Dai Y, Luo J, Xiang E, Guo Q, He Z, Gong Z, Sun X, Kou H, Xu K, Fan C, Liu J, Qiu S, Wang Y, Wang H, Guo Y. Prenatal Exposure to Retrorsine Induces Developmental Toxicity and Hepatotoxicity of Fetal Rats in a Sex-Dependent Manner: The Role of Pregnane X Receptor Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3219-3231. [PMID: 33685126 DOI: 10.1021/acs.jafc.0c06748] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a type of natural phytotoxin that contaminate food and feed and become an environmental health risk to humans and livestock. PAs exert toxicity that requires metabolic activation by cytochrome P450 (CYP) 3A, and case reports showed that fetuses are quite susceptible to PAs toxicity. The aim of this study was to explore the characteristics of developmental toxicity and fetal hepatotoxicity induced by retrorsine (RTS, a typcial toxic PA) and the underlying mechanism. Pregnant Wistar rats were intragastrically administered with 20 mg/(kg·day) RTS from gestation day (GD) 9 to 20. Results showed that prenatal RTS exposure lowered fetal bodyweights, reduced hepatocyte numbers, and potentiated hepatic apoptosis in fetuses, particularly females. Simutaneously, RTS increased CYP3A expression and pregnane X receptor (PXR) activation in female fetal liver. We further confirmed that RTS was a PXR agonist in LO2 and HepG2 cell lines. Furthermore, agonism or antagonism of androgen receptor (AR) either induced or blocked RTS-mediated PXR activation, respectively. As a PXR agonist, RTS toxicity was exacerbated in female fetus due to the increased CYP3A induction and self-metabolism, while the inhibitory effect of AR on PXR activation reduced the susceptibility of male fetus to RTS. Our findings indicated that PXR may be a potential therapeutic target for PA toxicity.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Jinyuan Luo
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei Province, China
| | - E Xiang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Qi Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Zheng He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zheng Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Xiaoxiang Sun
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Hao Kou
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei Province, China
| | - Kequan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Chengpeng Fan
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
| | - Jie Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Shuaikai Qiu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Yanqing Wang
- Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei Province, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| |
Collapse
|
75
|
Geburek I, Rutz L, Gao L, Küpper JH, These A, Schrenk D. Metabolic Pattern of Hepatotoxic Pyrrolizidine Alkaloids in Liver Cells. Chem Res Toxicol 2021; 34:1101-1113. [PMID: 33719395 DOI: 10.1021/acs.chemrestox.0c00507] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Contamination with 1,2-unsaturated pyrrolizidine alkaloids (PAs) is a serious problem for certain phytomedicines, foods, and animal feeds. Several of these PAs are genotoxic and carcinogenic, primarily in the liver, upon cytochrome P450 (CYP)-catalyzed activation into reactive (pyrrolic and pyrrole-like) metabolites. Here we investigated the metabolism of selected PAs (echimidine, europine, lasiocarpine, lycopsamine, retrorsine, and senecionine) in rat hepatocytes in primary culture and in human CYP3A4-transfected HepG2 cells. The open-chained diesters echimidine and lasiocarpine and the cyclic diester senecionine were extensively metabolized in rat hepatocytes into a broad spectrum of products released into the medium. A large portion of unidentified, possibly irreversibly bound, products remained in the cells while detectable amounts of reactive and other metabolites were found in the incubation media. In HepG2-CYP3A4 cells, lasiocarpine was more extensively metabolized than echimidine and senecionine which also gave rise to the release of pyrrolic metabolites. In human cells, no pyrrolic metabolites were detected in retrorsine or lycopsamine incubations, while no such metabolites were detected from europine in both cell types. Other types of metabolic changes comprised modifications such as side chain demethylation or oxygenation reactions like the formation of N-oxides. The latter, considered as a detoxification step, was a major pathway with cyclic diesters, was less distinctive for echimidine and lycopsamine and almost negligible for lasiocarpine and europine. Our data are in agreement with previously published cyto- and genotoxicity findings and suggests that the metabolic pattern may contribute substantially to the specific toxic potency of a certain congener. In addition, marked differences were found for certain congeners between rat hepatocytes and transfected human HepG2 cells, whereby a high level of bioactivation was found for lasiocarpine, whereas a very low level of bioactivation was observed for monoesters, in particular in human cells.
Collapse
Affiliation(s)
- Ina Geburek
- German Federal Institute for Risk Assessment, Department of Safety in the Food Chain, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Lukas Rutz
- University of Kaiserslautern, Food Chemistry and Toxicology, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Lan Gao
- University of Kaiserslautern, Food Chemistry and Toxicology, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Jan-Heiner Küpper
- Molecular Cell Biology, Brandenburg University of Technology, Senftenberg 03046, Germany
| | - Anja These
- German Federal Institute for Risk Assessment, Department of Safety in the Food Chain, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Dieter Schrenk
- University of Kaiserslautern, Food Chemistry and Toxicology, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| |
Collapse
|
76
|
Zakaria MM, Schemmerling B, Ober D. CRISPR/Cas9-Mediated Genome Editing in Comfrey ( Symphytum officinale) Hairy Roots Results in the Complete Eradication of Pyrrolizidine Alkaloids. Molecules 2021; 26:1498. [PMID: 33801907 PMCID: PMC7998174 DOI: 10.3390/molecules26061498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Comfrey (Symphytum officinale) is a medicinal plant with anti-inflammatory, analgesic, and proliferative properties. However, its pharmaceutical application is hampered by the co-occurrence of toxic pyrrolizidine alkaloids (PAs) in its tissues. Using a CRISPR/Cas9-based approach, we introduced detrimental mutations into the hss gene encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis. The resulting hairy root (HR) lines were analyzed for the type of gene-editing effect that they exhibited and for their homospermidine and PA content. Inactivation of only one of the two hss alleles resulted in HRs with significantly reduced levels of homospermidine and PAs, whereas no alkaloids were detectable in HRs with two inactivated hss alleles. PAs were detectable once again after the HSS-deficient HRs were fed homospermidine confirming that the inability of these roots to produce PAs was only attributable to the inactivated HSS and not to any unidentified off-target effect of the CRISPR/Cas9 approach. Further analyses showed that PA-free HRs possessed, at least in traces, detectable amounts of homospermidine, and that the PA patterns of manipulated HRs were different from those of control lines. These observations are discussed with regard to the potential use of such a CRISPR/Cas9-mediated approach for the economical exploitation of in vitro systems in a medicinal plant and for further studies of PA biosynthesis in non-model plants.
Collapse
Affiliation(s)
- Mahmoud M. Zakaria
- Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany; (M.M.Z.); (B.S.)
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Egypt
| | - Brigitte Schemmerling
- Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany; (M.M.Z.); (B.S.)
| | - Dietrich Ober
- Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany; (M.M.Z.); (B.S.)
| |
Collapse
|
77
|
Lu AJ, Lu YL, Tan DP, Qin L, Ling H, Wang CH, He YQ. Identification of Pyrrolizidine Alkaloids in Senecio Plants by Liquid Chromatography-Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:1957863. [PMID: 34824876 PMCID: PMC8610691 DOI: 10.1155/2021/1957863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 05/04/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are considered as the major constituents that cause hepatoxicity in Senecio plants. PAs can be found in about 3%-5% of the world's flowering plants. Nowadays, the identification method of PAs by separation and preparation was too slow and lacked effective power. A rapid method to identify PAs in plants must be developed. Based on the fragmentation regularity, the hepatoxic PAs and nonhepatoxic PAs were characterized by liquid chromatography-mass spectrometry (LC-MS). The detailed structures of PAs in five Senecio plants were identified based on tandem mass spectrometry (MS/MS) spectrum and chemical research information. In the present study, some new fragmentation regularities of PAs have been found, such as product ions at m/z 122, m/z 140 and m/z 124, m/z 142, which have been discovered as the characteristic fragments of lactone and mono-esterase type of saturated PAs, respectively. Moreover, two product ions at m/z 120 and m/z 138 have been reported as the characteristic fragments of unsaturated PAs. Some of them were found in Senecio species for the first time, and some of them may be new nature product or even new compound. Finally, we classified these plants into five categories based on PAs which were identified in the present study; the result corresponded with the classification by morphology. In addition, we have found some constituents that have odd molecular weight number only in Senecio species but not in Ligularia species; the detailed structures of these non-PAs constituents need penetrating study. LC-MS was rapid and sensitive method for detecting and identifying PAs in plants. Pyrrolizidine alkaloids were the toxiferous constituent of Senecio plants. In this study, we found that PAs can be used as the characteristic constituent of Senecio species.
Collapse
Affiliation(s)
- An-Jing Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yan-Liu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Dao-Peng Tan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Qin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hua Ling
- School of Pharmacy, Georgia Campus-Philadelphia College of Osteopathic Medicine, 625 Old Peachtree Rd NW, Suwanee, GA 30024, USA
| | - Chang-Hong Wang
- Shanghai Key Laboratory of Complex Prescription, Shanghai University of Traditional Chinese Medicine, 1200 Cai-Lun Road, Shanghai 201203, China
| | - Yu-Qi He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
78
|
Hadi NSA, Bankoglu EE, Schott L, Leopoldsberger E, Ramge V, Kelber O, Sievers H, Stopper H. Genotoxicity of selected pyrrolizidine alkaloids in human hepatoma cell lines HepG2 and Huh6. Mutat Res 2020; 861-862:503305. [PMID: 33551105 DOI: 10.1016/j.mrgentox.2020.503305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Pyrrolizidine alkaloids (PAs) are found in many plant species as secondary metabolites which affect humans via contaminated food sources, herbal medicines and dietary supplements. Hundreds of compounds belonging to PAs have been identified. PAs undergo hepatic metabolism, after which they can induce hepatotoxicity and carcinogenicity. Many aspects of their mechanism of carcinogenicity are still unclear and it is important for human risk assessment to investigate this class of compounds further. MATERIAL AND METHODS Human hepatoma cells HepG2 were used to investigate the genotoxicity of different chemical structural classes of PAs, namely europine, lycopsamine, retrorsine, riddelliine, seneciphylline, echimidine and lasiocarpine, in the cytokinesis-block micronucleus (CBMN) assay. The different ester type PAs europine, seneciphylline, and lasiocarpine were also tested in human hepatoma Huh6 cells. Six different PAs were investigated in a crosslink comet assay in HepG2 cells. RESULTS The maximal increase of micronucleus formation was for all PAs in the range of 1.64-2.0 fold. The lowest concentrations at which significant induction of micronuclei were found were 3.2 μM for lasiocarpine and riddelliine, 32 μM for retrorsine and echimidine, and 100 μM for seneciphylline, europine and lycopsamine. Significant induction of micronuclei by lasiocarpine, seneciphylline, and europine were achieved in Huh6 cells at similar concentrations. Reduced tail formation after hydrogen peroxide treatment was found in the crosslink comet assay for all diester type PAs, while an equimolar concentration of the monoesters europine and lycopsamine did not significantly reduce DNA migration. CONCLUSION The widely available human hepatoma cell lines HepG2 and Huh6 were suitable for the assessment of PA-induced genotoxicity. Selected PAs confirmed previously published potency rankings in the micronucleus assay. In HepG2 cells, the crosslinking activity was related to the ester type, which is a first report of PA mediated effects in the comet assay.
Collapse
Affiliation(s)
- Naji Said Aboud Hadi
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany; School of Health and Human Sciences, Pwani University, Kilifi, Kenya
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Lea Schott
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Eva Leopoldsberger
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Vanessa Ramge
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Olaf Kelber
- Steigerwald Arzneimittelwerk GmbH, Bayer Consumer Health, Darmstadt, Germany
| | | | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
79
|
He Y, Zhu L, Ma J, Wong L, Zhao Z, Ye Y, Fu PP, Lin G. Comprehensive investigation and risk study on pyrrolizidine alkaloid contamination in Chinese retail honey. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115542. [PMID: 33254676 DOI: 10.1016/j.envpol.2020.115542] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are common phytotoxins. We performed the first comprehensive investigation on PA contamination in Chinese honeys. LC-MS analysis revealed that 58% of 255 honey samples purchased from 17 regions across Mainland China and Taiwan contained PAs with total content ranging over 0.2-281.1 μg/kg. Monocrotaline (from Crotalaria spp), a PA never found in honey in other regions, together with echimidine (Echium plantagineum) and lycopsamine (from Senecio spp.), were three predominant PAs in PA-contaminated Chinese honeys. Further, PAs present in honeys were found to have geographically distinct pattern, indicating possible control of such contamination in future honey production. Moreover, we proposed a new risk estimation approach, which considered both content and toxic potency of individual PAs in honeys, and found that 12% of the PA-contaminated Chinese honeys tested might pose potential health risk. This study revealed a high prevalence and potential health risk of PA contamination in Chinese honeys.
Collapse
Affiliation(s)
- Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Lailai Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhongzhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yang Ye
- Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Peter P Fu
- National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China.
| |
Collapse
|
80
|
Safety of medicinal comfrey cream preparations (Symphytum officinale s.l.): The pyrrolizidine alkaloid lycopsamine is poorly absorbed through human skin. Regul Toxicol Pharmacol 2020; 118:104784. [DOI: 10.1016/j.yrtph.2020.104784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 11/22/2022]
|
81
|
Li X, He X, Chen S, Guo X, Bryant MS, Guo L, Manjanatha MG, Zhou T, Witt KL, Mei N. Evaluation of pyrrolizidine alkaloid-induced genotoxicity using metabolically competent TK6 cell lines. Food Chem Toxicol 2020; 145:111662. [PMID: 32798647 PMCID: PMC9969979 DOI: 10.1016/j.fct.2020.111662] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
Pyrrolizidine alkaloid (PA)-containing plants are among the most common poisonous plants affecting humans, livestock, and wildlife worldwide. A large number of PAs are known to induce genetic damage after metabolic activation. In the present study, using a battery of fourteen newly developed TK6 cell lines, each expressing a single human cytochrome P450 (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C18, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7), we identified specific CYPs responsible for bioactivating three PAs - lasiocarpine, riddelliine, and senkirkine. Among the fourteen cell lines, cells expressing CYP3A4 showed significant increases in PA-induced cytotoxicity, evidenced by decreased ATP production and cell viability, and increased caspase 3/7 activities. LC-MS/MS analysis revealed the formation of 1-hydroxymethyl-7-hydroxy-6,7-dihydropyrrolizine (DHP), the main reactive metabolite of PAs, in CYP3A4-expressing TK6 cells. DHP was also detected in CYP3A5- and 3A7-expressing cells after PA exposure, but to a much lesser extent. Subsequently, using a high-throughput micronucleus assay, we demonstrated that PAs induced concentration-dependent increases in micronuclei and G2/M phase cell cycle arrest in three CYP3A variant-expressing TK6 cell lines. Using Western blotting, we observed that PA-induced apoptosis, cell cycle changes, and DNA damage were primarily mediated by CYP3A4. Benchmark dose (BMD) modeling demonstrated that lasiocarpine, of the three PAs, was the most potent inducer of micronuclei, with a BMD100 of 0.036 μM. These results indicate that our TK6 cell system holds promise for genotoxicity screening of compounds requiring metabolic activation, identifying specific CYPs involved in bioactivation, and discriminating the genotoxic compounds that have different chemical structures.
Collapse
Affiliation(s)
- Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xiaobo He
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Matthew S. Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Mugimane G. Manjanatha
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD 20855, USA
| | - Kristine L. Witt
- Divison of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
82
|
Rutz L, Gao L, Küpper JH, Schrenk D. Structure-dependent genotoxic potencies of selected pyrrolizidine alkaloids in metabolically competent HepG2 cells. Arch Toxicol 2020; 94:4159-4172. [PMID: 32910235 PMCID: PMC7655576 DOI: 10.1007/s00204-020-02895-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/27/2020] [Indexed: 11/23/2022]
Abstract
1,2-unsaturated pyrrolizidine alkaloids (PAs) are natural plant constituents comprising more than 600 different structures. A major source of human exposure is thought to be cross-contamination of food, feed and phytomedicines with PA plants. In humans, laboratory and farm animals, certain PAs exert pronounced liver toxicity and can induce malignant liver tumors in rodents. Here, we investigated the cytotoxicity and genotoxicity of eleven PAs belonging to different structural classes. Although all PAs were negative in the fluctuation Ames test in Salmonella, they were cytotoxic and induced micronuclei in human HepG2 hepatoblastoma cells over-expressing human cytochrome P450 3A4. Lasiocarpine and cyclic diesters except monocrotaline were the most potent congeners both in cytotoxicity and micronucleus assays with concentrations below 3 μM inducing a doubling in micronuclei counts. Other open di-esters and all monoesters exhibited weaker or much weaker geno- and cytotoxicity. The findings were in agreement with recently suggested interim Relative Potency (iREP) factors with the exceptions of europine and monocrotaline. A more detailed micronuclei analysis at low concentrations of lasiocarpine, retrorsine or senecionine indicated that pronounced hypolinearity of the concentration–response curves was evident for retrorsine and senecionine but not for lasiocarpine. Our findings show that the genotoxic and cytotoxic potencies of PAs in a human hepatic cell line vary in a structure-dependent manner. Both the low potency of monoesters and the shape of prototype concentration–response relationships warrant a substance- and structure-specific approach in the risk assessment of PAs.
Collapse
Affiliation(s)
- Lukas Rutz
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Lan Gao
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
83
|
Rapid identification and determination of pyrrolizidine alkaloids in herbal and food samples via direct analysis in real-time mass spectrometry. Food Chem 2020; 334:127472. [PMID: 32721831 DOI: 10.1016/j.foodchem.2020.127472] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are naturally occurring plant toxins associated with severe liver damage if excessive ingestion. Herein, a novel analytical strategy on utilizing direct analysis in real-time mass spectrometry (DART-MS) was developed, and applied in analysis of six representative PAs. The calibration curves in the range of 10-1000 ng·mL-1 were established, and relative standard deviations (RSDs) were less than 10%. The limits of detection (LODs) and limits of quantitation (LOQs) were 0.55-0.85 ng·mL-1 and 1.83-2.82 ng·mL-1, respectively. The feasibility of method was indicated by analysing real samples including Gynura japonica, drug tablets, granules, and fresh cow's milk. Moreover, the results of DART-MS were in good agreement with those observed by high performance liquid chromatography mass spectrometry (HPLC-MS), but consumed less time without chromatographic separation. This research provides a facile fashion for safety assessment of herbal and food products containing PAs and presents promising applications in food, pharmaceutical and clinical analysis.
Collapse
|