51
|
Hu Q, Luo Y. Polyphenol-chitosan conjugates: Synthesis, characterization, and applications. Carbohydr Polym 2016; 151:624-639. [DOI: 10.1016/j.carbpol.2016.05.109] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/30/2016] [Accepted: 05/29/2016] [Indexed: 01/09/2023]
|
52
|
Dulong V, Hadrich A, Picton L, Le Cerf D. Enzymatic cross-linking of carboxymethylpullulan grafted with ferulic acid. Carbohydr Polym 2016; 151:78-87. [DOI: 10.1016/j.carbpol.2016.05.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 11/25/2022]
|
53
|
Corn starch ferulates with antioxidant properties prepared by N,N′-carbonyldiimidazole-mediated grafting procedure. Food Chem 2016; 208:1-9. [DOI: 10.1016/j.foodchem.2016.03.094] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/21/2016] [Accepted: 03/28/2016] [Indexed: 11/22/2022]
|
54
|
Karaki N, Aljawish A, Muniglia L, Humeau C, Jasniewski J. Physicochemical characterization of pectin grafted with exogenous phenols. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
55
|
Physicochemical properties of β-carotene emulsions stabilized by chitosan–chlorogenic acid complexes. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
56
|
Moreno-Vásquez MJ, Valenzuela-Buitimea EL, Plascencia-Jatomea M, Encinas-Encinas JC, Rodríguez-Félix F, Sánchez-Valdes S, Rosas-Burgos EC, Ocaño-Higuera VM, Graciano-Verdugo AZ. Functionalization of chitosan by a free radical reaction: Characterization, antioxidant and antibacterial potential. Carbohydr Polym 2016; 155:117-127. [PMID: 27702495 DOI: 10.1016/j.carbpol.2016.08.056] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 01/22/2023]
Abstract
Chitosan was functionalized with epigallocatechin gallate (EGCG) by a free radical-induced grafting procedure, which was carried out by a redox pair (ascorbic acid/hydrogen peroxide) as the radical initiator. The successful preparation of EGCG grafted-chitosan was verified by spectroscopic (UV, FTIR and XPS) and thermal (DSC and TGA) analyses. The degree of grafting of phenolic compounds onto the chitosan was determined by the Folin-Ciocalteu procedure. Additionally, the biological activities (antioxidant and antibacterial) of pure EGCG, blank chitosan and EGCG grafted-chitosan were evaluated. The spectroscopic and thermal results indicate chitosan functionalization with EGCG; the EGCG content was 25.8mg/g of EGCG grafted-chitosan. The antibacterial activity of the EGCG grafted-chitosan was increased compared to pure EGCG or blank chitosan against S. aureus and Pseudomonas sp. (p<0.05). Additionally, EGCG grafted-chitosan showed higher antioxidant activity than blank chitosan. These results indicate that EGCG grafted-chitosan might be useful in active food packaging.
Collapse
Affiliation(s)
- María Jesús Moreno-Vásquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México; Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | - Emma Lucía Valenzuela-Buitimea
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México; Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, Sonora, México
| | - Maribel Plascencia-Jatomea
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | | | - Francisco Rodríguez-Félix
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | | | - Ema Carina Rosas-Burgos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | | | | |
Collapse
|
57
|
Roman MJ, Decker EA, Goddard JM. Retaining Oxidative Stability of Emulsified Foods by Novel Nonmigratory Polyphenol Coated Active Packaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5574-5582. [PMID: 27310107 DOI: 10.1021/acs.jafc.6b01933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oxidation causes lipid rancidity, discoloration, and nutrient degradation that decrease shelf life of packaged foods. Synthetic additives are effective oxidation inhibitors, but are undesirable to consumers who prefer "clean" label products. The aim of this study was to improve oxidative stability of emulsified foods by a novel nonmigratory polyphenol coated active packaging. Polyphenol coatings were applied to chitosan functionalized polypropylene (PP) by laccase assisted polymerization of catechol and catechin. Polyphenol coated PP exhibited both metal chelating (39.3 ± 2.5 nmol Fe(3+) cm(-2), pH 4.0) and radical scavenging (up to 52.9 ± 1.8 nmol Trolox eq cm(-2)) capacity, resulting in dual antioxidant functionality to inhibit lipid oxidation and lycopene degradation in emulsions. Nonmigratory polyphenol coated PP inhibited ferric iron promoted degradation better than soluble chelators, potentially by partitioning iron from the emulsion droplet interface. This work demonstrates that polyphenol coatings can be designed for advanced material chemistry solutions in active food packaging.
Collapse
Affiliation(s)
- Maxine J Roman
- Department of Food Science, University of Massachusetts , 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Eric A Decker
- Department of Food Science, University of Massachusetts , 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
- Bioactive Natural Products Research Group, Department of Biochemistry, Faculty of Science, King Abdulaziz University , P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Julie M Goddard
- Department of Food Science, University of Massachusetts , 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| |
Collapse
|
58
|
Wei Z, Gao Y. Evaluation of structural and functional properties of chitosanchlorogenic acid complexes. Int J Biol Macromol 2016; 86:376-82. [DOI: 10.1016/j.ijbiomac.2016.01.084] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/14/2016] [Accepted: 01/22/2016] [Indexed: 12/22/2022]
|
59
|
Guo P, Anderson JD, Bozell JJ, Zivanovic S. The effect of solvent composition on grafting gallic acid onto chitosan via carbodiimide. Carbohydr Polym 2016; 140:171-80. [DOI: 10.1016/j.carbpol.2015.12.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/23/2015] [Accepted: 12/07/2015] [Indexed: 01/16/2023]
|
60
|
Yang C, Zhou Y, Zheng Y, Li C, Sheng S, Wang J, Wu F. Enzymatic modification of chitosan by cinnamic acids: Antibacterial activity against Ralstonia solanacearum. Int J Biol Macromol 2016; 87:577-85. [PMID: 26993531 DOI: 10.1016/j.ijbiomac.2016.03.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/27/2022]
Abstract
This study aimed to identify chitosan polymers that have antibacterial activity against the bacterial wilt pathogen. The chitosan polymers were enzymatically synthesized using chitosan and five cinnamic acids (CADs): caffeic acid (CA), ferulic acid (FA), cinnamic acid (CIA), p-coumaric acid (COA) and chlorogenic acid (CHA), using laccase from Pleurotus ostreatus as a catalyst. The reaction was performed in a phosphate buffered solution under heterogenous reaction conditions. The chitosan derivatives (CTS-g-CADs) were characterized by FT-IR, XRD, TGA and SEM. FT-IR demonstrated that the reaction products bound covalently to the free amino groups or hydroxyl groups of chitosan via band of amide I or ester band. XRD showed a reduced packing density for grafted chitosan comparing to original chitosan. TGA demonstrated that CTS-g-CADs have a higher thermostability than chitosan. Additionally, chitosan and its derivatives showed similar antibacterial activity. However, the IC50 value of the chitosan-caffeic acid derivative (CTS-g-CA) against the mulberry bacterial wilt pathogen RS-5 was 0.23mg/mL, which was two-fifths of the IC50 value of chitosan. Therefore, the enzymatically synthesized chitosan polymers can be used to control plant diseases in biotechnological domains.
Collapse
Affiliation(s)
- Caifeng Yang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yu Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yu Zheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Changlong Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China.
| | - Fuan Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China.
| |
Collapse
|
61
|
Aljawish A, Muniglia L, Chevalot I. Growth of human mesenchymal stem cells (MSCs) on films of enzymatically modified chitosan. Biotechnol Prog 2016; 32:491-500. [DOI: 10.1002/btpr.2216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/19/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Abdulhadi Aljawish
- Université De Lorraine, Laboratoire D'ingénierie Des Biomolécules (LIBio); TSA40602-F-54518 Vandœuvre-lès-Nancy France
| | - Lionel Muniglia
- Université De Lorraine, Laboratoire D'ingénierie Des Biomolécules (LIBio); TSA40602-F-54518 Vandœuvre-lès-Nancy France
| | - Isabelle Chevalot
- Université De Lorraine, Laboratoire Réactions Et Génie Des Procédés (LRGP-CNRS-UMR 7274); TSA40602-F-54518 Vandœuvre-lès-Nancy France
| |
Collapse
|
62
|
Oliver S, Vittorio O, Cirillo G, Boyer C. Enhancing the therapeutic effects of polyphenols with macromolecules. Polym Chem 2016. [DOI: 10.1039/c5py01912e] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A review of key macromolecular systems employed to stabilise polyphenols, including direct polymerisation of polyphenol monomers and conjugation with macromolecules.
Collapse
Affiliation(s)
- Susan Oliver
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| | - Orazio Vittorio
- Children's Cancer Institute Australia
- Lowy Cancer Research Centre
- University of New South Wales
- Sydney
- Australia
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science
- University of Calabria Arcavacata di Rende
- Italy
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
63
|
Abdel-Wahhab MA, Aljawish A, Kenawy AM, El-Nekeety AA, Hamed HS, Abdel-Aziem SH. Grafting of gallic acid onto chitosan nano particles enhances antioxidant activities in vitro and protects against ochratoxin A toxicity in catfish (Clarias gariepinus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:279-288. [PMID: 26774075 DOI: 10.1016/j.etap.2015.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/13/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
This study aimed to prepare and characterize enzymatic modified chitosan nanoparticles (CSNPs) with gallic acid (GA) or octyl gallate (OG) to optimize its potential in human application and to evaluate their protective role against ochrtoxin A (OTA) toxicity in catfish. The modified CSNPs have average size around 90 nm with positive charge and high scavenging activity especially GA-CSNPs. In the in vivo study, catfish were divided into 8 groups and treated for 3 weeks as follow: the control group, OTA-treated group (1 mg/kg b.w.), the groups treated with CSNPs, GA-CSNPs or OG-CSNPs (280 mg/kg b.w.) anole or in combination with OTA. Blood, liver and kidney samples were collected for different analyses. OTA induced a significant biochemical disturbances accompanied with oxidative stress in liver and kidney, histological changes and increase DNA fragmentation in the kidney. Co-treatment with OTA plus the different CSNPs resulted in a significant improvement in all tested parameters and histological picture of the kidney. This improvement was more pronounced in the group treated with GA-CSNPs. It could be concluded that grafting of GA or its ester improved the properties of CSNPs. Moreover, GA-CSNPs showed strong scavenging properties than OG-CSNPs due to the blocking of carboxyl groups responsible of the scavenging activity in OG.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, 12622 Cairo, Egypt.
| | - Abdulhadi Aljawish
- Université de Lorraine, Laboratoire d'Ingénierie des Biomolécules (LIBio), 2 avenue de la Forêt de Haye, TSA40602-F-54518 Vandœuvre-lès-Nancy, France
| | - Amany M Kenawy
- Hydrobiology Department, National Research Center, Dokki, 12622 Cairo, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, 12622 Cairo, Egypt
| | - Heba S Hamed
- Zoology Department, Faculty of Women for Arts, Science & Education, Ain shams University, Cairo, Egypt
| | | |
Collapse
|
64
|
Aljawish A, Chevalot I, Jasniewski J, Scher J, Muniglia L. Enzymatic synthesis of chitosan derivatives and their potential applications. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2014.10.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|