51
|
Vázquez-Manjarrez N, Weinert CH, Ulaszewska MM, Mack CI, Micheau P, Pétéra M, Durand S, Pujos-Guillot E, Egert B, Mattivi F, Bub A, Dragsted LO, Kulling SE, Manach C. Discovery and Validation of Banana Intake Biomarkers Using Untargeted Metabolomics in Human Intervention and Cross-sectional Studies. J Nutr 2019; 149:1701-1713. [PMID: 31240312 DOI: 10.1093/jn/nxz125] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/17/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Banana is one of the most widely consumed fruits in the world. However, information regarding its health effects is scarce. Biomarkers of banana intake would allow a more accurate assessment of its consumption in nutrition studies. OBJECTIVES Using an untargeted metabolomics approach, we aimed to identify the banana-derived metabolites present in urine after consumption, including new candidate biomarkers of banana intake. METHODS A randomized controlled study with a crossover design was performed on 12 healthy subjects (6 men, 6 women, mean ± SD age: 30.0 ± 4.9 y; mean ± SD BMI: 22.5 ± 2.3 kg/m2). Subjects underwent 2 dietary interventions: 1) 250 mL control drink (Fresubin 2 kcal fiber, neutral flavor; Fresenius Kabi), and 2) 240 g banana + 150 mL control drink. Twenty-four-hour urine samples were collected and analyzed with ultra-performance liquid chromatography coupled to a quadrupole time-of-flight MS and 2-dimensional GC-MS. The discovered biomarkers were confirmed in a cross-sectional study [KarMeN (Karlsruhe Metabolomics and Nutrition study)] in which 78 subjects (mean BMI: 22.8; mean age: 47 y) were selected reflecting high intake (126-378 g/d), low intake (47.3-94.5 g/d), and nonconsumption of banana. The confirmed biomarkers were examined singly or in combinations, for established criteria of validation for biomarkers of food intake. RESULTS We identified 33 potentially bioactive banana metabolites, of which 5 metabolites, methoxyeugenol glucuronide (MEUG-GLUC), dopamine sulfate (DOP-S), salsolinol sulfate, xanthurenic acid, and 6-hydroxy-1-methyl-1,2,3,4-tetrahydro-β-carboline sulfate, were confirmed as candidate intake biomarkers. We demonstrated that the combination of MEUG-GLUC and DOP-S performed best in predicting banana intake in high (AUCtest = 0.92) and low (AUCtest = 0.87) consumers. The new biomarkers met key criteria establishing their current applicability in nutrition and health research for assessing the occurrence of banana intake. CONCLUSIONS Our metabolomics study in healthy men and women revealed new putative bioactive metabolites of banana and a combined biomarker of intake. These findings will help to better decipher the health effects of banana in future focused studies. This study was registered at clinicaltrials.gov as NCT03581955 and with the Ethical Committee for the Protection of Human Subjects Sud-Est 6 as CPP AU 1251, IDRCB 2016-A0013-48; the KarMeN study was registered with the German Clinical Trials Register (DRKS00004890). Details about the study can be obtained from https://www.drks.de.
Collapse
Affiliation(s)
- Natalia Vázquez-Manjarrez
- Human Nutrition Unit, INRA, Université Clermont Auvergne, Clermont-Ferrand, France.,Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Christoph H Weinert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Maria M Ulaszewska
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy
| | - Carina I Mack
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Pierre Micheau
- Human Nutrition Unit, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Mélanie Pétéra
- Human Nutrition Unit, Plateforme d'Exploration du Métabolisme MetaboHUB, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Stephanie Durand
- Human Nutrition Unit, Plateforme d'Exploration du Métabolisme MetaboHUB, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Estelle Pujos-Guillot
- Human Nutrition Unit, Plateforme d'Exploration du Métabolisme MetaboHUB, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Björn Egert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy.,Centre of Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Claudine Manach
- Human Nutrition Unit, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
52
|
Barroso WA, Abreu IC, Ribeiro LS, da Rocha CQ, de Souza HP, de Lima TM. Chemical composition and cytotoxic screening of Musa cavendish green peels extract: Antiproliferative activity by activation of different cellular death types. Toxicol In Vitro 2019; 59:179-186. [PMID: 31018149 DOI: 10.1016/j.tiv.2019.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/12/2019] [Accepted: 04/17/2019] [Indexed: 12/26/2022]
Abstract
Musa cavendish, commonly known as banana, is a fruit with nutritional and therapeutic properties. We investigated the chemical composition and in vitro cytotoxic effect of M. cavendish green peel extract (MHE) on cancer cells for the first time. The compounds characterization was performed by HPLC-UV/Vis and FIA-ESI-IT-MSn. We investigated in vitro cytotoxic effect of Musa cavendish green peels extract (MHE) in HepG2, A-375, MCF-7 and Caco-2 cancer cells. We evaluated the effect of MHE on proliferation of different cell lines through apoptosis, necrosis, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) content determination. We identified 12 compounds from different classes in the extract, including derivatives of phenolic acids, aglycone flavonoids, glycoside flavonoids and catecholamines. Our results indicate that MHE exerts, after 48 h treatment, an accentuated antiproliferative effect from the dose of 100 μg/mL in all cell lines tested. In HepG2 cells, these effects were related to the induction of cell death, both necrotic and apoptotic, and remarkable changes in cell morphology. Depolarization of MMP and high ROS content were also observed in the cells in a dose-dependent manner. Our results show that MHE may be used as a source of new drugs with anticancer activity.
Collapse
Affiliation(s)
- Wermerson Assunção Barroso
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo CEP 01246-903, Brazil.
| | - Iracelle Carvalho Abreu
- Physiological Sciences Department, Laboratory of Research and Post-graduation in Pharmacology (LPPF), Federal University of Maranhão, São Luís - Maranhão. University City, Bacanga Campus, Av. dos Portugueses, 1966, Vila Bacanga, Maranhão CEP 65085-580, Brazil
| | - Larissa Sousa Ribeiro
- Physiological Sciences Department, Laboratory of Research and Post-graduation in Pharmacology (LPPF), Federal University of Maranhão, São Luís - Maranhão. University City, Bacanga Campus, Av. dos Portugueses, 1966, Vila Bacanga, Maranhão CEP 65085-580, Brazil
| | - Cláudia Quintino da Rocha
- Department of Chemistry, Laboratory of Advanced Studies in Phytomedications (LEAF), Federal University of Maranhão, São Luís - Maranhão. University City, Center for Exact Sciences and Technology, Bacanga Campus, Av. Dos Portugueses, 1966, Vsila Bacanga, Maranhão CEP 65085-580, Brazil
| | - Heraldo Possolo de Souza
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo CEP 01246-903, Brazil
| | - Thais Martins de Lima
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo CEP 01246-903, Brazil
| |
Collapse
|
53
|
Bi-functionalized mesostructured silicas as reversed-phase/strong anion-exchange sorbents. Application to extraction of polyphenols prior to their quantitation by UHPLC with ion-trap mass spectrometry detection. Mikrochim Acta 2019; 186:164. [PMID: 30725330 DOI: 10.1007/s00604-019-3267-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/18/2019] [Indexed: 01/12/2023]
Abstract
Hybrid mesostructured silicas with wormhole-like pore structure were synthesized and bi-functionalized with n-octyl (C8) and quaternary ammonium (NR4+) groups to obtain new sorbent materials for dispersive solid-phase extraction (dSPE) of polyphenols. Due to their nature of being both a reversed-phase and a strong anion-exchanger, the materials display mixed-mode retention mechanism. During the synthesis, the functionalization conditions were varied to obtain materials with different functionalization degree. The resulting materials (denoted as HMS-RPC8-SAX-1, HMS-RPC8-SAX-2 and HMS-RPC8-SAX-3) show high surface area, wormhole-like framework and controlled pore size. They were evaluated for multicomponent extraction of 22 polyphenols, including phenolic acids, flavonoids and stilbenes, from spiked juice samples. The sample extracts were analyzed by ultra-high performance liquid chromatography coupled to ion-trap tandem mass spectrometry. The adsorption capability, the amount of sorbent, the eluent and the elution volume were optimized. Best performance was achieved by using HMS-RPC8-SAX-2, which is the material with the highest fraction of NR4+ groups. This material has a large extraction capability and provides high recovery values of the target analytes (70-101%) as a result of its hydrophobic and anion-exchange interactions. The detection limits for polyphenols in juice range from 1 to 560 ng mL-1. Graphical abstract Schematic presentation of dispersive solid-phase extraction of polyphenols from juice samples using a novel sorbent based on the bi-functionalization of mesostructured silica with n-octyl and quaternary ammonium groups, followed by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) analysis. Due to the sorbent nature of being both a reversed-phase and strong anion-exchanger, the material displays mixed mode retention mechanism that improves its extraction capability.
Collapse
|
54
|
Pico J, Corbin S, Ferruzzi MG, Martinez MM. Banana flour phenolics inhibit trans-epithelial glucose transport from wheat cakes in a coupled in vitrodigestion/Caco-2 cell intestinal model. Food Funct 2019; 10:6300-6311. [DOI: 10.1039/c9fo01679a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A 10% replacement of wheat flour with banana flour subjected to different processing conditions resulted in from 45.0 to 54.5% higher glucose transport inhibition.
Collapse
Affiliation(s)
- Joana Pico
- School of Engineering
- University of Guelph
- Guelph
- Canada
| | - Sydney Corbin
- Plants for Human Health Institute
- Department of Food
- Bioprocessing and Nutrition Science
- North Carolina State University
- Kannapolis
| | - Mario G. Ferruzzi
- Plants for Human Health Institute
- Department of Food
- Bioprocessing and Nutrition Science
- North Carolina State University
- Kannapolis
| | | |
Collapse
|
55
|
Abdel Ghany TM, Ganash M, Alawlaqi MM, Al-Rajhi AMH. Antioxidant, Antitumor, Antimicrobial Activities Evaluation of Musa paradisiaca L. Pseudostem Exudate Cultivated in Saudi Arabia. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-018-0580-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
56
|
Sidhu JS, Zafar TA. Bioactive compounds in banana fruits and their health benefits. FOOD QUALITY AND SAFETY 2018. [DOI: 10.1093/fqsafe/fyy019] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jiwan S Sidhu
- Department of Food Science & Technology, College of Life Sciences, Kuwait University, Safat, Kuwait
| | - Tasleem A Zafar
- Department of Food Science & Technology, College of Life Sciences, Kuwait University, Safat, Kuwait
| |
Collapse
|
57
|
Amah D, van Biljon A, Brown A, Perkins-Veazie P, Swennen R, Labuschagne M. Recent advances in banana (musa spp.) biofortification to alleviate vitamin A deficiency. Crit Rev Food Sci Nutr 2018; 59:3498-3510. [DOI: 10.1080/10408398.2018.1495175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Delphine Amah
- Department of Plant Sciences (Plant Breeding), University of the Free State, Bloemfontein, South Africa
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Angeline van Biljon
- Department of Plant Sciences (Plant Breeding), University of the Free State, Bloemfontein, South Africa
| | - Allan Brown
- International Institute of Tropical Agriculture, Arusha, Tanzania
| | | | - Rony Swennen
- International Institute of Tropical Agriculture, Arusha, Tanzania
- Bioversity International, Heverlee, Belgium
- Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Maryke Labuschagne
- Department of Plant Sciences (Plant Breeding), University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
58
|
Antifungal Activity of an Abundant Thaumatin-Like Protein from Banana against Penicillium expansum, and Its Possible Mechanisms of Action. Molecules 2018; 23:molecules23061442. [PMID: 29899211 PMCID: PMC6099679 DOI: 10.3390/molecules23061442] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 11/17/2022] Open
Abstract
Thaumatin-like protein from banana (designated BanTLP) has been purified by employing a simple protocol consisting of diethylaminoethyl Sephadex (DEAE⁻Sephadex) chromatography, gel filtration on Sephadex G50, and reversed-phase chromatography. The purified protein was identified by MALDI-TOF mass spectrometry, with an estimated molecular weight of 22.1 kDa. BanTLP effectively inhibited in vitro spore germination of Penicillium expansum, one of the main postharvest pathogens in fruits. This study further investigated the antifungal properties and underlying mechanisms of BanTLP against P. expansum. Results demonstrated that BanTLP exhibited antifungal activity in a wide pH range (4.0⁻10.0) at 20⁻50 °C. Propidium iodide (PI) influx and potassium release confirmed that BanTLP induced membrane disruption of the test pathogen, increasing the membrane permeability and disintegration of the cell. This led to cell death, as evidenced by the assays of thiobarbituric acid-reactive species (TBARS) content, the production of reactive oxygen species (ROS), and 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence integrity. Ultrastructural alterations in P. expansum conidia after BanTLP treatment revealed severe damage to the cell wall. These results suggest that BanTLP purified from banana exerts antifungal activity against P. expansum by inducing plasma membrane disturbance and cell wall disorganization.
Collapse
|
59
|
Soto-Maldonado C, Concha-Olmos J, Cáceres-Escobar G, Meneses-Gómez P. Sensory evaluation and glycaemic index of a food developed with flour from whole (pulp and peel) overripe banana (Musa cavendishii) discards. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
60
|
Nieman DC, Gillitt ND, Sha W, Esposito D, Ramamoorthy S. Metabolic recovery from heavy exertion following banana compared to sugar beverage or water only ingestion: A randomized, crossover trial. PLoS One 2018; 13:e0194843. [PMID: 29566095 PMCID: PMC5864065 DOI: 10.1371/journal.pone.0194843] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/21/2018] [Indexed: 11/18/2022] Open
Abstract
Objectives and methods Using a randomized, crossover, counterbalanced approach, cyclists (N = 20, overnight fasted state) engaged in the four 75-km time trials (2-week washout) while ingesting two types of bananas with similar carbohydrate (CHO) but different phenolic content (Cavendish, CAV; mini-yellow, MIY, 63% higher polyphenols), a 6% sugar beverage (SUG), and water only (WAT). CHO intake was set at 0.2 g/kg every 15 minutes. Blood samples were collected pre-exercise and 0 h-, 0.75 h-,1.5 h-, 3 h-, 4.5 h-, 21 h-, 45 h-post-exercise. Results Each of the CHO trials (CAV, MIY, SUG) compared to water was associated with higher post-exercise plasma glucose and fructose, and lower leukocyte counts, plasma 9+13 HODES, and IL-6, IL-10, and IL-1ra. OPLS-DA analysis showed that metabolic perturbation (N = 1,605 metabolites) for WAT (86.8±4.0 arbitrary units) was significantly greater and sustained than for CAV (70.4±3.9, P = 0.006), MIY (68.3±4.0, P = 0.002), and SUG (68.1±4.2, P = 0.002). VIP ranking (<3.0, N = 25 metabolites) showed that both CAV and MIY were associated with significant fold changes in metabolites including those from amino acid and xenobiotics pathways. OPLS-DA analysis of immediate post-exercise metabolite shifts showed a significant separation of CAV and MIY from both WAT and SUG (R2Y = 0.848, Q2Y = 0.409). COX-2 mRNA expression was lower in both CAV and MIY, but not SUG, versus WAT at 21-h post-exercise in THP-1 monocytes cultured in plasma samples. Analysis of immediate post-exercise samples showed a decrease in LPS-stimulated THP-1 monocyte extracellular acidification rate (ECAR) in CAV and MIY, but not SUG, compared to WAT. Conclusions CHO ingestion from bananas or a sugar beverage had a comparable influence in attenuating metabolic perturbation and inflammation following 75-km cycling. Ex-vivo analysis with THP-1 monocytes supported a decrease in COX-2 mRNA expression and reduced reliance on glycolysis for ATP production following ingestion of bananas but not sugar water when compared to water alone. Trial registration ClinicalTrials.gov, U.S. National Institutes of Health, identifier: NCT02994628
Collapse
Affiliation(s)
- David C. Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
- * E-mail:
| | - Nicholas D. Gillitt
- Dole Nutrition Research Laboratory, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Wei Sha
- Bioinformatics Services Division, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Debora Esposito
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | | |
Collapse
|
61
|
Ogawa EM, Costa HB, Ventura JA, Caetano LC, Pinto FE, Oliveira BG, Barroso MES, Scherer R, Endringer DC, Romão W. Chemical profile of pineapple cv. Vitória in different maturation stages using electrospray ionization mass spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1105-1116. [PMID: 28722812 DOI: 10.1002/jsfa.8561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Pineapple is the fruit of Ananas comosus var. comosus plant, being cultivated in tropical areas and has high energy content and nutritional value. Herein, 30 samples of pineapple cv. Vitória were analyzed as a function of the maturation stage (0-5) and their physico-chemical parameters monitored. In addition, negative-ion mode electrospray ionization mass spectrometry [ESI(-)FT-ICR MS] was used to identify and semi-quantify primary and secondary metabolites present in the crude and phenolic extracts of pineapple, respectively. RESULTS Physico-chemical tests show an increase in the total soluble solids (TSS) values and in the TSS/total titratable acidity ratio as a function of the maturity stage, where a maximum value was observed in stage 3 (¾ of the fruit is yellow, which corresponds to the color of the fruit peel). ESI(-)FT-ICR MS analysis for crude extracts showed the presence mainly of sugars as primary metabolites present in deprotonated molecule form ([M - H]- and [2 M - H]- ions) whereas, for phenolic fractions, 11 compounds were detected, being the most abundant in the third stage of maturation. This behavior was confirmed by quantitative analysis of total polyphenols. CONCLUSION ESI-FT-ICR MS was efficient in identifying primary (carbohydrates and organic acids) and secondary metabolites (13 phenolic compounds) presents in the crude and phenolic extract of the samples, respectively. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elizângela M Ogawa
- Laboratório de Petroleômica e Química Forense, Departamento de Química, Universidade Federal do Espírito Santo (UFES), Goiabeiras, Vitória, ES, Brazil
| | - Helber B Costa
- Laboratório de Petroleômica e Química Forense, Departamento de Química, Universidade Federal do Espírito Santo (UFES), Goiabeiras, Vitória, ES, Brazil
| | - José A Ventura
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural (INCAPER), Vitória, ES, Brazil
| | - Luiz Cs Caetano
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural (INCAPER), Vitória, ES, Brazil
| | - Fernanda E Pinto
- Laboratório de Petroleômica e Química Forense, Departamento de Química, Universidade Federal do Espírito Santo (UFES), Goiabeiras, Vitória, ES, Brazil
| | - Bruno G Oliveira
- Laboratório de Petroleômica e Química Forense, Departamento de Química, Universidade Federal do Espírito Santo (UFES), Goiabeiras, Vitória, ES, Brazil
| | | | - Rodrigo Scherer
- Universidade Vila Velha-UVV, Boa Vista, Espírito Santo, Brazil
| | - Denise C Endringer
- Universidade Vila Velha-UVV, Boa Vista, Espírito Santo, Brazil
- Instituto Federal do Espírito Santo (IFES), Soteco, Vila Velha, ES, Brazil
| | - Wanderson Romão
- Laboratório de Petroleômica e Química Forense, Departamento de Química, Universidade Federal do Espírito Santo (UFES), Goiabeiras, Vitória, ES, Brazil
- Instituto Federal do Espírito Santo (IFES), Soteco, Vila Velha, ES, Brazil
| |
Collapse
|
62
|
Vu HT, Scarlett CJ, Vuong QV. Phenolic compounds within banana peel and their potential uses: A review. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
63
|
Gullón B, Lú-Chau TA, Moreira MT, Lema JM, Eibes G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.07.008] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
64
|
La Barbera G, Capriotti AL, Cavaliere C, Montone CM, Piovesana S, Samperi R, Zenezini Chiozzi R, Laganà A. Liquid chromatography-high resolution mass spectrometry for the analysis of phytochemicals in vegetal-derived food and beverages. Food Res Int 2017; 100:28-52. [PMID: 28873689 DOI: 10.1016/j.foodres.2017.07.080] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 01/04/2023]
Abstract
The recent years witnessed a change in the perception of nutrition. Diet does not only provide nutrients to meet the metabolic requirements of the body, but it also constitutes an active way for the consumption of compounds beneficial for human health. Fruit and vegetables are an excellent source of such compounds, thus the growing interest in characterizing phytochemical sources, structures and activities. Given the interest for phytochemicals in food, the development of advanced and suitable analytical techniques for their identification is fundamental for the advancement of food research. In this review, the state of the art of phytochemical research in food plants is described, starting from sample preparation, throughout extract clean-up and compound separation techniques, to the final analysis, considering both qualitative and quantitative investigations. In this regard, from an analytical point of view, fruit and vegetable extracts are complex matrices, which greatly benefit from the use of modern hyphenated techniques, in particular from the combination of high performance liquid chromatography separation and high resolution mass spectrometry, powerful tools which are being increasingly used in the recent years. Therefore, selected applications to real samples are presented and discussed, in particular for the analysis of phenols, polyphenols and phenolic acids. Finally, some hot points are discussed, such as waste characterization for high value-compounds recovery and the untargeted metabolomics approach.
Collapse
Affiliation(s)
- Giorgia La Barbera
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Laura Capriotti
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmela Maria Montone
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Susy Piovesana
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Roberto Samperi
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
65
|
Lucci P, Saurina J, Núñez O. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.12.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
66
|
Ortiz L, Dorta E, Gloria Lobo M, González-Mendoza LA, Díaz C, González M. Use of Banana (Musa acuminata Colla AAA) Peel Extract as an Antioxidant Source in Orange Juices. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2017; 72:60-66. [PMID: 27987069 DOI: 10.1007/s11130-016-0591-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using banana peel extract as an antioxidant in freshly squeezed orange juices and juices from concentrate was evaluated. Free radical scavenging capacity increased by adding banana peel extracts to both types of orange juice. In addition, remarkable increases in antioxidant capacity using 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical were observed when equal or greater than 5 mg of banana peel extract per ml of freshly squeezed juice was added. No clear effects were observed in the capacity to inhibit lipid peroxidation. Adding 5 mg banana peel extract per ml of orange juice did not substantially modify the physicochemical and sensory characteristics of either type of juice. However, undesirable changes in the sensory characteristics (in-mouth sensations and colour) were detected when equal or greater than 10 mg banana peel extract per ml of orange juice was added. These results confirm that banana peel is a promising natural additive that increases the capacity to scavenge free radicals of orange juice with acceptable sensory and physicochemical characteristics for the consumer.
Collapse
Affiliation(s)
- Lucía Ortiz
- Instituto Canario de Investigaciones Agrarias, Apdo, 60, 38200, La Laguna, Spain
| | - Eva Dorta
- Faculty of Chemistry, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 328, Santiago, Chile
| | - M Gloria Lobo
- Instituto Canario de Investigaciones Agrarias, Apdo, 60, 38200, La Laguna, Spain
| | - L Antonio González-Mendoza
- Department of Chemical Engineering and Pharmaceutical Technology, University of La Laguna, Avenida Astrofísico Francisco Sánchez, s/n, 38206, La Laguna, Spain
| | - Carlos Díaz
- Department of Chemical Engineering and Pharmaceutical Technology, University of La Laguna, Avenida Astrofísico Francisco Sánchez, s/n, 38206, La Laguna, Spain
| | - Mónica González
- Instituto Canario de Investigaciones Agrarias, Apdo, 60, 38200, La Laguna, Spain.
| |
Collapse
|
67
|
Türker B, Savlak N, Kaşıkcı M. Effect of Green Banana Peel Flour Substitution on Physical Characteristics of Gluten-Free Cakes. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE 2016. [DOI: 10.12944/crnfsj.4.special-issue-october.25] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Celiac Disease is the most common food-sensitive entoropathy in humans that is triggered by the consumption of wheat gluten as well as related with protein in barley, rye and oat. The only treatment ever known for celiac disease is gluten-free diet. Most gluten-free food product on the market is rich in starch but poor in terms of other nutrients, functional and health benefitial ingredients. Green (unripe) banana is a good source of resistant starch, non-starch polysaccharides including dietary fiber, antioxidants, poliphenols, essential minerals such as potassium, various vitamins e.g. provitamin A, carotenoid, B1, B2, C which are important for human health. In this research, it is aimed to develop nutritious and functional gluten free cake formulations by substituting green banana peel flour (GBPF) with rice flour (5%, 10%, 15% and 20%) and to investigate physical properties of GBPF substituted cakes. Cake volume, specific volume, density, baking loss and height of the cakes were in the range of 831.44 – 1034.11 cm3, 1.91-2.41 cm3/g, 0.41-0.52 g/cm3, 16.38-18.14% and 4.36-5.77 cm respectively. As a result, GBPF substituted gluten free cakes were successfully produced. Physical analyses of gluten free cakes showed that 5% and 10% GBPF substitution did not affect gluten free cake volume, specific volume, density and baking loss negatively. 5% and 10% GBPF substituted cakes were not different from control cake statistically (p>0.05). However, substitution levels of 15% and 20% resulted in poorer physical properties. Sensory analysis (data not shown) indicated that all GBPF substitution levels were acceptable, as determined by hedonic scala tests. By developing a nutritious gluten free cake alternative, it is expected to provide an alternative in the dietary diversity of individuals with celiac disease.
Collapse
Affiliation(s)
- Burcu Türker
- Department of Food Engineering, Celal Bayar University, Manisa, Turkey, 45140
| | - Nazlı Savlak
- Department of Food Engineering, Celal Bayar University, Manisa, Turkey, 45140
| | - Müzeyyen Kaşıkcı
- Department of Food Engineering, Celal Bayar University, Manisa, Turkey, 45140
| |
Collapse
|
68
|
Singh B, Singh JP, Kaur A, Singh N. Bioactive compounds in banana and their associated health benefits – A review. Food Chem 2016; 206:1-11. [DOI: 10.1016/j.foodchem.2016.03.033] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/23/2016] [Accepted: 03/10/2016] [Indexed: 12/13/2022]
|
69
|
Dong C, Hu H, Hu Y, Xie J. Metabolism of Flavonoids in Novel Banana Germplasm during Fruit Development. FRONTIERS IN PLANT SCIENCE 2016; 7:1291. [PMID: 27625665 PMCID: PMC5003829 DOI: 10.3389/fpls.2016.01291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/12/2016] [Indexed: 05/23/2023]
Abstract
Banana is a commercially important fruit, but its flavonoid composition and characteristics has not been well studied in detail. In the present study, the metabolism of flavonoids was investigated in banana pulp during the entire developmental period of fruit. 'Xiangfen 1,' a novel flavonoid-rich banana germplasm, was studied with 'Brazil' serving as a control. In both varieties, flavonoids were found to exist mainly in free soluble form and quercetin was the predominant flavonoid. The most abundant free soluble flavonoid was cyanidin-3-O-glucoside chloride, and quercetin was the major conjugated soluble and bound flavonoid. Higher content of soluble flavonoids was associated with stronger antioxidant activity compared with the bound flavonoids. Strong correlation was observed between antioxidant activity and cyanidin-3-O-glucoside chloride content, suggesting that cyanidin-3-O-glucoside chloride is one of the major antioxidants in banana. In addition, compared with 'Brazil,' 'Xiangfen 1' fruit exhibited higher antioxidant activity and had more total flavonoids. These results indicate that soluble flavonoids play a key role in the antioxidant activity of banana, and 'Xiangfen 1' banana can be a rich source of natural antioxidants in human diets.
Collapse
|
70
|
Pandey A, Alok A, Lakhwani D, Singh J, Asif MH, Trivedi PK. Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana. Sci Rep 2016; 6:31361. [PMID: 27539368 PMCID: PMC4990921 DOI: 10.1038/srep31361] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana.
Collapse
Affiliation(s)
- Ashutosh Pandey
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, INDIA.,National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Government of India, C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali 160071, India
| | - Anshu Alok
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Government of India, C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali 160071, India
| | - Deepika Lakhwani
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, INDIA
| | - Jagdeep Singh
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Government of India, C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali 160071, India
| | - Mehar H Asif
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, INDIA
| | - Prabodh K Trivedi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, INDIA
| |
Collapse
|
71
|
Mohd Rasidek NA, Mad Nordin MF, Shameli K. Formulation and evaluation of semisolid jelly produced by Musa acuminata Colla (AAA Group) peels. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2015.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
72
|
Passo Tsamo CV, Herent MF, Tomekpe K, Happi Emaga T, Quetin-Leclercq J, Rogez H, Larondelle Y, Andre CM. Effect of boiling on phenolic profiles determined using HPLC/ESI-LTQ-Orbitrap-MS, physico-chemical parameters of six plantain banana cultivars (Musa sp). J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2015.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
73
|
López-Cobo A, Gómez-Caravaca AM, Švarc-Gajić J, Segura-Carretero A, Fernández-Gutiérrez A. Determination of phenolic compounds and antioxidant activity of a Mediterranean plant: The case of Satureja montana subsp. kitaibelii. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.10.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
74
|
Pereira A, Maraschin M. Banana (Musa spp) from peel to pulp: ethnopharmacology, source of bioactive compounds and its relevance for human health. JOURNAL OF ETHNOPHARMACOLOGY 2015; 160:149-63. [PMID: 25449450 DOI: 10.1016/j.jep.2014.11.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banana is a fruit with nutritional properties and also with acclaimed therapeutic uses, cultivated widely throughout the tropics as source of food and income for people. Banana peel is known by its local and traditional use to promote wound healing mainly from burns and to help overcome or prevent a substantial number of illnesses, as depression. AIM OF THE STUDY This review critically assessed the phytochemical properties and biological activities of Musa spp fruit pulp and peel. MATERIALS AND METHODS A survey on the literature on banana (Musa spp, Musaceae) covering its botanical classification and nomenclature, as well as the local and traditional use of its pulp and peel was performed. Besides, the current state of art on banana fruit pulp and peel as interesting complex matrices sources of high-value compounds from secondary metabolism was also approached. RESULTS Dessert bananas and plantains are systematic classified into four sections, Eumusa, Rhodochlamys, Australimusa, and Callimusa, according to the number of chromosomes. The fruits differ only in their ploidy arrangement and a single scientific name can be given to all the edible bananas, i.e., Musa spp. The chemical composition of banana's peel and pulp comprise mostly carotenoids, phenolic compounds, and biogenic amines. The biological potential of those biomasses is directly related to their chemical composition, particularly as pro-vitamin A supplementation, as potential antioxidants attributed to their phenolic constituents, as well as in the treatment of Parkinson's disease considering their contents in l-dopa and dopamine. CONCLUSION Banana's pulp and peel can be used as natural sources of antioxidants and pro-vitamin A due to their contents in carotenoids, phenolics, and amine compounds, for instance. For the development of a phytomedicine or even an allopathic medicine, e.g., banana fruit pulp and peel could be of interest as raw materials riches in beneficial bioactive compounds.
Collapse
Affiliation(s)
- Aline Pereira
- Federal University of Santa Catarina, Plant Morphogenesis and Biochemistry Laboratory, PO Box 476, 88049-900 Florianopolis, Brazil.
| | - Marcelo Maraschin
- Federal University of Santa Catarina, Plant Morphogenesis and Biochemistry Laboratory, PO Box 476, 88049-900 Florianopolis, Brazil.
| |
Collapse
|
75
|
Valérie Passo Tsamo C, Andre CM, Ritter C, Tomekpe K, Ngoh Newilah G, Rogez H, Larondelle Y. Characterization of Musa sp. fruits and plantain banana ripening stages according to their physicochemical attributes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8705-8715. [PMID: 25101926 DOI: 10.1021/jf5021939] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study aimed at understanding the contribution of the fruit physicochemical parameters to Musa sp. diversity and plantain ripening stages. A discriminant analysis was first performed on a collection of 35 Musa sp. cultivars, organized in six groups based on the consumption mode (dessert or cooking banana) and the genomic constitution. A principal component analysis reinforced by a logistic regression on plantain cultivars was proposed as an analytical approach to describe the plantain ripening stages. The results of the discriminant analysis showed that edible fraction, peel pH, pulp water content, and pulp total phenolics were among the most contributing attributes for the discrimination of the cultivar groups. With mean values ranging from 65.4 to 247.3 mg of gallic acid equivalents/100 g of fresh weight, the pulp total phenolics strongly differed between interspecific and monospecific cultivars within dessert and nonplantain cooking bananas. The results of the logistic regression revealed that the best models according to fitting parameters involved more than one physicochemical attribute. Interestingly, pulp and peel total phenolic contents contributed in the building up of these models.
Collapse
|