51
|
Zhang X, Lu Y, Zhao R, Wang C, Wang C, Zhang T. Study on simultaneous binding of resveratrol and curcumin to β-lactoglobulin: Multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107331] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
52
|
Anthocyanin biofortified black, blue and purple wheat exhibited lower amino acid cooking losses than white wheat. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
53
|
Herrera-Balandrano DD, Chai Z, Beta T, Feng J, Huang W. Blueberry anthocyanins: An updated review on approaches to enhancing their bioavailability. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
54
|
Cruz L, Basílio N, Mateus N, de Freitas V, Pina F. Natural and Synthetic Flavylium-Based Dyes: The Chemistry Behind the Color. Chem Rev 2021; 122:1416-1481. [PMID: 34843220 DOI: 10.1021/acs.chemrev.1c00399] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Flavylium compounds are a well-known family of pigments because they are prevalent in the plant kingdom, contributing to colors over a wide range from shades of yellow-red to blue in fruits, flowers, leaves, and other plant parts. Flavylium compounds include a large variety of natural compound classes, namely, anthocyanins, 3-deoxyanthocyanidins, auronidins, and their respective aglycones as well as anthocyanin-derived pigments (e.g., pyranoanthocyanins, anthocyanin-flavan-3-ol dimers). During the past few decades, there has been increasing interest among chemists in synthesizing different flavylium compounds that mimic natural structures but with different substitution patterns that present a variety of spectroscopic characteristics in view of their applications in different industrial fields. This Review provides an overview of the chemistry of flavylium-based compounds, in particular, the synthetic and enzymatic approaches and mechanisms reported in the literature for obtaining different classes of pigments, their physical-chemical properties in relation to their pH-dependent equilibria network, and their chemical and enzymatic degradation. The development of flavylium-based systems is also described throughout this Review for emergent applications to explore some of the physical-chemical properties of the multistate of species generated by these compounds.
Collapse
Affiliation(s)
- Luis Cruz
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno Basílio
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Fernando Pina
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
55
|
Yan M, Dong S, Shen X, Lu C, Ye H, Zhang T. Lactoferrin-thymol complex for the disinfection of gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Food Funct 2021; 12:11165-11173. [PMID: 34633016 DOI: 10.1039/d1fo02153b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Seeking all-nature derived antibacterial agents with effective disinfection function, high human safety as well as environment-friendly characteristics are highly required in the food industry. Herein, we report the lactoferrin-thymol (LF-Thy) complex as an effective killing agent against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). The multi-spectroscopy results clearly demonstrate the combination of LF and Thy to form the LF-Thy complex, accompanied with LF conformation variations including the increase in the hydrophobicity of amino acid residues and changes in the types of secondary conformation distribution in LF. Molecular docking results show that LF exhibits three possible binding sites and five predicted stable binding modes for Thy with the help of hydrogen bonding and hydrophobic interactions. Moreover, LF-Thy demonstrated a significantly higher antibacterial ability compared to LF and displays effective disinfection function against E. coli and S. aureus. The minimum inhibitory concentration (MIC) of LF toward E. coli and S. aureus is >40 mg mL-1 and 40 mg mL-1, which decreases to 10 mg mL-1 and 5 mg mL-1 after combination with Thy, respectively. This work demonstrates the promising antibacterial activities of the LF-Thy complex and provides an alternative agent for combating bacterial infection in the food industry, which holds great potential for promoting the development of the all-natural healthcare food complex.
Collapse
Affiliation(s)
- Mi Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Shuyue Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Xue Shen
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Chengwen Lu
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
56
|
Zhang Q, Cheng Z, Chen R, Wang Y, Miao S, Li Z, Wang S, Fu L. Covalent and non-covalent interactions of cyanidin-3- O-glucoside with milk proteins revealed modifications in protein conformational structures, digestibility, and allergenic characteristics. Food Funct 2021; 12:10107-10120. [PMID: 34522929 DOI: 10.1039/d1fo01946e] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Currently, there is a need to explore the effects of different types of protein-anthocyanin complexations, as well as the possible changes in the nutrition and allergenicity of the formed complexes. Here, we systematically investigated the covalent and non-covalent interactions between cyanidin-3-O-glucoside (C3G) and two major milk proteins, α-casein (α-CN) and β-lactoglobulin (β-LG). Fluorescence quenching data showed that, under non-covalent conditions, C3G quenched the fluorescence of the two proteins via a static process, with the interaction forces being revealed; for covalent products, decreased fluorescence intensities were observed with red shifts in the λmax. Multiple spectroscopic analyses implied that C3G-addition induced protein structural unfolding through transitions between the random coil and ordered secondary components. With a two-stage simulated gastrointestinal (GI) digestion model, it was seen that covalent complexes, not their non-covalent counterparts, showed reduced protein digestibility, ascribed to structural changes resulting in the unavailability of enzyme cleaving sites. The GI digests displayed prominent 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation-scavenging abilities (3.8-11.1 mM Trolox equivalents per mL digest), in contrast to the markedly reduced 1,1-diphenyl-2-picrylhydrazyl radical-scavenging capacities. Additionally, covalent protein-C3G complexes, but not their non-covalent counterparts, showed lower IgE-binding levels in comparison to the native control. This study provides new understanding for the development of anthocyanin-milk protein systems as functional ingredients with health-beneficial properties.
Collapse
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China.
| | - Zhouzhou Cheng
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China.
| | - Ruyan Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China.
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China.
| | - Song Miao
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Zhenxing Li
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, 266003, P.R. China
| | - Shunyu Wang
- Zhejiang Li Zi Yuan Food Co., LTD, Jinhua, 321031, P.R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China.
| |
Collapse
|
57
|
Tamkutė L, Vaicekauskaitė R, Melero B, Jaime I, Rovira J, Venskutonis PR. Effects of chokeberry extract isolated with pressurized ethanol from defatted pomace on oxidative stability, quality and sensory characteristics of pork meat products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
58
|
Luo H, Li H, Liu Y, Yang L, Xiao Q, Huang S. Investigation on conformational variation and activity of trypsin affected by black phosphorus quantum dots via multi-spectroscopy and molecular modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119746. [PMID: 33819763 DOI: 10.1016/j.saa.2021.119746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Binding interaction between black phosphorus quantum dots (BPQDs) and trypsin was researched deeply to illustrate the variations on conformation and activity of trypsin affected by BPQDs via multi-spectroscopy and molecular modeling. Experimental results implied that inherent fluorescence of trypsin was quenched by BPQDs via static fluorescence quenching mode. BPQDs bound with trypsin to construct ground-state complex under the binding forces of van der Waal interaction and hydrophobic interaction, resulting in the conformational change of trypsin to be more hydrophilic and incompact. The result of molecular modeling indicated that BPQDs interacted with trypsin at its allosteric site and inhibited the activity of trypsin via non-competitive manner. Finally, BPQDs efficiently inhibited the digestion activity of trypsin on human serum albumin, human cervical carcinoma HeLa cells, and human lung adenocarcinoma A549 cells. This work not only explores the in-depth understanding on the influence of BPQDs on proteinases but also paves the way for further application of BPQDs on human beings for diseases treatments.
Collapse
Affiliation(s)
- Huajian Luo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Haimei Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Liyun Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
59
|
Baba WN, McClements DJ, Maqsood S. Whey protein-polyphenol conjugates and complexes: Production, characterization, and applications. Food Chem 2021; 365:130455. [PMID: 34237568 DOI: 10.1016/j.foodchem.2021.130455] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 02/04/2023]
Abstract
Whey proteins are widely used as functional ingredients in various food applications owing to their emulsifying, foaming, and gelling properties. However, their functional attributes are limited in some applications because of the dependence of their performance on pH, mineral levels, and temperature. Several approaches have been investigated to enhance the functional performance of whey proteins by interacting them with polyphenols via covalent bonds (conjugates) or non-covalent bonds (complexes). The interaction of the polyphenols to the whey proteins alters their molecular characteristics, techno-functional attributes, and biological properties. Analytical methods for characterizing the properties of whey protein-polyphenol complexes and conjugates are highlighted, and a variety of potential applications within the food industry are discussed, including as antioxidants, emulsifiers, and foaming agents. Finally, areas for future research are highlighted.
Collapse
Affiliation(s)
- Waqas N Baba
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | | | - Sajid Maqsood
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
60
|
Attaribo T, Huang G, Xin X, Zeng Q, Zhang Y, Zhang N, Tang L, Sedjoah RCAA, Zhang R, Lee KS, Jin BR, Gui Z. Effect of the silkworm pupa protein-glucose conjugate on the thermal stability and antioxidant activity of anthocyanins. Food Funct 2021; 12:4132-4141. [PMID: 33978000 DOI: 10.1039/d1fo00333j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anthocyanin (cyanidin-3-O-glucose) is a natural water-soluble pigment with a robust antioxidant capacity. However, its poor stability and bioavailability limits its application as a functional food ingredient. This study explored the ability of the silkworm pupa protein-glucose (Spp-Glu) conjugate, developed under wet-heating conditions, to improve the thermal stability and antioxidant activity of cyanidin-3-O-glucose (C3G) at pH 3.0 and 6.8. The characterization experiments suggested that C3G complexed with the Spp-Glu conjugate could modify the protein's microenvironment and cause unfolding of the protein's secondary structures under varied pH conditions. Spectroscopic techniques further revealed the formation of complexes via hydrophobic interactions and static quenching processes when C3G was bound to Spp or Spp-Glu. The formation of these complexes effectively attenuated C3G degradation, thereby enhancing its stability under heat treatment over a range of pH values, and the experiments measuring antioxidant activity suggested that the Spp-Glu conjugate formed does not affect the efficacy of C3G after complexation. Therefore, our study suggests that Spp-Glu has the potential to effectively protect and deliver anthocyanins during industrial application for functional food formulation.
Collapse
Affiliation(s)
- Thomas Attaribo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China.
| | - Gaiqun Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China. and Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan 637000, China
| | - Xiangdong Xin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China.
| | - Qinlei Zeng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China.
| | - Yueyue Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China.
| | - Ning Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China.
| | - Liumei Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China.
| | | | - Ran Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China. and Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea
| | - Zhongzheng Gui
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China. and Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| |
Collapse
|
61
|
Zhu L, Song X, Pan F, Tuersuntuoheti T, Zheng F, Li Q, Hu S, Zhao F, Sun J, Sun B. Interaction mechanism of kafirin with ferulic acid and tetramethyl pyrazine: Multiple spectroscopic and molecular modeling studies. Food Chem 2021; 363:130298. [PMID: 34237557 DOI: 10.1016/j.foodchem.2021.130298] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022]
Abstract
Ferulic acid (FA) and tetramethyl pyrazine (TMP) are intrinsic bioactive compounds in baijiu, and kafirin is the major protein of sorghum, which is the raw material of baijiu. In this study, the interactions of kafirin-FA and kafirin-TMP were investigated by multiple spectroscopic and molecular modeling techniques. Fluorescence spectra showed that intrinsic fluorescence of kafirin drastically quenched because of the formations of kafirin-FA and kafirin-TMP complexes. The CD studies indicated that the combination with FA or TMP decreased the α-helix content of kafirin slightly. The shifts and intensity changes of UV-Vis, FTIR and fluorescence spectra confirmed the formations of complexes. Moreover, the molecular docking and molecular dynamics studies showed that hydrophobic interactions and hydrogen bonds played major roles in the formations of kafirin-FA and kafirin-TMP complexes, and the formations of complexes made kafirin structures more compact. This work is of great importance for further quality improvement in baijiu and alcoholic beverages.
Collapse
Affiliation(s)
- Lin Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xuebo Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Fei Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Tuohetisayipu Tuersuntuoheti
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Fuping Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Qing Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Siqi Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Feifei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinyuan Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
62
|
The desulfite mechanism exploration in a mode: Interaction between casein and sulfite by multi-spectrometry. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
63
|
Zhang Y, Lu Y, Yang Y, Li S, Wang C, Wang C, Zhang T. Comparison of non-covalent binding interactions between three whey proteins and chlorogenic acid: Spectroscopic analysis and molecular docking. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101035] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
64
|
Xue H, Tan J, Zhu X, Li Q, Tang J, Cai X. Counter-current fractionation-assisted and bioassay-guided separation of active compounds from cranberry and their interaction with α-glucosidase. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
65
|
Zhang Q, Huang Z, Wang Y, Wang Y, Fu L, Su L. Chinese bayberry (Myrica rubra) phenolics mitigated protein glycoxidation and formation of advanced glycation end-products: A mechanistic investigation. Food Chem 2021; 361:130102. [PMID: 34029891 DOI: 10.1016/j.foodchem.2021.130102] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 12/30/2022]
Abstract
Protein glycation and formation of advanced glycation end-products (AGEs) impose threats to the human health. This study firstly investigated the inhibition of Chinese bayberry (Myrica rubra) phenolics on AGEs formation through mechanistic analysis. Four common Chinese bayberry cultivars were selected to prepare phenolic-rich extracts (CBEs) and characterized for phenolic composition, and their anti-AGE properties were evaluated in multiple in vitro systems. Total sixteen phenolics were quantified in CBEs by UPLC-ESI-MS/MS. CBEs reduced total and specific fluorescent AGEs formation in various simulating models, and protected the protein from structural modification, oxidation, and cross-linking. Mechanistic analysis unveiled that scavenging of free radicals, inactivation of transition metals, interaction with protein to form complexes, and trapping of reactive α-dicarbonyls to form adducts underlain the mechanisms of the anti-glycative actions of CBEs. Chinese bayberry fruits, especially the cultivars Biqi and Wuzi, may be a promising dietary strategy to mitigate AGEs load in the human body.
Collapse
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Zhijie Huang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yong Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Laijin Su
- Wenzhou Academy of Agricultural Science, Wenzhou Characteristic Food Resources Engineering and Technology Research Center, Wenzhou 325006, PR China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, PR China.
| |
Collapse
|
66
|
Anthocyanin-β-lactoglobulin nanoparticles in acidic media: synthesis, characterization and interaction study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
67
|
The interaction mechanism of β-casein with oligomeric proanthocyanidins and its effect on proanthocyanidin bioaccessibility. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
68
|
Wu Y, Yin Z, Qie X, Chen Y, Zeng M, Wang Z, Qin F, Chen J, He Z. Interaction of Soy Protein Isolate Hydrolysates with Cyanidin-3- O-Glucoside and Its Effect on the In Vitro Antioxidant Capacity of the Complexes under Neutral Condition. Molecules 2021; 26:1721. [PMID: 33808779 PMCID: PMC8003374 DOI: 10.3390/molecules26061721] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/06/2021] [Accepted: 03/16/2021] [Indexed: 01/25/2023] Open
Abstract
The interaction of soy protein isolate (SPI) and its hydrolysates (SPIHs) with cyanidin-3-O-glucoside (C3G) at pH 7.0 were investigated to clarify the changes in the antioxidant capacity of their complexes. The results of intrinsic fluorescence revealed that C3G binds to SPI/SPIHs mainly through hydrophobic interaction, and the binding affinity of SPI was stronger than that of SPIHs. Circular dichroism and Fourier-transform infrared spectroscopy analyses revealed that the interaction with C3G did not significantly change the secondary structures of SPI/SPIHs, while the surface hydrophobicity and average particle size of proteins decreased. Furthermore, the SPI/SPIHs-C3G interaction induced an antagonistic effect on the antioxidant capacity (ABTS and DPPH) of the complex system, with the masking effect on the ABTS scavenging capacity of the SPIHs-C3G complexes being lower than that of the SPI-C3G complexes. This study contributes to the design and development of functional beverages that are rich in hydrolysates and anthocyanins.
Collapse
Affiliation(s)
- Yaru Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; (Y.W.); (Z.Y.); (X.Q.); (Y.C.); (M.Z.); (Z.W.); (F.Q.); (J.C.)
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhucheng Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; (Y.W.); (Z.Y.); (X.Q.); (Y.C.); (M.Z.); (Z.W.); (F.Q.); (J.C.)
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xuejiao Qie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; (Y.W.); (Z.Y.); (X.Q.); (Y.C.); (M.Z.); (Z.W.); (F.Q.); (J.C.)
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; (Y.W.); (Z.Y.); (X.Q.); (Y.C.); (M.Z.); (Z.W.); (F.Q.); (J.C.)
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; (Y.W.); (Z.Y.); (X.Q.); (Y.C.); (M.Z.); (Z.W.); (F.Q.); (J.C.)
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; (Y.W.); (Z.Y.); (X.Q.); (Y.C.); (M.Z.); (Z.W.); (F.Q.); (J.C.)
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; (Y.W.); (Z.Y.); (X.Q.); (Y.C.); (M.Z.); (Z.W.); (F.Q.); (J.C.)
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; (Y.W.); (Z.Y.); (X.Q.); (Y.C.); (M.Z.); (Z.W.); (F.Q.); (J.C.)
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; (Y.W.); (Z.Y.); (X.Q.); (Y.C.); (M.Z.); (Z.W.); (F.Q.); (J.C.)
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
69
|
Wu G, Hui X, Mu J, Brennan MA, Brennan CS. Functionalization of whey protein isolate fortified with blackcurrant concentrate by spray-drying and freeze-drying strategies. Food Res Int 2021; 141:110025. [PMID: 33641954 DOI: 10.1016/j.foodres.2020.110025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023]
Abstract
A solution of whey protein isolate was combined with blackcurrant concentrate via spray-drying and freeze-drying techniques separately to develop novel protein ingredients, (SWB and FWB). Chemical compositions, colour profiles, total anthocyanin content and encapsulation efficacy of the protein ingredients were evaluated. An in vitro digestion process was employed to observe the changes in total phenolic content, antioxidant activity, and predictive in vitro glycaemic response of the protein ingredients. The half maximal inhibitory concentration (IC50) towards α-Amylase, and a molecular docking study on the interactions of α-Amylase with anthocyanins, were both performed to investigate the potential mechanisms of hypoglycaemic properties of these protein ingredients. The protein contents of SWB and FWB were 67.94 ± 0.47% and 68.16 ± 0.77%, respectively. Blackcurrant concentrate significantly (p < 0.001) changed the colour profiles of whey protein isolate. SWB obtained a higher total phenol content (3711.28 ± 4.36 μg/g), total anthocyanin content (85390.80 ± 162.81 μg/100 g), and greater encapsulation efficacy (99.64 ± 0.16%) than those of FWB (3413.03 ± 20.60 μg/g, 64230.24 ± 441.08 μg/100 g, and 95.43 ± 0.14%, respectively). Total phenolic content and antioxidant activities of SWB and FWB decreased after the in vitro digestion. The reducing sugar released during the in vitro digestion from SWB and FWB decreased compared with their corresponding controls (SWC and FWC). FWB (IC50 = 73.46 μg/mL) exhibited stronger α-Amylase inhibitory activity than SWB (IC50 = 81.46 μg/mL). Different anthocyanins differed from binding affinities to bind with the active sites of α-Amylase via formation of hydrogen bonds. This study suggested whey protein encapsulated-blackcurrant concentrate might be an innovative food product with improved nutritional profiles. Both spray- and freeze-drying are potential options to this encapsulation.
Collapse
Affiliation(s)
- Gang Wu
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand; Riddet Institute, Palmerston North, New Zealand
| | - Xiaodan Hui
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand; Riddet Institute, Palmerston North, New Zealand
| | - Jianlou Mu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Margaret A Brennan
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Charles S Brennan
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand; Riddet Institute, Palmerston North, New Zealand.
| |
Collapse
|
70
|
Counter-Current Fractionation-Assisted Bioassay-Guided Separation of Active Compound from Blueberry and the Interaction between the Active Compound and α-Glucosidase. Foods 2021; 10:foods10030509. [PMID: 33804322 PMCID: PMC7998573 DOI: 10.3390/foods10030509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
An efficient strategy for the selection of active compounds from blueberry based on counter-current fractionation and bioassay-guided separation was established in this study. Blueberry extract showed potential α-glucosidase inhibitory activity. After extraction by different solvents, the active components were enriched in water. The water extract was divided into six fractions via high-speed counter-current chromatography to further track the active components. Results indicated that the α-glucosidase inhibition rate of F4 was remarkable higher than the others. Cyanidin-3-glucoside (C3G) with a purity of 94.16% was successfully separated from F4 through column chromatography, and its structure was identified by ultraviolet spectral, Fourier-transformed infrared spectroscopy, high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry, 1H nuclear magnetic resonance (NMR), and 13C NMR. The interaction mechanism between C3G and α-glucosidase was clearly characterized and described by spectroscopic methods, including fluorescence and circular dichroism (CD) in combination with molecular docking techniques. C3G could spontaneously bind with α-glucosidase to form complexes by hydrogen bonds. The secondary structure of α-glucosidase changed in varying degrees after complexation with C3G. The α-helical and β-turn contents of α-glucosidase decreased, whereas the β-sheet content and the irregular coil structures increased. Molecular docking speculated that C3G could form hydrogen bonds with α-glucosidase by binding to the active sit (Leu 313, Ser 157, Tyr 158, Phe 314, Arg 315, and two Asp 307). These findings may be useful for the development of functional foods to tackle type 2 diabetes.
Collapse
|
71
|
Kong F, Tian J, Yang M, Zheng Y, Cao X, Yue X. Characteristics of the interaction mechanisms of xylitol with β-lactoglobulin and β-casein: Amulti-spectral method and docking study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118824. [PMID: 32829156 DOI: 10.1016/j.saa.2020.118824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Proteins and functional polyols are essential food ingredients coexisting in the food matrix, and therefore, interactions between them inevitably occur. In this study, the interaction mechanisms of xylitol (XY) with bovine milk β-lactoglobulin (β-LG) and β-casein (β-CN) were studied using multispectral techniques and molecular docking. It was found that XY strongly quenched the intrinsic fluorescence of β-LG and β-CN by static quenching. The values of the binding constants were KA(β-LG-XY) = 3.369 × 104 L/mol and KA(β-CN- XY) = 7.821 × 104 L/mol, indicating that the binding affinity of XY to β-CN was higher than that for β-LG. Hydrogen bonding and van der Waals forces played a major role in the interactions of XY with β-LG and β-CN, and both interactions were exothermic. Simultaneous fluorescence, three-dimensional fluorescence, and circular dichroism spectroscopy showed that binding of XY did not change the secondary structure of β-LG. However, XY interaction with β-CN led to the conversion of α-helices to random coils and structural loosening. In addition, molecular docking predicted the most likely binding sites of XY in both proteins and the interaction forces involved in binding, confirming the spectroscopic results. This study improves the understanding of the interactions of XY with β-LG and β-CN in functional dairy products and provides a theoretical basis for the addition of XY in a functional milk base.
Collapse
Affiliation(s)
- Fanhua Kong
- College of Food Science, Shenyang Agriculture University, Shenyang 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agriculture University, Shenyang 110866, China
| | - Mei Yang
- College of Food Science, Shenyang Agriculture University, Shenyang 110866, China
| | - Yan Zheng
- College of Food Science, Shenyang Agriculture University, Shenyang 110866, China
| | - Xueyan Cao
- College of Food Science, Shenyang Agriculture University, Shenyang 110866, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agriculture University, Shenyang 110866, China.
| |
Collapse
|
72
|
Effect of preheated milk proteins and bioactive compounds on the stability of cyanidin-3-O-glucoside. Food Chem 2020; 345:128829. [PMID: 33316711 DOI: 10.1016/j.foodchem.2020.128829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
Native and preheated whey protein isolates (WPI) and casein (at 55 °C-90 °C) were used as protective carriers. Three bioactive compounds, including (-)-Epigallocatechin-3-gallte (EGCG), gallic acid, and vitamin C, were added to enhance the stability of cyanidin-3-O-glucoside (C3G). Under acidic (pH 3.6) and neutral (pH 6.3) conditions, both native and preheated milk proteins showed significant protective effect on C3G. WPI preheated at 85 °C presented the best protective effect on C3G under neutral condition by reducing its thermal, oxidation, and photo degradation rates 25.0%, 38.0%, and 41.1%, respectively. The addition of vitamin C into the protein-anthocyanin solutions accelerated the color loss of C3G, whereas EGCG and gallic acid improved its thermal stability. Among the bioactive compounds, gallic acid provided the most significant protective effect on C3G by further decreasing the thermal degradation rate of C3G 44.6% as a result of the formation of 85 °C preheated WPI-gallic acid-C3G complexes.
Collapse
|
73
|
Kong F, Kang S, An Y, Li W, Han H, Guan B, Yang M, Zheng Y, Yue X. The effect of non-covalent interactions of xylitol with whey protein and casein on structure and functionality of protein. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104841] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
74
|
Yu H, Li C, Wang X, Duan J, Yang N, Xie L, Yuan Y, Li S, Bi C, Yang B, Li Y. Techniques and Strategies for Potential Protein Target Discovery and Active Pharmaceutical Molecule Screening in a Pandemic. J Proteome Res 2020; 19:4242-4258. [PMID: 32957788 PMCID: PMC7640955 DOI: 10.1021/acs.jproteome.0c00372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 12/12/2022]
Abstract
Viruses remain a major challenge in the fierce fight against diseases. There have been many pandemics caused by various viruses throughout the world over the years. Recently, the global outbreak of COVID-19 has had a catastrophic impact on human health and the world economy. Antiviral drug treatment has become another essential means to overcome pandemics in addition to vaccine development. How to quickly find effective drugs that can control the development of a pandemic is a hot issue that still needs to be resolved in medical research today. To accelerate the development of drugs, it is necessary to target the key target proteins in the development of the pandemic, screen active molecules, and develop reliable methods for the identification and characterization of target proteins based on the active ingredients of drugs. This article discusses key target proteins and their biological mechanisms in the progression of COVID-19 and other major epidemics. We propose a model based on these foundations, which includes identifying potential core targets, screening potential active molecules of core targets, and verifying active molecules. This article summarizes the related innovative technologies and methods. We hope to provide a reference for the screening of drugs related to pandemics and the development of new drugs.
Collapse
Affiliation(s)
| | | | | | - Jingyi Duan
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Na Yang
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Lijuan Xie
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Yu Yuan
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Shanze Li
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Chenghao Bi
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Bin Yang
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Yubo Li
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| |
Collapse
|
75
|
Interaction of xylitol with whey proteins: Multi-spectroscopic techniques and docking studies. Food Chem 2020; 326:126804. [DOI: 10.1016/j.foodchem.2020.126804] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 12/27/2022]
|
76
|
Interaction and binding mechanism of cyanidin-3-O-glucoside to ovalbumin in varying pH conditions: A spectroscopic and molecular docking study. Food Chem 2020; 320:126616. [DOI: 10.1016/j.foodchem.2020.126616] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022]
|
77
|
Zang Z, Chou S, Tian J, Lang Y, Shen Y, Ran X, Gao N, Li B. Effect of whey protein isolate on the stability and antioxidant capacity of blueberry anthocyanins: A mechanistic and in vitro simulation study. Food Chem 2020; 336:127700. [PMID: 32768906 DOI: 10.1016/j.foodchem.2020.127700] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 01/06/2023]
Abstract
The processing stability and antioxidant capacity of blueberry anthocyanins (ANs) in the presence of whey protein isolate (WPI) were examined. WPI was found to enhance both the stability and antioxidant activity of ANs during processing and simulated in vitro digestion, especially at a concentration of 0.15 mg·mL-1. Fluorescence and ultraviolet-visible absorption spectroscopy showed that ANs were primarily stabilized by hydrophobic forces between WPI and malvidin-3-O-galactoside (M3G), the major anthocyanin monomer. Circular dichroism and Fourier-transform infrared spectroscopy confirmed that the structure of WPI changed and the microenvironments of certain amino acid residues were modulated by non-covalent binding to M3G; furthermore, fewer α-helices and more β-sheets were formed. Molecular docking studies revealed that WPI, especially immunoglobulin (IgG), contributed the most to ANs stability via hydrogen bonds and hydrophobic forces according to molecular docking scores (-141.30 kcal/mol). These results provided an important fundamental basis for improving the stabilities of ANs in milk systems.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuxi Lang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yixiao Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xulong Ran
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ningxuan Gao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
78
|
Ouyang Y, Chen L, Qian L, Lin X, Fan X, Teng H, Cao H. Fabrication of caseins nanoparticles to improve the stability of cyanidin 3-O-glucoside. Food Chem 2020; 317:126418. [DOI: 10.1016/j.foodchem.2020.126418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 11/15/2022]
|
79
|
Huang S, Li H, Liu Y, Yang L, Wang D, Xiao Q. Investigations of conformational structure and enzymatic activity of trypsin after its binding interaction with graphene oxide. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122285. [PMID: 32105952 DOI: 10.1016/j.jhazmat.2020.122285] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/07/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Herein, interaction between graphene oxide (GO) and trypsin was systematically characterized for deep investigations of conformational structure and enzymatic activity of trypsin affected by GO. Results indicated that GO bound with trypsin to form ground state complex with molar ratio of 1 to 1. Intrinsic fluorescence of trypsin was statically quenched by GO through van der Waal interaction, hydrophobic interaction, hydrogen bond, and electrostatic interaction. Both tertiary structure and secondary structure of trypsin were changed obviously after its binding with trypsin, resulting in the structure transformation of trypsin from the β-sheet structure to the α-helix structure. Since GO bound with the allosteric site of trypsin to inhibit its enzymatic activity via non-competitive manner, GO efficiently protected human serum albumin and human cervical carcinoma HeLa cells from the digestion of trypsin. These results explored the exact binding mechanism of GO with protease, which provides more important information for possible biological risk of GO on human beings.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Guangxi Teachers Education University, Nanning, 530001, PR China
| | - Haimei Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Guangxi Teachers Education University, Nanning, 530001, PR China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Guangxi Teachers Education University, Nanning, 530001, PR China
| | - Liyun Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Guangxi Teachers Education University, Nanning, 530001, PR China
| | - Dan Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Guangxi Teachers Education University, Nanning, 530001, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Guangxi Teachers Education University, Nanning, 530001, PR China.
| |
Collapse
|
80
|
Jiang Z, Li T, Ma L, Chen W, Yu H, Abdul Q, Hou J, Tian B. Comparison of interaction between three similar chalconoids and α-lactalbumin: Impact on structure and functionality of α-lactalbumin. Food Res Int 2020; 131:109006. [DOI: 10.1016/j.foodres.2020.109006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 12/31/2022]
|
81
|
Zhang Y, Yang Z, Liu G, Wu Y, Ouyang J. Inhibitory effect of chestnut (Castanea mollissima Blume) inner skin extract on the activity of α-amylase, α-glucosidase, dipeptidyl peptidase IV and in vitro digestibility of starches. Food Chem 2020; 324:126847. [PMID: 32344340 DOI: 10.1016/j.foodchem.2020.126847] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/04/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
This study aimed to investigate the inhibitory effect of chestnut inner skin extract (CISE) on the activity of postprandial blood sugar-related enzymes. In total, 12 flavonoids were identified by HPLC-TOF-MS. CISE showed strong and weak inhibition on α-amylase and α-glucosidase, with the IC50 of 27.2 and 2.3 μg/mL, respectively. The inhibition modes of CISE against α-amylase and α-glucosidase were mixed-type and non-competitive type, respectively. Epicatechin gallate noncompetitively inhibited α-amylase, α-glucosidase and dipeptidyl peptidase IV (DPP-IV). Analysis by ultraviolet-visible spectroscopy, fluorescence spectroscopy and circular dichroism suggested that flavonoids altered the hydrophobicity and microenvironment of these enzymes. CISE decreased the starch bioavailability by reducing the enzymatic hydrolysis rate and increasing the fraction of undigested starch. The extract reduced the rapidly digestible starch and increased the resistant starch after incorporation into A-, B- or C- crystallinity starch. Thus, the chestnut inner skin is a useful resource for regulating postprandial blood sugar level.
Collapse
Affiliation(s)
- Yuyang Zhang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Zhenglei Yang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Gege Liu
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Beijing Center for Physical and Chemical Analysis, Beijing Food Safety Analysis and Testing Engineering Research Center, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
82
|
Huang S, Li H, Luo H, Yang L, Zhou Z, Xiao Q, Liu Y. Conformational structure variation of human serum albumin after binding interaction with black phosphorus quantum dots. Int J Biol Macromol 2020; 146:405-414. [DOI: 10.1016/j.ijbiomac.2020.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 01/02/2023]
|
83
|
The noncovalent conjugations of bovine serum albumin with three structurally different phytosterols exerted antiglycation effects: A study with AGEs-inhibition, multispectral, and docking investigations. Bioorg Chem 2020; 94:103478. [DOI: 10.1016/j.bioorg.2019.103478] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/27/2019] [Accepted: 11/24/2019] [Indexed: 11/15/2022]
|
84
|
Qie X, Chen Y, Quan W, Wang Z, Zeng M, Qin F, Chen J, He Z. Analysis of β-lactoglobulin–epigallocatechin gallate interactions: the antioxidant capacity and effects of polyphenols under different heating conditions in polyphenolic–protein interactions. Food Funct 2020; 11:3867-3878. [DOI: 10.1039/d0fo00627k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A β-Lg-EGCG covalent conjugate is formed by linking the amino group of a lysine residue and EGCG; the antioxidant capacity of EGCG induced by β-Lg–EGCG covalent conjugates causes a significant decrease.
Collapse
Affiliation(s)
- Xuejiao Qie
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Yao Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Wei Quan
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| |
Collapse
|
85
|
Hossein Razavizadegan Jahromi S, Farhoosh R, Hemmateenejad B, Varidi M. Characterization of the binding of cyanidin-3-glucoside to bovine serum albumin and its stability in a beverage model system: A multispectroscopic and chemometrics study. Food Chem 2019; 311:126015. [PMID: 31864188 DOI: 10.1016/j.foodchem.2019.126015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Anthocyanins as one of the main natural groups of food colorants undergo quick color fading, which can be diminished through protein association. The stabilization of cyanidin-3-glucoside (CYG) through binding to bovine serum albumin (BSA) was investigated at pH 3.0 using atomic force microscopy and differential scanning calorimetry along with UV-Vis absorption, steady-state fluorescence, circular dichroism, and three-dimensional emission spectral analyses merged with the multivariate curve resolution-alternative least square method. The stabilized CYG molecules were found at the site II of BSA with combined static and dynamic quenching mechanisms. Approximately 93% of the BSA binding sites were occupied in the BSA-CYG complex through hydrogen bonds and van der Waals forces with the binding constant and stoichiometry ratio of 1.88 × 105 M-1 and 1:13, respectively. The results also revealed that CYG molecules caused partial unfolding of the BSA structure, while it was not enough for significant alteration of denaturation temperature. The binding results also indicated that the reduction of H2O2-induced-CYG oxidation rate (34.78%) at pH 3.0 was mainly driven via the BSA-hemiketal association, although the colored species of CYG had a greater affinity towards BSA in the equilibrated system at pHs 1.0 and 5.0.
Collapse
Affiliation(s)
| | - Reza Farhoosh
- Ferdowsi University of Mashhad, Faculty of Agriculture, Department of Food Science and Technology, Mashhad 91775-1163, Iran.
| | - Bahram Hemmateenejad
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran.
| | - Mehdi Varidi
- Ferdowsi University of Mashhad, Faculty of Agriculture, Department of Food Science and Technology, Mashhad 91775-1163, Iran
| |
Collapse
|
86
|
Xu L, Liu Z, Liao T, Tuo X. Probing the interaction between levamlodipine and hemoglobin based on spectroscopic and molecular docking methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117306. [PMID: 31255862 DOI: 10.1016/j.saa.2019.117306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/16/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
In recent years, levamlodipine (LAML) has been widely used as a common drug for the treatment of hypertension. However, no reports exist that focus on the binding process of LAML with the transport proteins present in blood circulation. Here, several spectroscopy techniques, molecular docking and a molecular dynamics simulation were employed to comprehensively analyze the mechanism underlying the interaction between bovine hemoglobin (BHb) and LAML, as well as the effect of other drugs on the BHb-LAML system. The results indicated that a stable BHb-LAML complex was formed and that the binding site for LAML was located at β-37 tryptophan in the central cavity of BHb. Van der Waals force and hydrogen bonds played major roles in this binding process, and the number of binding sites (n) in the binary system was approximately equal to 1. Multiple spectroscopy experiments (FT-IR and three-dimensional fluorescence spectrometry) and a dynamics simulation revealed that LAML could induce a conformational in BHb and that the microenvironment of Trp/Tyr changed. Interestingly, the values of the binding constant between LAML and BHb significantly increased due to the effect of rofecoxib, propranolol and enalapril. Meanwhile, these drugs did not produce synergistic or negative synergistic effects on the LAML binding with BHb. These results provide new insight into the transport mechanisms for LAML in the human body.
Collapse
Affiliation(s)
- Linlin Xu
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zhaoqing Liu
- College of Chemistry, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Tancong Liao
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
87
|
Du Z, Liu J, Zhang H, Wu X, Zhang B, Chen Y, Liu B, Ding L, Xiao H, Zhang T. N-Acetyl-l-cysteine/l-Cysteine-Functionalized Chitosan-β-Lactoglobulin Self-Assembly Nanoparticles: A Promising Way for Oral Delivery of Hydrophilic and Hydrophobic Bioactive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12511-12519. [PMID: 31626537 DOI: 10.1021/acs.jafc.9b05219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembled and cross-linked hybrid hydrogels for entrapment and delivery of hydrophilic and hydrophobic bioactive compounds were developed based on N-acetyl-l-cysteine (NAC)- or l-cysteine (CYS)-functionalized chitosan-β-lactoglobulin nanoparticles (NPs). In both the systems, amphiphilic protein β-lactoglobulin (β-lg) was self-assembled by using glutaraldehyde for affinity binding with egg white-derived peptides (EWDP) and curcumin and then coated with NAC- or CYS-functionalized chitosan (CS) by electrostatic interaction. The resulting NPs were characterized in terms of size, polydispersity, and surface charge by dynamic light scattering. Results corroborated pH-sensitive properties of NAC-CS-β-lg NPs and CYS-CS-β-lg NPs with the particle size as small as 118 and 48 nm, respectively. The two kinds of NPs also showed excellent entrapment of EWDP and curcumin with the entrapment efficiency (EE) of EWDP and curcumin ranging from 51 to 89% and 42 to 57% in NAC-CS-β-lg NPs, as well as 50-81% and 41-57% in CYS-CS-β-lg NPs under different pH values. Fourier transform infrared and molecular docking studies provided support for the interaction mechanism of NAC/CYS-CS with β-lg as well as the NPs with EWDP and curcumin. Strikingly, the in vitro release kinetics of EWDP and curcumin exhibited the controlled and sustained release properties up to 58 and 70 h from the NPs, respectively. Note that the permeability of QIGLF (pentapeptide, isolated from EWDP) and curcumin passing through Caco-2 cell monolayers were all improved after the entrapment in the NPs. This work offers promising methods for effective entrapment and oral delivery of both hydrophilic and hydrophobic bioactive compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Long Ding
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , People's Republic of China
| | - Hang Xiao
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | | |
Collapse
|
88
|
Binding interaction between β-conglycinin/glycinin and cyanidin-3-O-glucoside in acidic media assessed by multi-spectroscopic and thermodynamic techniques. Int J Biol Macromol 2019; 137:366-373. [DOI: 10.1016/j.ijbiomac.2019.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
|
89
|
Ren C, Xiong W, Li J, Li B. Comparison of binding interactions of cyanidin-3-O-glucoside to β-conglycinin and glycinin using multi-spectroscopic and thermodynamic methods. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.053] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
90
|
Sobhy R, Eid M, Zhan F, Liang H, Li B. Toward understanding the in vitro anti-amylolytic effects of three structurally different phytosterols in an aqueous medium using multispectral and molecular docking studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
91
|
Ma Z, Prasanna G, Jiang L, Jing P. Molecular interaction of cyanidin-3-O-glucoside with ovalbumin: insights from spectroscopic, molecular docking and in vitro digestive studies. J Biomol Struct Dyn 2019; 38:1858-1867. [DOI: 10.1080/07391102.2019.1618735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhen Ma
- Research Center for Food Safety and Nutrition, Shanghai Engineering Research Center of Food Safety, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Govindarajan Prasanna
- Research Center for Food Safety and Nutrition, Shanghai Engineering Research Center of Food Safety, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Linlei Jiang
- Research Center for Food Safety and Nutrition, Shanghai Engineering Research Center of Food Safety, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Research Center for Food Safety and Nutrition, Shanghai Engineering Research Center of Food Safety, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
92
|
De Silva SF, Alcorn J. Flaxseed Lignans as Important Dietary Polyphenols for Cancer Prevention and Treatment: Chemistry, Pharmacokinetics, and Molecular Targets. Pharmaceuticals (Basel) 2019; 12:E68. [PMID: 31060335 PMCID: PMC6630319 DOI: 10.3390/ph12020068] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer causes considerable morbidity and mortality across the world. Socioeconomic, environmental, and lifestyle factors contribute to the increasing cancer prevalence, bespeaking a need for effective prevention and treatment strategies. Phytochemicals like plant polyphenols are generally considered to have anticancer, anti-inflammatory, antiviral, antimicrobial, and immunomodulatory effects, which explain their promotion for human health. The past several decades have contributed to a growing evidence base in the literature that demonstrate ability of polyphenols to modulate multiple targets of carcinogenesis linking models of cancer characteristics (i.e., hallmarks and nutraceutical-based targeting of cancer) via direct or indirect interaction or modulation of cellular and molecular targets. This evidence is particularly relevant for the lignans, an ubiquitous, important class of dietary polyphenols present in high levels in food sources such as flaxseed. Literature evidence on lignans suggests potential benefit in cancer prevention and treatment. This review summarizes the relevant chemical and pharmacokinetic properties of dietary polyphenols and specifically focuses on the biological targets of flaxseed lignans. The consolidation of the considerable body of data on the diverse targets of the lignans will aid continued research into their potential for use in combination with other cancer chemotherapies, utilizing flaxseed lignan-enriched natural products.
Collapse
Affiliation(s)
- S Franklyn De Silva
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| | - Jane Alcorn
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| |
Collapse
|
93
|
Hungerford G, Lemos MA, Chu BS. Binding of Clitoria ternatea L. flower extract with α-amylase simultaneously monitored at two wavelengths using a photon streaming time-resolved fluorescence approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:108-113. [PMID: 30530062 DOI: 10.1016/j.saa.2018.11.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/14/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
The binding of an extract from the flowers of Clitoria ternatea L. to the digestive enzyme α-amylase was investigated. This extract is a mixture of flavonoids, including anthocyanins, and has been previously shown to inhibit the activity this enzyme. This has implications for modulating starch digestion. In order to investigate the kinetics, we made use of time-resolved fluorescence to simultaneously monitor two different emission bands emanating from the extract. This measurement was enabled by the use of a "photon streaming" approach and changes in fluorescence lifetime and intensity were used to follow the interaction. A longer wavelength band (655 nm) was ascribed to anthocyanins in the mixture and these were observed to bind at a rate an order of magnitude slower than other flavonoids present in the extract, monitored at a shorter wavelength (485 nm). Changes in the fluorescence emission of the extract upon binding were further assessed by the use of decay associated spectra.
Collapse
Affiliation(s)
| | - M Adília Lemos
- Division of Food and Drink, School of Science, Engineering and Technology, Abertay University, 40 Bell Street, Dundee DD1 1HG, UK
| | - Boon-Seang Chu
- Division of Food and Drink, School of Science, Engineering and Technology, Abertay University, 40 Bell Street, Dundee DD1 1HG, UK
| |
Collapse
|
94
|
Mu H, Chen S, Liu F, Xiao J, Huang H, Zhang Y, Sun Y, Gao X, Lei H, Yuan X. Stereoselective interactions of lactic acid enantiomers with HSA: Spectroscopy and docking application. Food Chem 2019; 270:429-435. [PMID: 30174068 DOI: 10.1016/j.foodchem.2018.07.135] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/02/2018] [Accepted: 07/19/2018] [Indexed: 02/08/2023]
Abstract
Lactic acid enantiomers, normally found in fermented food, are absorbed into the blood and interact with plasma carrier protein human serum albumin (HSA). Unveiling the effect on the function and structure of HSA during chiral interaction can give a better understanding of the different distribution activities of the two enantiomers. Multi-spectroscopic methods and molecular modelling techniques are used to study the interactions between lactic acid enantiomers and HSA. Time-resolved and steady-state fluorescence spectra manifest that the fluorescence quenching mechanism is mainly static in type, due to complex formation. Binding interactions, deduced by thermodynamic calculation, agree with the docking prediction. Docking results and kinetic constants represent chiral-recognizing discriminations consistently. The bindings of lactic acid enantiomers lead to some microenvironmental and slight conformational changes of HSA as shown by circular dichroism (CD), synchronous and three-dimensional fluorescence spectra. This investigation may yield useful information about the possible toxicity risk of lactic acid enantiomers to human health.
Collapse
Affiliation(s)
- Hongtao Mu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Shaohuan Chen
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Fengyin Liu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau Taipa, Macau
| | - Hui Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yuhua Zhang
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangdong Provincial Engineering & Technique Research Centre of Food Safety Detection and Risk Assessment, Guangzhou 510642, China
| | - Xiangyang Gao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangdong Provincial Engineering & Technique Research Centre of Food Safety Detection and Risk Assessment, Guangzhou 510642, China.
| | - Xuewen Yuan
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China.
| |
Collapse
|
95
|
Prasanna G, Jing P. Spectroscopic and molecular modelling studies on glycation modified bovine serum albumin with cyanidin-3-O-glucoside. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:708-716. [PMID: 29982163 DOI: 10.1016/j.saa.2018.06.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/16/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
In this study, we report the glycation mediated effect of bovine serum albumin (BSA) on the molecular interaction mechanism of cyanidin-3-O-glucoside (C3G) by molecular modelling, Uv-visible spectroscopy, transmission electron microscopy (TEM), fluorescence spectroscopy, and circular dichroism spectroscopy studies. The structures of advanced glycation end-products (AGEs) modified BSA were modelled, energy minimized and analyzed for binding affinity by molecular docking studies using Autodock Vina. Glycation experiments are carried out using glucose and methylglyoxal to validate the molecular modelling results on the interaction of modified BSA with C3G. The modified structures were characterized by reduction in the binding pocket volume, surface, depth, hydrophobicity, and hydrogen bond donors/acceptors. Arg-194, Arg-196, Arg-198, Arg-217, Arg-409, Lys-114, Lys-116, Lys-204, Lys 221, and Lys-439 were found to be crucial in the context of glycation of BSA. TEM images represented the formation of unique globular aggregates in the event of glycation. Uv-visible spectroscopic studies showed the formation of new chromophores between 300 and 400 nm in the event of glycation. Fluorescence quenching was observed in a differential manner in the presence of C3G on glycation modified BSA. Circular dichroism studies suggested the loss of helical structure and formation of β-sheeted structure upon glycation, but subsequent C3G binding has resulted in the increase towards helical structure. Our findings suggested that drug binding affinity has been certainly impaired due to glycation and subsequent AGE modification. Arg-p modification has more austere impact on the structure and would affect the binding properties. We conclude that C3G had differential modulation of binding properties on glycated BSA which can help to protect the stability and bioavailability that has been impaired due to glycation mediated structural changes.
Collapse
Affiliation(s)
- Govindarajan Prasanna
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
96
|
Casanova F, Chapeau AL, Hamon P, de Carvalho AF, Croguennec T, Bouhallab S. pH- and ionic strength-dependent interaction between cyanidin-3-O-glucoside and sodium caseinate. Food Chem 2018; 267:52-59. [DOI: 10.1016/j.foodchem.2017.06.081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/10/2017] [Accepted: 06/13/2017] [Indexed: 01/29/2023]
|
97
|
Assessment of Binding Interaction between Bovine Lactoferrin and Tetracycline Hydrochloride: Multi-Spectroscopic Analyses and Molecular Modeling. Molecules 2018; 23:molecules23081900. [PMID: 30061508 PMCID: PMC6222819 DOI: 10.3390/molecules23081900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023] Open
Abstract
In this paper, the interaction between bovine lactoferrin (bLf) and tetracycline hydrochloride (TCH) was researched by microscale thermophoresis (MST), multi-spectroscopic methods, and molecular docking techniques. Normal fluorescence results showed that TCH effectively quenched the intrinsic fluorescence of bLf via static quenching. Moreover, MST confirmed that the combination force between bLf and TCH was very strong. Thermodynamic parameters and molecular docking further revealed that electrostatic forces, van der Waals, and hydrogen bonding forces played vital roles in the interaction between bLf and TCH. The binding distance and energy transfer efficiency between TCH and bLf were 2.81 nm and 0.053, respectively. Moreover, the results of circular dichroism spectra (CD), ultraviolet visible (UV-vis) absorption spectra, fluorescence Excitation-Emission Matrix (EEM) spectra, and molecular docking verified bLf indeed combined with TCH, and caused the changes of conformation of bLf. The influence of TCH on the functional changes of the protein was studied through the analysis of the change of the bLf surface hydrophobicity and research of the binding forces between bLf and iron ion. These results indicated that change in the structure and function of bLf were due to the interaction between bLf and TCH.
Collapse
|
98
|
Khalifa I, Nie R, Ge Z, Li K, Li C. Understanding the shielding effects of whey protein on mulberry anthocyanins: Insights from multispectral and molecular modelling investigations. Int J Biol Macromol 2018; 119:116-124. [PMID: 30031825 DOI: 10.1016/j.ijbiomac.2018.07.117] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
Assembling between polyphenols and proteins has been recently spotlighted and this binding is of specific importance in food chemistry since these complexes are typically used in different foodstuffs. A study on the copigmentation among three encapsulation wall-materials, including maltodextrin, gum Arabic, and whey proteins, with mulberry anthocyanins (AC) proved that whey protein (WP) is an outstanding wall-material due to its wrapping and hyperchromicity effects. Additionally, high binding ability of WP with AC was shown to be responsible for its superior copigmentation effects. Accordingly, the underlying shielding mechanism of WP on AC based on their non-covalent assembling was deeply studied using multispectral and computational assays. The fluorometric results demonstrated that a static and heat-stable binding between WP and AC occurred, leading to modification in size, hydrophobicity, and secondary structures of WP. The docking results explained that WP-AC complex was mainly molded via hydrophobic effects of WP surface and subsequently be stabilized by H-bonding and van der Waals forces. These results may contribute to a better understanding on the enhanced colouring proprieties of anthocyanins by using whey proteins.
Collapse
Affiliation(s)
- Ibrahim Khalifa
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Food Technology Department, Faculty of Agriculture,13736, Moshtohor, Benha University, Egypt
| | - Rongzu Nie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenzhen Ge
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, China.
| |
Collapse
|
99
|
Baldin JC, Munekata PE, Michelin EC, Polizer YJ, Silva PM, Canan TM, Pires MA, Godoy SH, Fávaro-Trindade CS, Lima CG, Fernandes AM, Trindade MA. Effect of microencapsulated Jabuticaba (Myrciaria cauliflora) extract on quality and storage stability of mortadella sausage. Food Res Int 2018; 108:551-557. [DOI: 10.1016/j.foodres.2018.03.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 01/05/2023]
|
100
|
He W, Mu H, Liu Z, Lu M, Hang F, Chen J, Zeng M, Qin F, He Z. Effect of preheat treatment of milk proteins on their interactions with cyanidin-3-O-glucoside. Food Res Int 2018; 107:394-405. [PMID: 29580500 DOI: 10.1016/j.foodres.2018.02.064] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 02/20/2018] [Accepted: 02/25/2018] [Indexed: 01/10/2023]
Abstract
In this study, the binding of cyanidin-3-O-glucoside (C3G) to preheated milk proteins β-lactoglobulin (β-Lg) and β-casein (β-CN) at 55-90 °C under pH 3.6 and pH 6.3 was investigated using multi-spectral techniques. Fluorescence quenching spectroscopy data showed C3G quenched milk proteins' fluorescence strongly. Thermodynamic analysis revealed that C3G bound to β-Lg mainly through hydrogen bonding and hydrophobic interactions, and that their binding affinity increased gradually with increasing preheating temperature at pH 6.3, whereas it decreased at pH 3.6. Hydrogen bonding and van der Waals forces played the major roles in the interaction of β-CN with C3G, their affinity decreasing with increasing preheating temperature at both pH values. The combination of C3G and preheated β-Lg at 85 °C had the strongest binding affinity, with a KA of 14.10 (±0.33) × 105 M-1 (pH 6.3, 298 K). Preheating of milk proteins did not change their major forces with C3G. Fourier transform infrared spectra (FT-IR) results showed that C3G binding altered the secondary structures of β-Lg and β-CN by reducing the proportion of α-helix and β-sheet structures and increasing the proportion of random coil and turn structures. The structural changes of preheated β-Lg upon C3G binding were more pronounced than that of native β-Lg, while there was little difference between preheated and native β-CN in their structural changes upon C3G binding. These results will be helpful in better understanding the relevance of native and preheated milk protein-C3G interactions to the stability of C3G, and in promoting its application in the food industry as a natural pigment.
Collapse
Affiliation(s)
- Wenjia He
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haibo Mu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Mei Lu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, United States
| | - Feng Hang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|