51
|
Yin S, Huang M, Wang J, Liu B, Ren Q. Microbial Community Dynamics and the Correlation between Specific Bacterial Strains and Higher Alcohols Production in Tartary Buckwheat Huangjiu Fermentation. Foods 2023; 12:2664. [PMID: 37509756 PMCID: PMC10379207 DOI: 10.3390/foods12142664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Tartary buckwheat is a healthy grain rich in nutrients and medicinal ingredients and consequently is commonly used for Huangjiu brewing. In order to reveal the correlation between microbial succession and higher alcohols production, in this study, Huangjiu fermentation was conducted using Tartary buckwheat as the raw material and wheat Qu as the starter culture. Microbial community dynamics analysis indicated that the bacterial diversity initially decreased rapidly to a lower level and then increased and maintained at a higher level during fermentation. Lactococcus was the dominant bacteria and Ralstonia, Acinetobacter, Cyanobacteria, and Oxalobacteraceae were the bacterial genera with higher abundances. In sharp contrast, only 13 fungal genera were detected during fermentation, and Saccharomyces showed the dominant abundance. Moreover, 18 higher alcohol compounds were detected by GC-MS during fermentation. Four compounds (2-phenylethanol, isopentanol, 1-hexadecanol, and 2-phenoxyethanol) were stably detected with high concentrations during fermentation. The compound 2-ethyl-2-methyl-tridecanol was detected to be of the highest concentration in the later period of fermentation. Correlation analysis revealed that the generation of 2-phenylethanol, isopentanol, 1-hexadecanol, and 2-phenoxyethanol were positively correlated with Granulicatella and Pelomonas, Bacteroides, Pseudonocardia and Pedomicrobium, and Corynebacterium, respectively. The verification fermentation experiments indicated that the improved wheat Qu QT3 and QT4 inoculated with Granulicatella T3 and Acidothermus T4 led to significant increases in the contents of 2-phenylethanol and pentanol, as well as isobutanol and isopentanol, respectively, in the Tartary buckwheat Huangjiu. The findings benefit understanding of higher alcohols production and flavor formation mechanisms in Huangjiu fermentation.
Collapse
Affiliation(s)
- Sheng Yin
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
| | - Jiaxuan Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
| | - Bo Liu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
| | - Qing Ren
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
| |
Collapse
|
52
|
Deng X, Niu L, Xiao J, Guo Q, Liang J, Tang J, Liu X, Xiao C. Involvement of intestinal flora and miRNA into the mechanism of coarse grains improving type 2 diabetes: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4257-4267. [PMID: 36224106 DOI: 10.1002/jsfa.12270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/06/2023]
Abstract
The prevalence of type 2 diabetes has been growing at an increasing rate worldwide. Dietary therapy is probably the easiest and least expensive method to prevent and treat diabetes. Previous studies have reported that coarse grains have anti-diabetic effects. Although considerable efforts have been made on the anti-diabetic function of different grains, the mechanisms of coarse grains on type 2 diabetes have not been systematically compared and summarized so far. Intestinal flora, reported as the main 'organ' of action underlying coarse grains, is an important factor in the alleviation of type 2 diabetes by coarse grains. Furthermore, microRNA (miRNA), as a new disease marker and 'dark nutrient', plays a likely influential role in cross-border communication among coarse grains, intestinal flora, and hosts. Given this context, this article reviews several possible mechanisms for the role of coarse grains on diabetes, incorporating resistance to inflammation and oxidative stress, repair of insulin signaling and β-cell dysfunction, and highlights the regulation of intestinal flora disorders and miRNAs expression, along with some novel insights. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xu Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Li Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jing Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qianqian Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiayi Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiayu Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
53
|
The beneficial effects of Tartary buckwheat (Fagopyrum tataricum Gaertn.) on diet-induced obesity in mice are related to the modulation of gut microbiota composition. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
54
|
Wang D, Ren H. Microbial community in buckwheat rhizosphere with different nitrogen application rates. PeerJ 2023; 11:e15514. [PMID: 37361045 PMCID: PMC10290450 DOI: 10.7717/peerj.15514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Microorganism plays a pivotal role in regulating sustainable development of agriculture. The excessive application of nitrogen fertilizer is considered to affect the microbial structure in many agricultural systems. The present study aimed to assess the impacts of nitrogen application rate on microbial diversity, community and functionality in rhizosphere of Tartary buckwheat in short-time. The nitrogen fertilizer was applied at rates of 90 kg (N90), 120 kg (N120) and 150 kg (N150) urea per hectare, respectively. The soil properties were measured chemical analysis and displayed no difference among treatments. Metagenome analysis results showed that the microbial diversity was not affected, but the microbial community and functionality were affected by the nitrogen application rate. According to the Linear discriminant analysis effect size (LEfSe) analysis, 15 taxa were significantly enriched in the N120 and N150 groups, no taxon was enriched in the N90 group. Kyoto Encyclopaedia of Genes and Genomes (KEGG) annotation results revealed that the genes related to butanoate and beta alanine metabolism were significantly enriched in the N90 group, the genes related to thiamine metabolism, lipopolysaccharide biosynthesis and biofilm formation were significantly enriched in the N120 group, and the genes related to neurodegenerative disease was significantly enriched in the N150 group. In conclusion, short-time nitrogen fertilizer application shifted the microbial community structure and functionality.
Collapse
|
55
|
He Q, Ma D, Li W, Xing L, Zhang H, Wang Y, Du C, Li X, Jia Z, Li X, Liu J, Liu Z, Miao Y, Feng R, Lv Y, Wang M, Lu H, Li X, Xiao Y, Wang R, Liang H, Zhou Q, Zhang L, Liang C, Du H. High-quality Fagopyrum esculentum genome provides insights into the flavonoid accumulation among different tissues and self-incompatibility. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1423-1441. [PMID: 36680412 DOI: 10.1111/jipb.13459] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (Fagopyrum tataricum), the two most widely cultivated buckwheat species, differ greatly in flavonoid content and reproductive mode. Here, we report the first high-quality and chromosome-level genome assembly of common buckwheat with 1.2 Gb. Comparative genomic analysis revealed that common buckwheat underwent a burst of long terminal repeat retrotransposons insertion accompanied by numerous large chromosome rearrangements after divergence from Tartary buckwheat. Moreover, multiple gene families involved in stress tolerance and flavonoid biosynthesis such as multidrug and toxic compound extrusion (MATE) and chalcone synthase (CHS) underwent significant expansion in buckwheat, especially in common buckwheat. Integrated multi-omics analysis identified high expression of catechin biosynthesis-related genes in flower and seed in common buckwheat and high expression of rutin biosynthesis-related genes in seed in Tartary buckwheat as being important for the differences in flavonoid type and content between these buckwheat species. We also identified a candidate key rutin-degrading enzyme gene (Ft8.2377) that was highly expressed in Tartary buckwheat seed. In addition, we identified a haplotype-resolved candidate locus containing many genes reportedly associated with the development of flower and pollen, which was potentially related to self-incompatibility in common buckwheat. Our study provides important resources facilitating future functional genomics-related research of flavonoid biosynthesis and self-incompatibility in buckwheat.
Collapse
Affiliation(s)
- Qiang He
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Dan Ma
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Longsheng Xing
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Hongyu Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Cailian Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Xuanzhao Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Zheng Jia
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Xiuxiu Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianan Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Ze Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yuqing Miao
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Rui Feng
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yang Lv
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Meijia Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Hongwei Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310000, China
| | - Xiaochen Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yao Xiao
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Ruyu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Hanfei Liang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Qinghong Zhou
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Lijun Zhang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
56
|
Noda T, Ishiguro K, Suzuki T, Morishita T. Tartary Buckwheat Bran: A Review of Its Chemical Composition, Processing Methods and Food Uses. PLANTS (BASEL, SWITZERLAND) 2023; 12:1965. [PMID: 37653882 PMCID: PMC10222156 DOI: 10.3390/plants12101965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 09/02/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) containing large amounts of functional compounds with antioxidant activity, such as rutin, has attracted substantial research attention due to its industrial applications. Particularly, the functional compounds in Tartary buckwheat bran, an unexploited byproduct of the buckwheat flour milling process, are more concentrated than those in Tartary buckwheat flour. Thus, Tartary buckwheat bran is deemed to be a potential material for making functional foods. However, a review that comprehensively summarizes the research on Tartary buckwheat bran is lacking. Therefore, we highlighted current studies on the chemical composition of Tartary buckwheat bran. Moreover, the processing method and food uses of Tartary buckwheat bran are also discussed.
Collapse
Affiliation(s)
- Takahiro Noda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei, Memuro, Kasai-gun 082-0081, Japan
| | - Koji Ishiguro
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei, Memuro, Kasai-gun 082-0081, Japan
| | - Tatsuro Suzuki
- Kyushu-Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Suya, Koshi, Kumamoto 861-1192, Japan
| | - Toshikazu Morishita
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei, Memuro, Kasai-gun 082-0081, Japan
| |
Collapse
|
57
|
Liu S, Fu S, Jin Y, Geng R, Li Y, Zhang Y, Liu J, Guo W. Tartary buckwheat flavonoids alleviates high-fat diet induced kidney fibrosis in mice by inhibiting MAPK and TGF-β1/Smad signaling pathway. Chem Biol Interact 2023; 379:110533. [PMID: 37150497 DOI: 10.1016/j.cbi.2023.110533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Tartary buckwheat flavonoids (TBF) are active components extracted from Tartary buckwheat, which have abundant biological effects. According to this study, we investigated the effect of TBF on high-fat diet (HFD)-induced kidney fibrosis and its related mechanisms. In vivo, we established an HFD-induced kidney fibrosis model in mice and administered TBF. The results showed that TBF was able to alleviate kidney injury and inflammatory response. Subsequently, the mRNA levels between the HFD group and the TBF + HFD group were detected using RNA-seq assay. According to the gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) results, the differential genes were enriched in lipid metabolism and mitogen-activated protein kinases(MAPK) signaling pathways. We examined the protein expression of lipid metabolism-related pathways and the level of lipid metabolism. The results showed that TBF significantly activated the adenosine monophosphate activated protein kinase/acetyl-CoA carboxylase (AMPK/ACC) pathway and effectively reduced kidney total cholesterol (TC), triglyceride (TG) and low-density lipoproteinc cholesterol (LDL-C) levels and increased high-density lipoprotein cholesterol (HDL-C) levels in mice. TBF also inhibited transforming growth factor-β1/Smad (TGF-β1/Smad) and MAPK signaling pathways, thus slowing down the kidney fibrosis process. In vitro, using palmitic acid (PA) to stimulate TCMK-1 cells, the in vivo results similarly demonstrated that TBF could alleviate kidney fibrosis in HFD mice by inhibiting TGF1/Smad signaling pathway and MAPK signaling pathway.
Collapse
Affiliation(s)
- Shu Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuhang Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ruiqi Geng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuhang Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yufei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China; Chongqing Research Institute, Jilin University, 401120, Chongqing, China.
| |
Collapse
|
58
|
Sofi SA, Ahmed N, Farooq A, Rafiq S, Zargar SM, Kamran F, Dar TA, Mir SA, Dar BN, Mousavi Khaneghah A. Nutritional and bioactive characteristics of buckwheat, and its potential for developing gluten-free products: An updated overview. Food Sci Nutr 2023; 11:2256-2276. [PMID: 37181307 PMCID: PMC10171551 DOI: 10.1002/fsn3.3166] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
In the present era, food scientists are concerned about exploiting functional crops with nutraceutical properties. Buckwheat is one of the functional pseudocereals with nutraceutical components used in the treatment of health-related diseases, malnutrition, and celiac diseases. As a preferred diet as a gluten-free product for celiac diseases, buckwheat is a good source of nutrients, bioactive components, phytochemicals, and antioxidants. The general characteristics and better nutritional profile of buckwheat than other cereal family crops were highlighted by previous investigations. In buckwheats, bioactive components like peptides, flavonoids, phenolic acids, d-fagomine, fagopyritols, and fagopyrins are posing significant health benefits. This study highlights the current knowledge about buckwheat and its characteristics, nutritional constituents, bioactive components, and their potential for developing gluten-free products to target celiac people (1.4% of the world population) and other health-related diseases.
Collapse
Affiliation(s)
- Sajad Ahmad Sofi
- Department of Food TechnologyIslamic University of Science & TechnologyAwantiporaJammu and KashmirIndia
| | - Naseer Ahmed
- Department of Food TechnologyDKSG Akal College of AgricultureEternal UniversityBaru SahibHimachal PradeshIndia
| | - Asmat Farooq
- Division of BiochemistrySher‐e‐Kashmir University of Agricultural Sciences and Technology of JammuChathaJammu and KashmirIndia
- Proteomics Laboratory, Division of Plant BiotechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of KashmirShalimarJammu and KashmirIndia
| | - Shafiya Rafiq
- School of Science, Parramatta CampusWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant BiotechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of KashmirShalimarJammu and KashmirIndia
| | - Fozia Kamran
- School of Science, Parramatta CampusWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Tanveer Ali Dar
- Department of Clinical BiochemistryUniversity of KashmirHazratbal, SrinagarIndia
| | - Shabir Ahmad Mir
- Department of Food Science & TechnologyGovt. College for WomanSrinagarIndia
| | - B. N. Dar
- Department of Food TechnologyIslamic University of Science & TechnologyAwantiporaJammu and KashmirIndia
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product TechnologyProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research InstituteWarsawPoland
| |
Collapse
|
59
|
Han L, Wang H, Cao J, Li Y, Jin X, He C, Wang M. Inhibition mechanism of α-glucosidase inhibitors screened from Tartary buckwheat and synergistic effect with acarbose. Food Chem 2023; 420:136102. [PMID: 37060666 DOI: 10.1016/j.foodchem.2023.136102] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 04/17/2023]
Abstract
Tartary buckwheat has been shown to provide a good antihyperglycemic effect. However, it is unclear which active compounds play a key role in attenuating postprandial hyperglycemia. Presently, acetone extract from the hull of Tartary buckwheat had the best effect for α-glucosidase inhibition (IC50 = 0.02 mg/mL). Twelve potential α-glucosidase inhibitors from Tartary buckwheat were screened and identified by the combination of ultrafiltration and high-performance liquid chromatography coupled with mass spectrometry. Myricetin and quercetin exhibited the highest anti-α-glucosidase activity with IC50 values of 0.02 and 0.06 mg/mL, respectively. These inhibitors manifested different types of inhibition manners against α-glucosidase via direct interaction with the amino acid residues. The results of structure-activity relationships indicated that an increase in the number of -OH on the B-ring greatly strengthened α-glucosidase inhibitory activity, but glucoside and rutinoside replacement on the C-ring obviously weakened this influence. Furthermore, a synergistic effect was observed between inhibitors with different inhibition manners.
Collapse
Affiliation(s)
- Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Huiqing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Junwei Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yunlong Li
- Institute of Functional Food of Shanxi, Shanxi Agricultural University, Taiyuan 030006, PR China
| | - Xiying Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Caian He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
60
|
Li D, Zhu L, Wu Q, Chen Y, Wu G, Zhang H. Identification of binding sites for Tartary buckwheat protein-phenols covalent complex and alterations in protein structure and antioxidant properties. Int J Biol Macromol 2023; 233:123436. [PMID: 36708899 DOI: 10.1016/j.ijbiomac.2023.123436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
To investigate the effects of structure, multiple binding sites and antioxidant property of Tartary buckwheat protein-phenols covalent complex, protein was combined with different concentrations of phenolic extract. Four kinds of phenols were identified by UPLC-Q/TOF-MS, which were rutin, quercetin, kaempferol and myricetin. UV-vis absorption spectroscopy and X-ray diffraction showed that the phenols can successfully bind to BPI. Fourier-transform infrared, circular dichroism and fluorescence emission spectroscopy showed that the binding of phenol can change the secondary/tertiary structure of protein. The particle distribution indicated that the binding of phenols could reduce the particle size (from 304.70 to 205.55 nm), but cross-linking occurred (435.35 nm) when the bound phenol content was too high. Proteomics showed that only rutin, quercetin and myricetin can covalently bind to BPI. Meanwhile, 4 peptides covalently bound to phenols were identified. The DPPH· scavenging capacity of complexes were from 8.38 to 33.76 %, and the ABTS·+ binding activity of complexes were from 19.35 to 63.99 %. The antioxidant activity of the complex was significantly higher than that of the pure protein. These results indicated that protein-phenol covalent complexes had great potential as functional components in the food field.
Collapse
Affiliation(s)
- Dongze Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Yiling Chen
- Amway (China) Botanical R&D Centre, Wuxi 214115, China
| | - Gangcheng Wu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China
| | - Hui Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China.
| |
Collapse
|
61
|
Cai C, Cheng W, Shi T, Liao Y, Zhou M, Liao Z. Rutin alleviates colon lesions and regulates gut microbiota in diabetic mice. Sci Rep 2023; 13:4897. [PMID: 36966186 PMCID: PMC10039872 DOI: 10.1038/s41598-023-31647-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/15/2023] [Indexed: 03/27/2023] Open
Abstract
Diabetes is a common metabolic disorder that has become a major health problem worldwide. In this study, we investigated the role of rutin in attenuating diabetes and preventing diabetes-related colon lesions in mice potentially through regulation of gut microbiota. The rutin from tartary buckwheat as analyzed by HPLC was administered intragastrically to diabetic mice, and then the biochemical parameters, overall community structure and composition of gut microbiota in diabetic mice were assayed. The results showed that rutin lowered serum glucose and improved serum total cholesterol, low-density lipoprotein, high-density lipoprotein, triglyceride concentrations, tumor necrosis factor-α, interleukin-6, and serum insulin in diabetic mice. Notably, rutin obviously alleviated colon lesions in diabetic mice. Moreover, rutin also significantly regulated gut microbiota dysbiosis and enriched beneficial microbiota, such as Akkermansia (p < 0.05). Rutin selectively increased short-chain fatty acid producing bacteria, such as Alistipes (p < 0.05) and Roseburia (p < 0.05), and decreased the abundance of diabetes-related gut microbiota, such as Escherichia (p < 0.05) and Mucispirillum (p < 0.05). Our data suggested that rutin exerted an antidiabetic effect and alleviated colon lesions in diabetic mice possibly by regulating gut microbiota dysbiosis, which might be a potential mechanism through which rutin alleviates diabetes-related symptoms.
Collapse
Affiliation(s)
- Cifeng Cai
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Wenwen Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Tiantian Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Yueling Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhiyong Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, People's Republic of China.
| |
Collapse
|
62
|
Lin J, Fan S, Ruan Y, Wu D, Yang T, Hu Y, Li W, Zou L. Tartary Buckwheat Starch Modified with Octenyl Succinic Anhydride for Stabilization of Pickering Nanoemulsions. Foods 2023; 12:foods12061126. [PMID: 36981053 PMCID: PMC10048578 DOI: 10.3390/foods12061126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
In this study, Tartary buckwheat starch was modified to different degrees of substitution (DS) with octenyl succinate anhydride (OS-TBS) in order to explore its potential for stabilizing Pickering nanoemulsions. OS-TBS was prepared by reacting Tartary buckwheat starch with 3, 5 or 7% (w/v) octenyl succinate in an alkaline aqueous solution at pH 8.5. Fourier-transform infrared spectroscopy gave peaks at 1726 cm−1 (C=O) and 1573 cm−1 (RCOO−), indicating the formation of OS-TBS. We further studied the physicochemical properties of the modified starch as well as its emulsification capacity. As the DS with octenyl succinate anhydride increased, the amylose content and gelatinization temperature of the OS-TBS decreased, while its solubility increased. In contrast to the original Tartary buckwheat starch, OS-TBS showed higher surface hydrophobicity, and its particles were more uniform in size and its emulsification stability was better. Higher DS with octenyl succinate led to better emulsification. OS-TBS efficiently stabilized O/W Pickering nanoemulsions and the average particle size of the emulsion was maintained at 300–400 nm for nanodroplets. Taken together, these results suggest that OS-TBS might serve as an excellent stabilizer for nanoscale Pickering emulsions. This study may suggest and expand the use of Tartary buckwheat starch in nanoscale Pickering emulsions in various industrial processes.
Collapse
Affiliation(s)
- Jie Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shasha Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuyue Ruan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ting Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wei Li
- School of Basic Medicine, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence: ; Tel.: +86-028-84616029
| |
Collapse
|
63
|
Dietary-Derived Exosome-like Nanoparticles as Bacterial Modulators: Beyond MicroRNAs. Nutrients 2023; 15:nu15051265. [PMID: 36904264 PMCID: PMC10005434 DOI: 10.3390/nu15051265] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
There is increasing evidence that food is an important factor that influences the composition of the gut microbiota. Usually, all the attention has been focused on nutrients such as lipids, proteins, vitamins, or polyphenols. However, a pivotal role in these processes has been linked to dietary-derived exosome-like nanoparticles (DELNs). While food macro- and micronutrient composition are largely well established, there is considerable interest in these DELNs and their cargoes. In this sense, traditionally, all the attention was focused on the proteins or miRNAs contained in these vesicles. However, it has been shown that DELNs would also carry other bioactive molecules with a key role in regulating biochemical pathways and/or interactions with the host's gut microbiome affecting intracellular communication. Due to the scarce literature, it is necessary to compile the current knowledge about the antimicrobial capacity of DELNs and its possible molecular mechanisms that will serve as a starting point. For this reason, in this review, we highlight the impact of DENLs on different bacteria species modulating the host gut microbiota or antibacterial properties. It could be concluded that DELNs, isolated from both plant and animal foods, exert gut microbiota modulation. However, the presence of miRNA in the vesicle cargoes is not the only one responsible for this effect. Lipids present in the DELNs membrane or small molecules packed in may also be responsible for apoptosis signaling, inhibition, or growth promoters.
Collapse
|
64
|
Kim MJ, Park SB, Kang HB, Lee YM, Gwak YS, Kim HY. Development and validation of a multiplex real-time PCR assay for accurate authentication of common buckwheat (Fagopyrum esculentum) and tartary buckwheat (Fagopyrum tataricum) in food. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
65
|
Wang H, Zhang J, Han L, Cao J, Yang J, Zhang Y, Hu B. Calcium ion regulation of sodium alginate in pure buckwheat noodles shown by in vitro simulated digestion. Front Nutr 2023; 9:1105878. [PMID: 36712509 PMCID: PMC9877419 DOI: 10.3389/fnut.2022.1105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
The effects of calcium sodium alginate on quality and starch digestion of pure buckwheat noodles were investigated. The incorporation of calcium ions into noodles containing sodium alginate was found to reduce water absorption by the noodles during cooking, together with an increase of the turbidity. Calcium addition improved the noodle texture, as shown by the measurement of hardness, elasticity, adhesion, and chewability. In vitro simulations of digestion showed that calcium ion cross-linking with sodium alginate reduced glucose formation by approximately 23.3 mg/g. X-ray diffraction and Fourier transform infrared spectroscopy showed alterations in the crystal zone of the noodles induced by an alginate gel network, although no new chemical substances were generated. Noodles prepared by this exogenous method may be useful as functional foods for patients with diabetes.
Collapse
Affiliation(s)
- Hongyan Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Ministry of Education, Dalian Minzu University, Dalian, China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Ministry of Education, Dalian Minzu University, Dalian, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Ministry of Education, Dalian Minzu University, Dalian, China,Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China,Jijuan Cao,
| | - Jixin Yang
- Faculty of Arts, Science, and Technology, Wrexham Glyndwr University, Wrexham, United Kingdom
| | - Ying Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Ministry of Education, Dalian Minzu University, Dalian, China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Ministry of Education, Dalian Minzu University, Dalian, China,*Correspondence: Bing Hu,
| |
Collapse
|
66
|
Chen W, Zhang Z, Sun C. Differences in Carbon Sequestration Ability of Diverse Tartary Buckwheat Genotypes in Barren Soil Caused by Microbial Action. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:959. [PMID: 36673719 PMCID: PMC9858926 DOI: 10.3390/ijerph20020959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Planting plants to increase soil carbon input has been widely used to achieve carbon neutrality goals. Tartary buckwheat not only has good barren tolerance but is also rich in nutrients and very suitable for planting in barren areas. However, the effects of different genotypes of Tartary buckwheat roots and rhizosphere microorganisms on soil carbon input are still unclear. In this study, ozone sterilization was used to distinguish the sources of soil organic acids and C-transforming enzymes, and the contribution of root and rhizosphere microorganisms to soil carbon storage during the growth period of two genotypes of tartary buckwheat was studied separately to screen suitable varieties. Through the analysis of the experimental results, the conclusions are as follows: (1) The roots of Diqing tartary buckwheat have stronger carbon sequestration ability in a barren environment than Heifeng, and the microorganisms in Diqing tartary buckwheat soil will also increase soil carbon input. Therefore, Diqing tartary buckwheat is more suitable for carbon sequestration than Heifeng tartary buckwheat in barren soil areas. (2) In the absence of microorganisms, the rhizosphere soil of tartary buckwheat can regulate the storage of soil organic carbon by secreting extracellular enzymes and organic acids. (3) The structural equation model showed that to promote carbon sequestration, Heifeng tartary buckwheat needed to inhibit microbial action when planted in the barren area of Loess Plateau, while Diqing tartary buckwheat needed to use microbial-promoting agents. Adaptive strategies should focus more on cultivar selection to retain carbon in soil and to assure the tolerance of fineness in the future.
Collapse
Affiliation(s)
- Wei Chen
- School of Geographical Science, Shanxi Normal University, Taiyuan 030031, China
| | | | | |
Collapse
|
67
|
Zhang Z, Liang Y, Zou L, Xu Y, Li M, Xing B, Zhu M, Hu Y, Ren G, Zhang L, Qin P. Individual or mixing extrusion of Tartary buckwheat and adzuki bean: Effect on quality properties and starch digestibility of instant powder. Front Nutr 2023; 10:1113327. [PMID: 37025611 PMCID: PMC10070833 DOI: 10.3389/fnut.2023.1113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Tartary buckwheat and adzuki bean, which are classified as coarse grain, has attracted increasing attention as potential functional ingredient or food source because of their high levels of bioactive components and various health benefits. Methods This work investigated the effect of two different extrusion modes including individual extrusion and mixing extrusion on the phytochemical compositions, physicochemical properties and in vitro starch digestibility of instant powder which consists mainly of Tartary buckwheat and adzuki bean flour. Results Compared to mixing extrusion, instant powder obtained with individual extrusion retained higher levels of protein, resistant starch, polyphenols, flavonoids and lower gelatinization degree and estimated glycemic index. The α-glucosidase inhibitory activity (35.45%) of the instant powder obtained with individual extrusion was stronger than that obtained with mixing extrusion (26.58%). Lower levels of digestibility (39.65%) and slower digestion rate coefficient (0.25 min-1) were observed in the instant powder obtained with individual extrusion than in mixing extrusion (50.40%, 0.40 min-1) by logarithm-of-slope analysis. Moreover, two extrusion modes had no significant impact on the sensory quality of instant powder. Correlation analysis showed that the flavonoids were significantly correlated with physicochemical properties and starch digestibility of the instant powder. Discussion These findings suggest that the instant powder obtained with individual extrusion could be used as an ideal functional food resource with anti-diabetic potential.
Collapse
Affiliation(s)
- Zhuo Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongqiang Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yunan Xu
- Seed Administration Station of Shijiazhuang, Shijiazhuang, China
| | - Mengzhuo Li
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bao Xing
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manli Zhu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Guixing Ren
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Guixing Ren,
| | - Lizhen Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan, China
- Lizhen Zhang,
| | - Peiyou Qin
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Peiyou Qin,
| |
Collapse
|
68
|
Zhao H, He Y, Zhang K, Li S, Chen Y, He M, He F, Gao B, Yang D, Fan Y, Zhu X, Yan M, Giglioli‐Guivarc'h N, Hano C, Fernie AR, Georgiev MI, Janovská D, Meglič V, Zhou M. Rewiring of the seed metabolome during Tartary buckwheat domestication. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:150-164. [PMID: 36148785 PMCID: PMC9829391 DOI: 10.1111/pbi.13932] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 05/22/2023]
Abstract
Crop domestication usually leads to the narrowing genetic diversity. However, human selection mainly focuses on visible traits, such as yield and plant morphology, with most metabolic changes being invisible to the naked eye. Buckwheat accumulates abundant bioactive substances, making it a dual-purpose crop with excellent nutritional and medical value. Therefore, examining the wiring of these invisible metabolites during domestication is of major importance. The comprehensive profiling of 200 Tartary buckwheat accessions exhibits 540 metabolites modified as a consequence of human selection. Metabolic genome-wide association study illustrates 384 mGWAS signals for 336 metabolites are under selection. Further analysis showed that an R2R3-MYB transcription factor FtMYB43 positively regulates the synthesis of procyanidin. Glycoside hydrolase gene FtSAGH1 is characterized as responsible for the release of active salicylic acid, the precursor of aspirin and indispensably in plant defence. UDP-glucosyltransferase gene FtUGT74L2 is characterized as involved in the glycosylation of emodin, a major medicinal component specific in Polygonaceae. The lower expression of FtSAGH1 and FtUGT74L2 were associated with the reduction of salicylic acid and soluble EmG owing to domestication. This first large-scale metabolome profiling in Tartary buckwheat will facilitate genetic improvement of medicinal properties and disease resistance in Tartary buckwheat.
Collapse
Affiliation(s)
- Hui Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shijuan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
- College of Plant PathologyGansu Agricultural UniversityLanzhouChina
| | - Yong Chen
- Wuhan Metware Biotechnology Co., Ltd.WuhanChina
| | - Ming He
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Feng He
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Bin Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Di Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xuemei Zhu
- College of Environmental SciencesSichuan Agricultural UniversityChengduChina
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural SciencesChangshaChina
| | | | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC EA1207), INRA USC1328, Plant Lignans TeamUniversité d'OrléansOrléans Cédex 2France
| | - Alisdair R. Fernie
- Department of Molecular PhysiologyMax‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Milen I. Georgiev
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
- Laboratory of MetabolomicsInstitute of Microbiology, Bulgarian Academy of SciencesPlovdivBulgaria
| | - Dagmar Janovská
- Department of Gene BankCrop Research Institute (CRI)Praha 6Czech Republic
| | | | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
69
|
Cai Q, Li X, Ding X, Wang H, Hu X. Effects of quercetin and Ca(OH)2 addition on gelatinization and retrogradation properties of Tartary buckwheat starch. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
70
|
Huang Y, Si X, Han M, Bai C. Rapid and Sensitive Detection of Rutin in Food Based on Nitrogen-Doped Carbon Quantum Dots as Fluorescent Probe. Molecules 2022; 27:molecules27248834. [PMID: 36557970 PMCID: PMC9784171 DOI: 10.3390/molecules27248834] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to establish a rapid detection method of rutin in food based on nitrogen-doped carbon quantum dots (N-CDs) as the fluorescent probe. N-CDs were prepared via a single-step hydrothermal process using citric acid as the carbon source and thiourea as the nitrogen source. The optical properties of N-CDs were characterized using an electron transmission microscope, X-ray diffractometer, Fourier-transform infrared spectrometer, and nanoparticle size potential analyzer. The UV/Vis absorption property and fluorescence intensity of N-CDs were also characterized using the respective spectroscopy techniques. On this basis, the optimal conditions for the detection of rutin by N-CDs fluorescent probes were also explored. The synthesized N-CDs were amorphous carbon structures with good water solubility and optical properties, and the quantum yield was 24.1%. In phosphate-buffered solution at pH = 7.0, Rutin had a strong fluorescence-quenching effect on N-CDs, and the method showed good linearity (R2 = 0.9996) when the concentration of Rutin was in the range of 0.1-400 μg/mL, with a detection limit of 0.033 μg/mL. The spiked recoveries in black buckwheat tea and wolfberry were in the range of 93.98-104.92%, the relative standard deviations (RSD) were in the range of 0.35-4.11%. The proposed method is simple, rapid, and sensitive, and it can be used for the rapid determination of rutin in food.
Collapse
|
71
|
Huang J, Tang B, Ren R, Wu M, Liu F, Lv Y, Shi T, Deng J, Chen Q. Understanding the Potential Gene Regulatory Network of Starch Biosynthesis in Tartary Buckwheat by RNA-Seq. Int J Mol Sci 2022; 23:ijms232415774. [PMID: 36555415 PMCID: PMC9779217 DOI: 10.3390/ijms232415774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Starch is a major component of crop grains, and its content affects food quality and taste. Tartary buckwheat is a traditional pseudo-cereal used in food as well as medicine. Starch content, granule morphology, and physicochemical properties have been extensively studied in Tartary buckwheat. However, the complex regulatory network related to its starch biosynthesis needs to be elucidated. Here, we performed RNA-seq analyses using seven Tartary buckwheat varieties differing in starch content and combined the RNA-seq data with starch content by weighted correlation network analysis (WGCNA). As a result, 10,873 differentially expressed genes (DEGs) were identified and were functionally clustered to six hierarchical clusters. Fifteen starch biosynthesis genes had higher expression level in seeds. Four trait-specific modules and 3131 hub genes were identified by WGCNA, with the lightcyan and brown modules positively correlated with starch-related traits. Furthermore, two potential gene regulatory networks were proposed, including the co-expression of FtNAC70, FtPUL, and FtGBSS1-3 in the lightcyan module and FtbHLH5, C3H, FtBE2, FtISA3, FtSS3-5, and FtSS1 in the brown. All the above genes were preferentially expressed in seeds, further suggesting their role in seed starch biosynthesis. These results provide crucial guidance for further research on starch biosynthesis and its regulatory network in Tartary buckwheat.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Bin Tang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Rongrong Ren
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Min Wu
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Fei Liu
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Yong Lv
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| |
Collapse
|
72
|
Effect of Frozen Treatment on the Sensory and Functional Quality of Extruded Fresh Noodles Made from Whole Tartary Buckwheat. Foods 2022; 11:foods11243989. [PMID: 36553730 PMCID: PMC9778488 DOI: 10.3390/foods11243989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Extruded noodles made from whole Tartary buckwheat are widely known as healthy staple foods, while the treatment of fresh noodles after extrusion is crucial. The difference in sensory and functional quality between frozen noodles (FTBN) and hot air-dried noodles (DTBN) was investigated in this study. The results showed a shorter optimum cooking time (FTBN of 7 min vs. DTBN of 17 min), higher hardness (8656.99 g vs. 5502.98 g), and less cooking loss (5.85% vs. 21.88%) of noodles treated by freezing rather than hot air drying, which corresponded to better sensory quality (an overall acceptance of 7.90 points vs. 5.20 points). These effects on FTBN were attributed to its higher ratio of bound water than DTBN based on the Low-Field Nuclear Magnetic Resonance results and more pores of internal structure in noodles based on the Scanning Electron Microscopy results. The uniform water distribution in FTBN promoted a higher recrystallization (relative crystallinity of FTBN 26.47% vs. DTBN 16.48%) and retrogradation (degree of retrogradation of FTBN 34.67% vs. DTBN 26.98%) of starch than DTBN, strengthening the stability of starch gel after noodle extrusion. FTBN also avoided the loss of flavonoids and retained better antioxidant capacity than DTBN. Therefore, frozen treatment is feasible to maintain the same quality as freshly extruded noodles made from whole Tartary buckwheat. It displays significant commercial potential for gluten-free noodle production to maximize the health benefit of the whole grain, as well as economic benefits since it also meets the sensory quality requirements of consumers.
Collapse
|
73
|
Metabolite Profiling of Tartary Buckwheat Extracts in Rats Following Co-Administration of Ethanol Using UFLC-Q-Orbitrap High-Resolution Mass Spectrometry. SEPARATIONS 2022. [DOI: 10.3390/separations9120407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tartary buckwheat, a gluten-free pseudocereal, has received considerable attention owing to its unique nutritional ingredients and beneficial health effects such as anti-tumor, anti-oxidation, anti-inflammation and hepatoprotective activities. Pharmacokinetic and metabolite profiling have been preliminarily assessed for Tartary buckwheat extracts. However, its metabolites have not yet been characterized in vivo after co-administration with ethanol when Tartary buckwheat extracts are used for the treatment of alcoholic liver disease. In this paper, a Q-Exactive orbitrap high-resolution mass spectrometer was employed to identify the metabolites of Tartary buckwheat extracts in rat biological samples. Compared with previous metabolite profiling results, a total of 26 novel metabolites were found in rat biological samples, including 11, 10, 2 and 5 novel metabolites in rat plasma, bile, urine and feces, respectively, after oral co-administration of 240 mg/kg Tartary buckwheat extracts with ethanol (42%, v/v). The major metabolic pathways of the constituents in Tartary buckwheat extracts involved hydroxylation, methylation, glucuronidation, acetylation and sulfation. Quercetin and its metabolites may be the pharmacological material basis of Tartary buckwheat for the protective effect against alcoholic liver injury. The research enriched in vivo metabolite profiling of Tartary buckwheat extracts, which provided experimental data for a comprehensive understanding and rational use of Tartary buckwheat against alcoholic liver disease.
Collapse
|
74
|
Llanaj E, Ahanchi NS, Dizdari H, Taneri PE, Niehot CD, Wehrli F, Khatami F, Raeisi-Dehkordi H, Kastrati L, Bano A, Glisic M, Muka T. Buckwheat and Cardiometabolic Health: A Systematic Review and Meta-Analysis. J Pers Med 2022; 12:jpm12121940. [PMID: 36556161 PMCID: PMC9784502 DOI: 10.3390/jpm12121940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Buckwheat (BW) is suggested to have beneficial effects, but evidence on how it affects cardiometabolic health (CMH) is not yet established. We aimed to assess the effects of BW and/or its related bioactive compounds on cardiovascular disease (CVD) risk markers in adults. Five databases were searched for eligible studies. Observational prospective studies, nonrandomized or randomized trials were considered if they assessed BW, rutin or quercetin-3-glucoside intake and CVD risk markers. We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for reporting. We selected 16 human studies based on 831 subjects with mild metabolic disturbances, such as hypercholesterolemia, diabetes and/or overweight. Eight studies, investigating primarily grain components, were included in the meta-analyses (n = 464). High study heterogeneity was present across most of our analyses. Weighted mean difference (WMD) for subjects receiving BW supplementation, compared to controls, were - 0.14 mmol/L (95% CI: -0.30; 0.02) for total cholesterol (TC), -0.03 mmol/L (95% CI: -0.22; 0.16) for LDL cholesterol, -0.14 kg (95% CI: -1.50; 1.22) for body weight, -0.04 mmol/L (95% CI: - 0.09;0.02) for HDL cholesterol, -0.02 mmol/L (95% CI: -0.15; 0.11) for triglycerides and -0.18 mmol/L (95% CI: -0.36; 0.003) for glucose. Most of the studies (66.7%) had concerns of risk of bias. Studies investigating other CVD markers were scarce and with inconsistent findings, where available. Evidence on how BW affects CMH is limited. However, the available literature indicates that BW supplementation in mild dyslipidaemia and type 2 diabetes may provide some benefit in lowering TC and glucose, albeit non-significant. Our work highlights the need for more rigorous trials, with better methodological rigor to clarify remaining uncertainties on potential effects of BW on CMH and its utility in clinical nutrition practice.
Collapse
Affiliation(s)
- Erand Llanaj
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Epistudia, 3012 Bern, Switzerland
- ELKH-DE Public Health Research Group of the Hungarian Academy of Sciences, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Kassai út 26, 4028 Debrecen, Hungary
| | - Noushin Sadat Ahanchi
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| | - Helga Dizdari
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| | - Petek Eylul Taneri
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
- School of Nursing and Midwifery, National University of Ireland Galway, H91 TK33 Galway, Ireland
- HRB-Trials Methodology Research Network, H91 TK33 Galway, Ireland
| | | | - Faina Wehrli
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
- Department of Community Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Farnaz Khatami
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
- Department of Community Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Hamidreza Raeisi-Dehkordi
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
| | - Lum Kastrati
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
| | - Arjola Bano
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
- Department of Cardiology, University Hospital of Bern, University of Bern, 3012 Bern, Switzerland
| | - Marija Glisic
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
| | - Taulant Muka
- Epistudia, 3012 Bern, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
- Correspondence: ; Tel.: +41-3168431-44
| |
Collapse
|
75
|
Effects of Exogenous Caffeic Acid, L-Phenylalanine and NaCl Treatments on Main Active Components Content and In Vitro Digestion of Germinated Tartary Buckwheat. Foods 2022; 11:foods11223682. [PMID: 36429274 PMCID: PMC9688974 DOI: 10.3390/foods11223682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Germination is an effective method for improving the nutritional value of Tartary buckwheat (TB). The effects of exogenous additive treatments (caffeic acid (CA), L-phenylalanine (L-Phe), NaCl) on germination, main active component contents and antioxidant activities before and after in vitro digestion of germinated TB were investigated. Compared with the natural growth group, the T4 group (CA 17 mg/L, L-Phe 2.7 mmol/L, NaCl 2.7 mmol/L) treatment increased the germination rate (67.50%), sprout length, reducing sugar (53.05%), total flavonoid (18.36%) and total phenolic (20.96%) content, and antioxidant capacity of TB. In addition, exogenous additives treatment induced the consumption of a lot of nutrients during seed germination, resulting in a decrease in the content of soluble protein and soluble sugar. The stress degree of natural germination on seeds was higher than that of low concentrations of exogenous additives, resulting in an increase in malondialdehyde content. In vitro digestion leads to a decrease in phenolics content and antioxidant capacity, which can be alleviated by exogenous treatment. The results showed that treatment with exogenous additives was a good method to increase the nutritional value of germinated TB, which provided a theoretical basis for screening suitable growth conditions for flavonoid enrichment.
Collapse
|
76
|
Liu XY, Li J, Zhang Y, Fan L, Xia Y, Wu Y, Chen J, Zhao X, Gao Q, Xu B, Nie C, Li Z, Tong A, Wang W, Cai J. Kidney microbiota dysbiosis contributes to the development of hypertension. Gut Microbes 2022; 14:2143220. [PMID: 36369946 PMCID: PMC9662196 DOI: 10.1080/19490976.2022.2143220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Gut microbiota dysbiosis promotes metabolic syndromes (e.g., hypertension); however, the patterns that drive hypertensive pathology and could be targeted for therapeutic intervention are unclear. We hypothesized that gut microbes might translocate to the kidney to trigger hypertension. We aimed to uncover their method of colonization, and thereby how to maintain blood pressure homeostasis. Using combined approaches based on fluorescence in situ hybridization (FISH) and immunofluorescence staining, electron microscopy analysis, bacterial cultures, species identification, and RNA-sequencing-based meta-transcriptomics, we first demonstrated the presence of bacteria within the kidney of spontaneously hypertensive rats (SHRs) and its normotensive counterpart, Wistar-Kyoto rats (WKYs), and patients with hypertension. Translocated renal bacteria were coated with secretory IgA (sIgA) or remained dormant in the L-form. Klebsiella pneumoniae (K.pn) was identified in the kidneys of germ-free (GF) mice following intestinal transplantation, which suggested an influx of gut bacteria into the kidneys. Renal bacterial taxa and their function are associated with hypertension. Hypertensive hosts showed increased richness in the pathobionts of their kidneys, which were partly derived from the gastrointestinal tract. We also demonstrated the indispensable role of bacterial IgA proteases in the translocation of live microbes. Furthermore, Tartary buckwheat dietary intervention reduced blood pressure and modulated the core renal flora-host ecosystem to near-normal states. Taken together, the unique patterns of viable and dormant bacteria in the kidney provide insight into the pathogenesis of non-communicable chronic diseases and cardiometabolic diseases (e.g., hypertension), and may lead to potential novel microbiota-targeted dietary therapies.
Collapse
Affiliation(s)
- Xin-Yu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,CONTACT Xin-Yu Liu State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Li
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital &Clinical Medical College of Chengdu University, Chengdu, P.R. China,School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Luyun Fan
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanli Xia
- Clinical Genetics Laboratory, Affiliated Hospital &Clinical Medical College of Chengdu University, Chengdu, P.R. China,School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yongyang Wu
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, China
| | - Junru Chen
- Reproductive and Genetic Hospital of CITIC‐Xiangya, Changsha, China
| | - Xinyu Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiannan Gao
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Xu
- Department of Proctology, University of Chinese Academy of Sciences-Shenzhen Hospital (Guang Ming), Shenzhen, China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjie Wang
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Cai
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Jun Cai Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
77
|
Deng J, Zhao J, Huang J, Damaris RN, Li H, Shi T, Zhu L, Cai F, Zhang X, Chen Q. Comparative proteomic analyses of Tartary buckwheat (Fagopyrum tataricum) seeds at three stages of development. Funct Integr Genomics 2022; 22:1449-1458. [DOI: 10.1007/s10142-022-00912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Tartary buckwheat is among the valuable crops, utilized as both food and Chinese herbal medicine. To uncover the accumulation dynamics of the main nutrients and their regulatory mechanism of Tartary buckwheat seeds, microscopic observations and nutrient analysis were conducted which suggested that starch, proteins as well as flavonoid gradually accumulated among seed development. Comparative proteomic analysis of rice Tartary buckwheat at three different developmental stages was performed. A total of 78 protein spots showed differential expression with 74 of them being successfully identified by MALDI-TOF/TOF MS. Among them, granule bound starch synthase (GBSS1) might be the critical enzyme that determines starch biosynthesis, while 11 S seed storage protein and vicilin seemed to be the main globulin and affect seed storage protein accumulation in Tartary buckwheat seeds. Two enzymes, flavanone 3-hydroxylase (F3H) and anthocyanidin reductase (ANR), involved in the flavonoid biosynthesis pathway were identified. Further analysis on the expression profiles of flavonoid biosynthetic genes revealed that F3H might be the key enzyme that promote flavonoid accumulation. This study provides insights into the mechanism of nutrition accumulation at the protein level in Tartary buckwheat seeds and may facilitate in the breeding and enhancement of Tartary buckwheat germplasm.
Collapse
|
78
|
Zhang Z, Fan X, Zou L, Xing B, Zhu M, Yang X, Ren G, Yao Y, Zhang L, Qin P. Phytochemical properties and health benefits of pregelatinized Tartary buckwheat flour under different extrusion conditions. Front Nutr 2022; 9:1052730. [PMID: 36438721 PMCID: PMC9682129 DOI: 10.3389/fnut.2022.1052730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2023] Open
Abstract
This work investigated the phytochemical properties and health benefits of Tartary buckwheat flour obtained with different extrusion conditions including high, medium, and low temperature. Extrusion significantly decreased the fat content and changed the original color of Tartary buckwheat flour. The contents of protein, total flavonoids, and D-chiro-inositol were affected by the extrusion temperature and moisture. Extrusion significantly decreased the total flavonoids and flavonoid glycosides contents, while it significantly increased aglycones. Compared to native Tartary buckwheat flour and pregelatinization Tartary buckwheat flour obtained with traditional extrusion processing technology, the pregelatinization Tartary buckwheat flour obtained with improved extrusion processing technology contained higher aglycones and lower flavonoid glycosides, which had stronger antioxidant capacity, α-glucosidase inhibitory activity and relatively mild α-amylase inhibitory activity. Correlation analysis proved that the aglycone content was positively correlated with antioxidant and α-glucosidase inhibitory activities. These findings indicate that the pregelatinization Tartary buckwheat flour obtained with improved extrusion processing technology could be used as an ideal functional food resource with antioxidant and anti-diabetic potential.
Collapse
Affiliation(s)
- Zhuo Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Sciences, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Fan
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bao Xing
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Sciences, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manli Zhu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Sciences, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiushi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Guixing Ren
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yang Yao
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lizhen Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Sciences, Shanxi University, Taiyuan, China
| | - Peiyou Qin
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
79
|
Valorization of Common (Fagopyrum esculentum Moench.) and Tartary (Fagopyrum tataricum Gaertn.) Buckwheat in Gluten-Free Polenta Samples: Chemical-Physical and Sensory Characterization. Foods 2022; 11:foods11213442. [PMID: 36360055 PMCID: PMC9656078 DOI: 10.3390/foods11213442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
In recent years, increasing attention has been addressed to buckwheat, an interesting minor crop with an excellent nutritional profile that contributes to the sustainability and biodiversity of the agri-food system. However, the high content of rutin and quercitin present in this pseudocereal can elicit undesirable sensory properties, such as bitterness and astringency, that can limit its exploitation in food formulations. The aim of the present study was to characterize six gluten-free porridge-type formulations (called polenta) prepared using corn and buckwheat flour. Specifically, polenta samples were prepared adding common (CB) or Tartary buckwheat (TB) flour at 20% (CB20; TB20), 30% (CB30; TB30), and 40% (CB40; TB40) to corn flour. Product characterization included sensory and instrumental analyses (electronic tongue, colorimeter, and Texture Analyzer). Products containing Tartary buckwheat were darker, firmer, and characterized by a higher intensity of bitter taste and astringency than those prepared with common buckwheat. In this context, the impact of buckwheat species seems to be more important at 30% and 40% levels, suggesting that lower additions may mask the differences between the species. The gathered information could support the food industry in re-formulating products with buckwheat. Finally, findings about the relationship between instrumental and sensory data might be exploited by the food industry to decide/choose what indices to use to characterize new formulations and/or new products.
Collapse
|
80
|
Kreft I, Germ M, Golob A, Vombergar B, Vollmannová A, Kreft S, Luthar Z. Phytochemistry, Bioactivities of Metabolites, and Traditional Uses of Fagopyrum tataricum. Molecules 2022; 27:7101. [PMID: 36296694 PMCID: PMC9611693 DOI: 10.3390/molecules27207101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 09/02/2023] Open
Abstract
In Tartary buckwheat (Fagopyrum tataricum), the edible parts are mainly grain and sprouts. Tartary buckwheat contains protecting substances, which make it possible for plants to survive on high altitudes and under strong natural ultraviolet radiation. The diversity and high content of phenolic substances are important for Tartary buckwheat to grow and reproduce under unfriendly environmental effects, diseases, and grazing. These substances are mainly flavonoids (rutin, quercetin, quercitrin, vitexin, catechin, epicatechin and epicatechin gallate), phenolic acids, fagopyrins, and emodin. Synthesis of protecting substances depends on genetic layout and on the environmental conditions, mainly UV radiation and temperature. Flavonoids and their glycosides are among Tartary buckwheat plants bioactive metabolites. Flavonoids are compounds of special interest due to their antioxidant properties and potential in preventing tiredness, diabetes mellitus, oxidative stress, and neurodegenerative disorders such as Parkinson's disease. During the processing and production of food items, Tartary buckwheat metabolites are subjected to molecular transformations. The main Tartary buckwheat traditional food products are bread, groats, and sprouts.
Collapse
Affiliation(s)
- Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Blanka Vombergar
- The Education Centre Piramida Maribor, SI-2000 Maribor, Slovenia
| | - Alena Vollmannová
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Samo Kreft
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
81
|
Feng J, Xu B, Ma D, Hao Z, Jia Y, Wang C, Wang L. Metabolite identification in fresh wheat grains of different colors and the influence of heat processing on metabolites via targeted and non-targeted metabolomics. Food Res Int 2022; 160:111728. [DOI: 10.1016/j.foodres.2022.111728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023]
|
82
|
Yu Y, Liang G, Wang H. Interaction mechanism of flavonoids and Tartary buckwheat bran protein: A fluorescence spectroscopic and 3D-QSAR study. Food Res Int 2022; 160:111669. [DOI: 10.1016/j.foodres.2022.111669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
|
83
|
Li A, Wang J, Wang Y, Zhang B, Chen Z, Zhu J, Wang X, Wang S. Tartary Buckwheat (Fagopyrum tataricum) Ameliorates Lipid Metabolism Disorders and Gut Microbiota Dysbiosis in High-Fat Diet-Fed Mice. Foods 2022; 11:foods11193028. [PMID: 36230104 PMCID: PMC9563051 DOI: 10.3390/foods11193028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Jinqiao II, a newly cultivated variety of tartary buckwheat (Fagopyrum tataricum), has been reported to exhibit a higher yield and elevated levels of functional compounds compared to traditional native breeds. We aimed to investigate the potential of Jinqiao II tartary buckwheat to alleviate lipid metabolism disorders by detecting serum biochemistry, pathological symptoms, gene expression profiling, and gut microbial diversity. C57BL/6J mice were provided with either a normal diet; a high-fat diet (HFD); or HFD containing 5%, 10%, and 20% buckwheat for 8 weeks. Our results indicate that Jinqiao II tartary buckwheat attenuated HFD-induced hyperlipidemia, fat accumulation, hepatic damage, endotoxemia, inflammation, abnormal hormonal profiles, and differential lipid-metabolism-related gene expression at mRNA and protein levels in response to the dosages, and high-dose tartary buckwheat exerted optimal outcomes. Gut microbiota sequencing also revealed that the Jinqiao II tartary buckwheat elevated the level of microbial diversity and the abundance of advantageous microbes (Alistipes and Alloprevotella), lowered the abundance of opportunistic pathogens (Ruminococcaceae, Blautia, Ruminiclostridium, Bilophila, and Oscillibacter), and altered the intestinal microbiota structure in mice fed with HFD. These findings suggest that Jinqiao II tartary buckwheat might serve as a competitive candidate in the development of functional food to prevent lipid metabolic abnormalities.
Collapse
Affiliation(s)
- Ang Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Yuanyifei Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Junling Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
- Institute of Medicinal Plant, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shuo Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
- Correspondence: ; Tel.: +86-22-8535-8445
| |
Collapse
|
84
|
Cao P, Wu Y, Li Y, Xiang L, Cheng B, Hu Y, Jiang X, Wang Z, Wu S, Si L, Yang Q, Xu J, Huang J. The important role of glycerophospholipid metabolism in the protective effects of polyphenol-enriched Tartary buckwheat extract against alcoholic liver disease. Food Funct 2022; 13:10415-10425. [PMID: 36149348 DOI: 10.1039/d2fo01518h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alcoholic liver disease (ALD) is a mounting public health problem with significant medical, economic and social burdens. Tartary buckwheat (F. tataricum (L.) Gaertn, bitter buckwheat) is a kind of healthy and nutritious food, which has been demonstrated to protect against ALD, but the underlying mechanism has not been fully studied. Herein, we aimed to elucidate the beneficial effects of Tartary buckwheat extract (mainly composed of polyphenols including rutin, quercetin, kaempferol and kaempferol-3-O-rutinoside) in terms of lipid metabolism with the aid of lipidomic analysis. In our study, we employed C57BL/6J mice and a Lieber-DeCarli alcohol liquid diet to construct an ALD model and found that Tartary buckwheat extract was able to prevent ALD-induced histopathological lesions, liver injury and abnormal plasma lipid levels. These beneficial effects might be attributed to the regulation of energy metabolism-related genes (SIRT1, LKB1 and AMPK), lipid synthesis-related genes (ACC, SREBP1c and HMGR) and lipid oxidation-related genes (PPARα, CPT1 and CPT2). In addition, lipidomic profiling and KEGG pathway analysis showed that glycerophospholipid metabolism contributed the most to elucidating the regulatory mechanism of Tartary buckwheat extract. In specific, chronic ethanol intake reduced the level of phosphatidylcholines (PC) and increased the level of phosphatidylethanolamines (PE) in the liver, resulting in a decrease in the PC/PE ratio, which could be all significantly restored by Tartary buckwheat extract intervention, indicating that the Tartary buckwheat extract might regulate PC/PE homeostasis to exert its lipid-lowering effect. Overall, we demonstrated that Tartary buckwheat extract could prevent ALD by modulating hepatic glycerophospholipid metabolism, providing the theoretical basis for its further exploitation as a medical plant or nutritional food.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Yue Wu
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye 435100, Hubei, China.
| | - Yaping Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Liping Xiang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Bingyu Cheng
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yixin Hu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xin Jiang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhe Wang
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye 435100, Hubei, China.
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qiang Yang
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye 435100, Hubei, China.
| | - Jian Xu
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye 435100, Hubei, China.
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
85
|
Tartary Buckwheat Flavonoids Improve Colon Lesions and Modulate Gut Microbiota Composition in Diabetic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4524444. [PMID: 36016679 PMCID: PMC9398688 DOI: 10.1155/2022/4524444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/18/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023]
Abstract
Tartary buckwheat flavonoids (TBFs) exhibit diverse biological activities, with antioxidant, antidiabetes, anti-inflammatory, and cholesterol-lowering properties. In this study, we investigated the role of TBFs in attenuating glucose and lipid disturbances in diabetic mice and hence preventing the occurrence of diabetes-related colon lesions in mice by regulating the gut microbiota. The results showed that TBFs (1) reversed blood glucose levels and body weight changes; (2) improved levels of serum total cholesterol (TC), triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and fasting insulin; and (3) significantly reduced diabetes-related colon lesions in diabetic mice. In addition, TBFs also affected the diabetes-related imbalance of the gut microbiota and enriched beneficial microbiota, including Akkermansia and Prevotella. The TBF also selectively increased short-chain fatty acid-producing bacteria, including Roseburia and Odoribacter, and decreased the abundance of the diabetes-related gut microbiota, including Escherichia, Mucispirillum, and Bilophila. The correlation analysis indicated that TBFs improved metabolic parameters related to key communities of the gut microbiota. Our data suggested that TBFs alleviated glucose and lipid disturbances and improved colon lesions in diabetic mice, possibly by regulating the community composition of the gut microbiota. This regulation of the gut microbiota composition may explain the observed effects of TBFs to alleviate diabetes-related symptoms.
Collapse
|
86
|
Wang D, Yang T, Li Y, Deng F, Dong S, Li W, He Y, Zhang J, Zou L. Light Intensity-A Key Factor Affecting Flavonoid Content and Expression of Key Enzyme Genes of Flavonoid Synthesis in Tartary Buckwheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:2165. [PMID: 36015468 PMCID: PMC9415826 DOI: 10.3390/plants11162165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Tartary buckwheat, a polygonaceae family plant, is rich in abundant flavonoids, high-quality protein, and well-balanced essential amino acids. This study aimed to investigate the effects of climatic variables on the quality of Tartary buckwheat. In this study, six distinct types of Tartary buckwheat collected from the Sichuan Basin, Western Sichuan Plateau, and Yunnan-Guizhou Plateau in southwest China were chosen to investigate the impact of climatic conditions from the grain-filling stage to the harvest stage on the concentration of flavonoids and expression of key enzyme genes involved the synthesis of flavonoids. Meteorological data of three producing areas were collected from the China Meteorological Network, mainly including maximum temperature (Tmax), minimum temperature (Tmin), diurnal temperature difference (Tdif), and light intensity. Then, the contents of rutin, kaempferol-3-O-rutin glycoside, quercetin, and kaempferol in 30 batches of Tartary buckwheat from 6 varieties including Chuanqiao No. 1, Chuanqiao No. 2, Xiqiao No. 1, Xiqiao No. 2, Miqiao No. 1 and Di ku were determined by ultra performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Furthermore, the expression levels of phenylalanine ammonia lyase (PAL), 4-coumaric acid coenzyme A ligase (4CL), and anthocyanin synthase (ANS) in six kinds of Tartary buckwheat were detected by real-time polymerase chain reaction (PCR). The seed photos were processed by ImageJ processing software. The partial least squares method was used to analyze the correlation. As a result, light intensity can promote the accumulation of flavonoids and the expression of key enzyme genes. Miqiao No. 1, which grows in Liangshan Prefecture, Sichuan Province, has the highest light intensity and is the dominant variety with flavonoid content. More importantly, the expression levels of PAL and 4CL in the secondary metabolic pathway of flavonoids were positively correlated with the content of Tartary buckwheat flavonoids. Interestingly, the expression level of ANS was negatively correlated with the content of PAL, 4CL, and flavonoids. In addition, ANS is a key gene affecting the seed coat color of Tartary buckwheat. The higher the expression of ANS, the darker the seed coat color. These findings provide a theoretical basis and reference for the breeding of fine buckwheat varieties.
Collapse
Affiliation(s)
- Di Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Yang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yangqian Li
- Asset and Laboratory Management Department, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shuai Dong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Li
- School of Basic Medicine, Chengdu University, Chengdu 610106, China
| | - Yueyue He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| |
Collapse
|
87
|
Kehinde BA, Majid I, Hussain S. Isolation of bioactive peptides and multiple nutraceuticals of antidiabetic and antioxidant functionalities through sprouting: Recent advances. J Food Biochem 2022; 46:e14317. [PMID: 35867040 DOI: 10.1111/jfbc.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
The employment of proteases directly from enzymes or indirectly from microorganisms during fermentation for the purpose of proteolysis of food proteins has been the conventional trend for the derivation of bioactive peptides from food matrices. However, recent studies have shown that inherent protease enzymes can be activated for this activity for vegetable foods using the sprouting process. The benefits of ease of operation, and reduced processing costs are formidable advantages for the optimal consideration of this technique. On another note, the demand for functional foods with therapeutic health effects has increased in recent years. Globally, plant foods are perceived as dietetic choices bearing sufficient quantities of concomitant nutraceuticals. In this manuscript, the sprouting route for the isolation of peptides and glucosinolates, and for the enhancement of total phenolic contents, polyunsaturated fatty acid profiles, and other bioactive constituents was explored. Advances regarding the phytochemical transformations in the course of sprouting, the therapeutic functionalities, and microbiological safety concerns of vegetable sprouts are delineated. In addition, consumption of vegetable sprouts has been shown to be more efficient in supplying nutraceutical components relative to their unsprouted counterparts. Biochemical mechanisms involving the inhibition of digestive enzymes such as α-amylase, β-glucosidase, and dipeptidyl peptidase IV (DPP-IV), single electron transfer, and metal chelation, for impartation of health benefits, have been reported to occur from bioactive components isolated from vegetable sprouts. PRACTICAL APPLICATIONS: Sprouting initiates proteolysis of vegetable proteins for the release of bioactive peptides. Abiotic stresses can be used as elicitors during the sprouting process to achieve enhanced phytochemical profiles of sprouts. Sprouting is a relatively more convenient approach to the improvement of the health benefits of vegetable foods. Vegetable sprouts are potential for the management of metabolic syndrome disorders.
Collapse
Affiliation(s)
- Bababode Adesegun Kehinde
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Ishrat Majid
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, India
| | - Shafat Hussain
- Department of Fisheries, Government of Jammu and Kashmir, Anantnag, India
| |
Collapse
|
88
|
Impact of gelatinization on common (Fagopyrum esculentum) and Tartary (Fagopyrum tataricum) buckwheat: effect on taste and flavor assessed by e-senses in relation to phenolic compounds. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04066-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
89
|
Ding M, He Y, Zhang K, Li J, Shi Y, Zhao M, Meng Y, Georgiev MI, Zhou M. JA-induced FtBPM3 accumulation promotes FtERF-EAR3 degradation and rutin biosynthesis in Tartary buckwheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:323-334. [PMID: 35524968 DOI: 10.1111/tpj.15800] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Buckwheat accumulates abundant flavonoids, which exhibit excellent health-promoting value. Flavonoids biosynthesis is mediated by a variety of phytohormones, among which jasmonates (JAs) induce numerous transcription factors, taking part in regulation of flavonoids biosynthesis genes. However, some transcriptional repressors appeared also induced by JAs. How these transcriptional repressors coordinately participate in JA signaling remains unclear. Here, we found that the disruption of the GCC-box in FtF3H promoter was associated with flavonoids accumulation in Tartary buckwheat. Further, our study illustrated that the nucleus-localized FtERF-EAR3 could inhibit FtF3H expression and flavonoids biosynthesis through binding the GCC-box in the promoter of FtF3H. The JA induced FtERF-EAR3 gene expression while facilitating FtERF-EAR3 protein degradation via the FtBPM3-dependent 26S proteasome pathway. Overall, these results illustrate a precise modulation mechanism of JA-responsive transcription suppressor participating in flavonoid biosynthesis, and will further help to improve the efficiency of flavonoids biosynthesis in Tartary buckwheat.
Collapse
Affiliation(s)
- Mengqi Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
- Department of Crop Science, College of Agriculture & Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 305-754, Republic of Korea
| | - Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Jinbo Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Yaliang Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Mengyu Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
- College of Landscape and Travel, Agricultural University of Hebei, Baoding, China
| | - Yu Meng
- College of Landscape and Travel, Agricultural University of Hebei, Baoding, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| |
Collapse
|
90
|
Zhou Y, She X, Zhu S, Zhou X. The study of microbial diversity and volatile compounds in Tartary buckwheat sourdoughs. Food Chem X 2022; 14:100353. [PMID: 35677194 PMCID: PMC9167693 DOI: 10.1016/j.fochx.2022.100353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 10/26/2022] Open
Abstract
Microorganisms play an essential role in forming volatile compounds in traditional staple products. Tartary buckwheat, as a medicinal and food material, has high nutritional value but its development and utilization are seriously restricted due to its poor flavor. In this study, 16S rRNA and ITS rRNA sequencing were used to analyze the microbial diversity of Tartary buckwheat sourdoughs, while HS-SPME-GC/MS was used to identify volatile compounds during fermentation. The results showed that Lactococcus and Weissella were the dominant bacterial genus. Wickerhamomyces, Penicillium, and Aspergillus were the main fungal genera in the Tartary buckwheat sourdoughs. And the main volatile compounds in Tartary buckwheat sourdough were pyrazine compounds. After 12 h of fermentation, a large amount of alcohol and esters were produced, which endowed the sourdough with a good flavor. This suggests that sourdough fermentation could significantly improve the flavor of Tartary buckwheat.
Collapse
Affiliation(s)
- Yiming Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xuanming She
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Siyi Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaoli Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.,University Think Tank of Shanghai Municipality, Institute of Beautiful China and Ecological Civilization, Shanghai 201418, China
| |
Collapse
|
91
|
Katayama S, Okahata C, Onozato M, Minami T, Maeshima M, Ogihara K, Yamazaki S, Takahashi Y, Nakamura S. Buckwheat Flour and Its Starch Prevent Age-Related Cognitive Decline by Increasing Hippocampal BDNF Production in Senescence-Accelerated Mouse Prone 8 Mice. Nutrients 2022; 14:nu14132708. [PMID: 35807886 PMCID: PMC9269199 DOI: 10.3390/nu14132708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Buckwheat is an important pseudo-cereal crop worldwide. This study investigated whether long-term administration of buckwheat can suppress age-related cognitive decline in senescence-accelerated mouse prone 8 (SAMP8) mice. For 26 weeks, 18-week-old male SAMP8 mice were fed a standard diet containing 5% (w/w) buckwheat, Tartary buckwheat, wheat, or rice flour. In the Barnes maze and passive avoidance tests, mice fed buckwheat whole flour (BWF) showed improved cognitive performance compared to those fed a control diet, while no improvement was noticed in case of the other diets. Analysis of the gut microbiota showed that BWF and buckwheat outer flour administration increased the abundance of Lactococcus and Ruminiclostridium, respectively, at the genus level. The expression levels of brain-derived neurotrophic factor (BDNF), postsynaptic Arc and PSD95, and the mature neuronal marker NeuN in the hippocampus were increased after BWF administration, which was induced by the activation of the ERK/CREB signaling pathway and histone H3 acetylation. A similar increase in cognitive performance-related hippocampal BDNF expression in SAMP8 mice was observed after the oral administration of starch prepared from BWF. Therefore, the long-term administration of BWF suppresses cognitive decline by increasing hippocampal BDNF production in SAMP8 mice.
Collapse
Affiliation(s)
- Shigeru Katayama
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan; (C.O.); (S.N.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
- Correspondence: ; Tel.: +81-265-77-1603
| | - Chizuru Okahata
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan; (C.O.); (S.N.)
| | - Masashi Onozato
- Nikkoku Seifun Co., Ltd., 1-16-2 Minamichitose, Nagano 380-0823, Japan; (M.O.); (T.M.); (M.M.)
| | - Takaaki Minami
- Nikkoku Seifun Co., Ltd., 1-16-2 Minamichitose, Nagano 380-0823, Japan; (M.O.); (T.M.); (M.M.)
| | - Masanaga Maeshima
- Nikkoku Seifun Co., Ltd., 1-16-2 Minamichitose, Nagano 380-0823, Japan; (M.O.); (T.M.); (M.M.)
| | - Kazuaki Ogihara
- Nagano Prefecture General Industrial Technology Center, 205-1 Kurita, Nagano 380-0921, Japan; (K.O.); (S.Y.); (Y.T.)
| | - Shinya Yamazaki
- Nagano Prefecture General Industrial Technology Center, 205-1 Kurita, Nagano 380-0921, Japan; (K.O.); (S.Y.); (Y.T.)
| | - Yuta Takahashi
- Nagano Prefecture General Industrial Technology Center, 205-1 Kurita, Nagano 380-0921, Japan; (K.O.); (S.Y.); (Y.T.)
| | - Soichiro Nakamura
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan; (C.O.); (S.N.)
| |
Collapse
|
92
|
Sujka K, Cacak-Pietrzak G, Sułek A, Murgrabia K, Dziki D. Buckwheat Hull-Enriched Pasta: Physicochemical and Sensory Properties. Molecules 2022; 27:molecules27134065. [PMID: 35807310 PMCID: PMC9268230 DOI: 10.3390/molecules27134065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/29/2022] Open
Abstract
This work aimed to evaluate the effect of partial replacement of semolina with 0, 1, 5, 10, 15, and 20% of ground buckwheat hull (BH) on the chemical composition, antioxidant properties, color, cooking characteristics, and sensory properties of wheat pasta. Pasta samples were prepared by dough lamination (tagliatelle shape) and dried at 55 °C until the moisture content was 11–12% (wet basis). Analyses of samples showed that the addition of BH caused an increase in fiber content in pasta from 4.31% (control pasta) to 14.15% (pasta with 20% of BH). Moreover, the brightness and yellowness of BH-enriched products were significantly decreased compared to the control sample, and the total color difference ranged from 23.84 (pasta with 1% of BH) to 32.56 (pasta with 15% BH). In addition, a decrease in optimal cooking time, as well as an increased weight index and cooking loss, was observed in BH-enriched pasta samples. Furthermore, BH-enriched cooked pasta had significantly higher total phenolic content and antioxidant activity but an unpleasant smell and taste, especially if the level of BH was higher than 10%.
Collapse
Affiliation(s)
- Katarzyna Sujka
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (K.S.); (G.C.-P.)
| | - Grażyna Cacak-Pietrzak
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (K.S.); (G.C.-P.)
| | - Alicja Sułek
- Department of Cereal Crop Production, Institute of Soil Science and Plant Cultivation—State Research Institute, 8 Czartoryskich Street, 24-100 Puławy, Poland;
| | - Karolina Murgrabia
- Faculty of Food Technology, Warsaw University of Life Sciences, 159C Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, Lublin University of Life Sciences, Głęboka 31 Street, 20-612 Lublin, Poland
- Correspondence:
| |
Collapse
|
93
|
Aubert L, Quinet M. Comparison of Heat and Drought Stress Responses among Twelve Tartary Buckwheat ( Fagopyrum tataricum) Varieties. PLANTS (BASEL, SWITZERLAND) 2022; 11:1517. [PMID: 35684290 PMCID: PMC9183088 DOI: 10.3390/plants11111517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The use of orphan crops could mitigate the effects of climate change and improve the quality of food security. We compared the effects of drought, high temperature, and their combination in 12 varieties of Tartary buckwheat (Fagopyrum tataricum). Plants were grown at 21/19 °C or 28/26 °C under well-watered and water-stressed conditions. Plants were more discriminated according to environmental conditions than variety, with the exception of Islek that was smaller and produced fewer leaves, inflorescences, and seeds than the other varieties. The combination of high temperature and water stress had a stronger negative impact than each stress applied separately. The temperature increase stimulated leaf and flower production while water stress decreased plant height. Leaf area decreased with both temperature and water stress. High temperature hastened the seed initiation but negatively affected seed development such that almost all seeds aborted at 28 °C. At 21 °C, water stress significantly decreased the seed production per plant. At the physiological level, water stress increased the chlorophyll content and temperature increased the transpiration rate under well-watered conditions. High temperature also increased the polyphenol and flavonoid concentrations, mainly in the inflorescences. Altogether, our results showed that water stress and temperature increase in particular negatively affected seed production in F. tataricum.
Collapse
|
94
|
Profiling of polyphenols for in-depth understanding of Tartary buckwheat sprouts: Correlation between cultivars and active components, dynamic changes and the effects of ultraviolet B stress. Food Chem X 2022; 14:100295. [PMID: 35372824 PMCID: PMC8968448 DOI: 10.1016/j.fochx.2022.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
|
95
|
Xiao Y, Zhang J, Zhang L. Effect of superfine grinding on physicochemical properties and endogenous enzyme induced flavonoid transformations of Tartary buckwheat bran. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
96
|
Fesenko IN, Bondarev NI, Rezunova OV, Evsyuticheva DE, Fesenko AN. Hybridization with Fagopyrum cymosum Meisn. as a way to make cultivated Tartary buckwheat ( F. tataricum Gaertn.) with grain characteristics typical for common buckwheat ( F. esculentum Moench.). BREEDING SCIENCE 2022; 72:232-237. [PMID: 36408320 PMCID: PMC9653194 DOI: 10.1270/jsbbs.21086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/06/2022] [Indexed: 06/16/2023]
Abstract
Compared to common buckwheat (F. esculentum), Tartary buckwheat (F. tataricum) is very polymorphic in the type of seeds, but a seed type which is typical for F. esculentum, i.e. triangular seeds with flat sides and clear ribs, has been not found among the polymorphism. However, such seed type is typical for wild species F. cymosum which produces fertile hybrids in crosses with F. tataricum. Embryo rescue based interspecific cross F. esculentum × F. cymosum allowed reveal functional allelism of the genes determining the similar morphs of these species' seeds, i.e. the seed type resulted from mutation(s) at same gene. The gene can be assigned as TAN (triangular). Variation for the seed shell thickness among recessives for the TAN carrying about 12% of F. tataricum genome, together with the shell thickness of a seed from the F1 hybrid F. esculentum × F. cymosum compared to ones of the parents, suggests there are some genes influencing seed shell thickness. Also, it was supported by analyses of seeds characteristics of Tartary-based forms with some share of F. cymosum genetic material. In addition, cross F. tataricum × F. cymosum looks like an effective tool to increase 1000-seed weight of Tartary buckwheat-based breeding material.
Collapse
Affiliation(s)
- Ivan N. Fesenko
- Lab of Buckwheat Breeding, Federal Scientific Center of Grain Legumes and Groats Crops, 302502, p/o Streletskoe, Orel, Russia
| | - Nikolay I. Bondarev
- Department of Industrial Chemistry and Biotechnology, Orel State University named after I.S. Turgenev, 302026, Komsomolskaya 95, Orel, Russia
| | - Olga V. Rezunova
- Lab of Buckwheat Breeding, Federal Scientific Center of Grain Legumes and Groats Crops, 302502, p/o Streletskoe, Orel, Russia
| | - Darya E. Evsyuticheva
- Lab of Buckwheat Breeding, Federal Scientific Center of Grain Legumes and Groats Crops, 302502, p/o Streletskoe, Orel, Russia
| | - Aleksey N. Fesenko
- Lab of Buckwheat Breeding, Federal Scientific Center of Grain Legumes and Groats Crops, 302502, p/o Streletskoe, Orel, Russia
| |
Collapse
|
97
|
Liu Y, Sui X, Zhao X, Wang S, Yang Q. Antioxidative Activity Evaluation of High Purity and Micronized Tartary Buckwheat Flavonoids Prepared by Antisolvent Recrystallization. Foods 2022; 11:foods11091346. [PMID: 35564069 PMCID: PMC9102898 DOI: 10.3390/foods11091346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Tartary buckwheat, a healthy food, is associated with a reduced risk of certain human chronic diseases. However, the bioactive component flavonoids in Tartary buckwheat have poor solubility and low absorption in vivo. To improve these points, 60.00% Tartary buckwheat total flavonoids (TFs) were obtained by ethanol refluxing method, which were purified and micronized by antisolvent recrystallization (ASR) using methanol as a solvent and deionized water as an antisolvent. By using High Performance Liquid Chromatography (HPLC) and electrospray ionized mass spectrometry (ESI-MS), the main flavonoid in pure flavonoids (PF) were rutin (RU), kaempferol-3-O-rutinoside (KA) and quercetin (QU); the content of TF is 99.81% after purification. It is more worthy of our attention that micronized flavonoids contribute more to antioxidant activity because of good solubility. These results provide a theoretical reference for the micronization of other flavonoids.
Collapse
Affiliation(s)
- Yanjie Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.L.); (S.W.); (Q.Y.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Xiaoyu Sui
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
- Correspondence: (X.S.); (X.Z.)
| | - Xiuhua Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.L.); (S.W.); (Q.Y.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China
- Correspondence: (X.S.); (X.Z.)
| | - Siying Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.L.); (S.W.); (Q.Y.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Qilei Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.L.); (S.W.); (Q.Y.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
98
|
Wu X, Fu G, Xu Z, Dong B, Li R, Wan Y, Jiang G, Liu C. In vitro nutrition properties of whole Tartary buckwheat straight noodles and its amelioration on type 2 diabetic rats. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
99
|
Dabija A, Ciocan ME, Chetrariu A, Codină GG. Buckwheat and Amaranth as Raw Materials for Brewing, a Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:756. [PMID: 35336638 PMCID: PMC8954860 DOI: 10.3390/plants11060756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 05/08/2023]
Abstract
Globally, beer is considered the most-consumed low-alcohol beverage, it ranks third, after water and tea, in the top sales of these drinks. New types of beer are the result of the influence of several factors, including innovations in science and technology, changing requirements for food consumption of the population, competition between producers, promotion of food for health, flavor, and quality, the limited nature of traditional food resource raw materials, and the interest of producers in reducing production costs. Manufacturers are looking for new solutions for obtaining products that meet the requirements of consumers, authentic products of superior quality, with distinctive taste and aroma. This review proposes the use of two pseudocereals as raw materials in the manufacture of beer: buckwheat and amaranth, focusing on the characteristics that recommend them in this regard. Due to their functional and nutraceutical properties, these pseudocereals can improve the quality of beer-a finished product. Additionally, all types of beer obtained from these pseudocereals are recommended for diets with particular nutritional requirements, especially gluten-free diets. Researchers and producers will continue to improve and optimize the sensory and technological properties of the new types of beer obtained from these pseudocereals.
Collapse
Affiliation(s)
| | | | | | - Georgiana Gabriela Codină
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (A.D.); (M.E.C.); (A.C.)
| |
Collapse
|
100
|
Tartary Buckwheat R2R3-MYB Gene FtMYB3 Negatively Regulates Anthocyanin and Proanthocyanin Biosynthesis. Int J Mol Sci 2022; 23:ijms23052775. [PMID: 35269917 PMCID: PMC8910852 DOI: 10.3390/ijms23052775] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Anthocyanins and proanthocyanidins (PAs) are vital secondary metabolites in Tartary buckwheat because of their antioxidant capacities and radical scavenging functions. It has been demonstrated that R2R3-MYB transcription factors (TFs) are essential regulators of anthocyanin and PA biosynthesis in many plants. However, their regulatory mechanisms in Tartary buckwheat remain to be clarified. Here, we confirmed the role of FtMYB3 in anthocyanin and PA biosynthesis. FtMYB3, which belongs to the subgroup 4 R2R3 family was predominantly expressed in roots. The transcriptional expression of FtMYB3 increased significantly under hormone treatment with SA and MeJA and abiotic stresses including drought, salt, and cold at the seedling stage. Functional analyses showed that FtMYB3 negatively regulated anthocyanin and PA biosynthesis, primarily via downregulating the expression of the DFR, ANS, BAN, and TT13 in transgenic Arabidopsis thaliana, which may depend on the interaction between FtMYB3 and FtbHLH/FtWD40. Altogether, this study reveals that FtMYB3 is a negative regulatory transcription factor for anthocyanin and PA biosynthesis in Tartary buckwheat.
Collapse
|