51
|
Lou H, Ding M, Wu J, Zhang F, Chen W, Yang Y, Suo J, Yu W, Xu C, Song L. Full-Length Transcriptome Analysis of the Genes Involved in Tocopherol Biosynthesis in Torreya grandis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1877-1888. [PMID: 30735036 DOI: 10.1021/acs.jafc.8b06138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The seeds of Torreya grandis (Cephalotaxaceae) are rich in tocopherols, which are essential components of the human diet as a result of their function in scavenging reactive oxygen and free radicals. Different T. grandis cultivars (10 cultivars selected in this study were researched, and their information is shown in Table S1 of the Supporting Information) vary enormously in their tocopherol contents (0.28-11.98 mg/100 g). However, little is known about the molecular basis and regulatory mechanisms of tocopherol biosynthesis in T. grandis kernels. Here, we applied single-molecule real-time (SMRT) sequencing to T. grandis (X08 cultivar) for the first time and obtained a total of 97 211 full-length transcripts. We proposed the biosynthetic pathway of tocopherol and identified eight full-length transcripts encoding enzymes potentially involved in tocopherol biosynthesis in T. grandis. The results of the correlation analysis between the tocopherol content and gene expression level in the 10 selected cultivars and different kernel developmental stages of the X08 cultivar suggested that homogentisate phytyltransferase coding gene ( TgVTE2b) and γ-tocopherol methyltransferase coding gene ( TgVTE4) may be key players in tocopherol accumulation in the kernels of T. grandis. Subcellular localization assays showed that both TgVTE2b and TgVTE4 were localized to the chloroplast. We also identified candidate regulatory genes similar to WRI1 and DGAT1 in Arabidopsis that may be involved in the regulation of tocopherol biosynthesis. Our findings provide valuable genetic information for T. grandis using full-length transcriptomic analysis, elucidating the candidate genes and key regulatory genes involved in tocopherol biosynthesis. This information will be critical for further molecular-assisted screening and breeding of T. grandis genotypes with high tocopherol contents.
Collapse
|
52
|
Li X, Shen Y, Wu G, Qi X, Zhang H, Wang L, Qian H. Determination of Key Active Components in Different Edible Oils Affecting Lipid Accumulation and Reactive Oxygen Species Production in HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11943-11956. [PMID: 30350970 DOI: 10.1021/acs.jafc.8b04563] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Owing to the poor ability of cells to decompose triglycerides, most studies of edible oil have depended on animal or clinical trials. However, such trials are expensive and time-consuming, and the results are limited to considerable individual differences. This is the first study to comprehensively investigate the effect of different oils on the lipid accumulation and reactive oxygen species (ROS) production in HepG2 cells by hydrolyzing oil to fatty acids with integrated fat content. In addition, the key components of fatty acid composition, phytosterol, polyphenols, and tocopherol/tocotrienol in different oils, contributing to a decrease in content of lipid accumulation, cholesterol, ROS, and malondialdehyde (MDA), were analyzed using multivariate analysis. The results showed that the lipid accumulation content of coconut oil, Pu'er tea oil, olive oil, and flaxseed oil at a concentration of 200 μM decreased by 45.98 ± 0.75, 50.35 ± 1.37, 40.43 ± 2.44, and 42.76 ± 1.88%, respectively, compared with the lard. In addition, the ROS contents of Pu'er tea oil, olive oil, and flaxseed oil had no significant difference from that of control cells ( p < 0.05). In the results, (3β,5α)-stigmastan-3-yl, cholane-5,20(22)-diene-3b-ph, and β-sitosterol were determined to be the key components in edible oils associated with lipid accumulation and ROS production.
Collapse
Affiliation(s)
- Xiaojing Li
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Yingbin Shen
- Department of Food Science and Engineering, School of Science and Engineering , Jinan University , Guangzhou 510632 , Guangdong , China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Xiguang Qi
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Li Wang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| |
Collapse
|
53
|
Cholewski M, Tomczykowa M, Tomczyk M. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients 2018; 10:E1662. [PMID: 30400360 PMCID: PMC6267444 DOI: 10.3390/nu10111662] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Omega-3 fatty acids, one of the key building blocks of cell membranes, have been of particular interest to scientists for many years. However, only a small group of the most important omega-3 polyunsaturated fatty acids are considered. This full-length review presents a broad and relatively complete cross-section of knowledge about omega-3 monounsaturated fatty acids, polyunsaturates, and an outline of their modifications. This is important because all these subgroups undoubtedly play an important role in the function of organisms. Some monounsaturated omega-3s are pheromone precursors in insects. Polyunsaturates with a very long chain are commonly found in the central nervous system and mammalian testes, in sponge organisms, and are also immunomodulating agents. Numerous modifications of omega-3 acids are plant hormones. Their chemical structure, chemical binding (in triacylglycerols, phospholipids, and ethyl esters) and bioavailability have been widely discussed indicating a correlation between the last two. Particular attention is paid to the effective methods of supplementation, and a detailed list of sources of omega-3 acids is presented, with meticulous reference to the generally available food. Both the oral and parenteral routes of administration are taken into account, and the omega-3 transport through the blood-brain barrier is mentioned. Having different eating habits in mind, the interactions between food fatty acids intake are discussed. Omega-3 acids are very susceptible to oxidation, and storage conditions often lead to a dramatic increase in this exposure. Therefore, the effect of oxidation on their bioavailability is briefly outlined.
Collapse
Affiliation(s)
- Mateusz Cholewski
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| | - Monika Tomczykowa
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| |
Collapse
|
54
|
Cui HX, Duan FF, Jia SS, Cheng FR, Yuan K. Antioxidant and Tyrosinase Inhibitory Activities of Seed Oils from Torreya grandis Fort. ex Lindl. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5314320. [PMID: 30320135 PMCID: PMC6167574 DOI: 10.1155/2018/5314320] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/14/2018] [Accepted: 08/28/2018] [Indexed: 11/18/2022]
Abstract
Torreya grandis Fort. ex Lindl. is a plant belonging to the Taxaceae family and Torreya grandis cv. Merrillii is the only grafted and thoroughbred species belonging to this species. In this study, we extracted five different seed oils, including T. grandis seed oil (TGSO), T. grandis "Xiangyafei" seed oil (XYSO), T. grandis "Zhimafei" seed oil (ZMSO), T. grandis "Majus"seed oil (TGMSO), and T. grandis "cunguangfei" seed oil (CGSO) using physical pressure. The resulting extracts were analyzed to determine their fatty acid composition, antioxidant activity, and inhibitory activity towards tyrosinase. The results of the antioxidant activity assays revealed that XYSO and ZMSO exhibited much greater DPPH radical scavenging activity and ferric reducing power than TGSO. Notably, all five of the seed oils showed dose-dependent inhibitory activity towards tyrosinase. XYSO and TGSO gave the highest activities of all of the seed oils tested in the current study against monophenolase and diphenolase, with IC50 values of 227.0 and 817.5μg/mL, respectively. The results of this study show that wild TGSOs exhibit strong antioxidant and tyrosinase inhibition activities. These results therefore suggest that wild TGSOs could be used as a potential source of natural antioxidant agents and tyrosinase inhibitors.
Collapse
Affiliation(s)
- Hong-Xin Cui
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Fang-Fang Duan
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhu'ji 311800, China
| | - Shan-Shan Jia
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhu'ji 311800, China
| | - Fang-Rong Cheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ke Yuan
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhu'ji 311800, China
| |
Collapse
|
55
|
Shi LK, Zheng L, Mao JH, Zhao CW, Huang JH, Liu RJ, Chang M, Jin QZ, Wang XG. Effects of the variety and oil extraction method on the quality, fatty acid composition and antioxidant capacity of Torreya grandis kernel oils. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
56
|
Akter S, Netzel ME, Fletcher MT, Tinggi U, Sultanbawa Y. Chemical and Nutritional Composition of Terminalia ferdinandiana (Kakadu Plum) Kernels: A Novel Nutrition Source. Foods 2018; 7:foods7040060. [PMID: 29649154 PMCID: PMC5920425 DOI: 10.3390/foods7040060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/05/2022] Open
Abstract
Terminalia ferdinandiana (Kakadu plum) is a native Australian fruit. Industrial processing of T. ferdinandiana fruits into puree generates seeds as a by-product, which are generally discarded. The aim of our present study was to process the seed to separate the kernel and determine its nutritional composition. The proximate, mineral and fatty acid compositions were analysed in this study. Kernels are composed of 35% fat, while proteins account for 32% dry weight (DW). The energy content and fiber were 2065 kJ/100 g and 21.2% DW, respectively. Furthermore, the study showed that kernels were a very rich source of minerals and trace elements, such as potassium (6693 mg/kg), calcium (5385 mg/kg), iron (61 mg/kg) and zinc (60 mg/kg) DW, and had low levels of heavy metals. The fatty acid composition of the kernels consisted of omega-6 fatty acid, linoleic acid (50.2%), monounsaturated oleic acid (29.3%) and two saturated fatty acids namely palmitic acid (12.0%) and stearic acid (7.2%). The results indicate that T. ferdinandiana kernels have the potential to be utilized as a novel protein source for dietary purposes and non-conventional supply of linoleic, palmitic and oleic acids.
Collapse
Affiliation(s)
- Saleha Akter
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, 39 Kessels Rd Coopers Plains, P.O. Box 156, Archerfield BC, QLD 4108, Australia.
| | - Michael E Netzel
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, 39 Kessels Rd Coopers Plains, P.O. Box 156, Archerfield BC, QLD 4108, Australia.
| | - Mary T Fletcher
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, 39 Kessels Rd Coopers Plains, P.O. Box 156, Archerfield BC, QLD 4108, Australia.
| | - Ujang Tinggi
- Queensland Health Forensic and Scientific Services, Health and Food Sciences Precinct, 39 Kessels Rd, Coopers Plains, P.O. Box 594, Archerfield BC, QLD 4108, Australia.
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, 39 Kessels Rd Coopers Plains, P.O. Box 156, Archerfield BC, QLD 4108, Australia.
| |
Collapse
|
57
|
A review of chemical composition and nutritional properties of minor vegetable oils in China. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.01.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
58
|
Yu M, Zeng M, Qin F, He Z, Chen J. Physicochemical and functional properties of protein extracts from Torreya grandis seeds. Food Chem 2017; 227:453-460. [DOI: 10.1016/j.foodchem.2017.01.114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/22/2017] [Accepted: 01/24/2017] [Indexed: 11/28/2022]
|