51
|
Characterization of the oral breakdown, sensory properties, and volatile release during mastication of white bread. Food Chem 2019; 298:125003. [DOI: 10.1016/j.foodchem.2019.125003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023]
|
52
|
Aybeke EN, Ployon S, Brulé M, De Fonseca B, Bourillot E, Morzel M, Lesniewska E, Canon F. Nanoscale Mapping of the Physical Surface Properties of Human Buccal Cells and Changes Induced by Saliva. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12647-12655. [PMID: 31448614 DOI: 10.1021/acs.langmuir.9b01979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mucosal pellicle, also called salivary pellicle, is a thin biological layer made of salivary and epithelial constituents, lining oral mucosae. It contributes to their protection against microbiological, chemical, or mechanical insults. Pellicle formation depends on the cells' surface properties, and in turn the pellicle deeply modifies such properties. It has been reported that the expression of the transmembrane mucin MUC1 in oral epithelial cells improves the formation of the mucosal pellicle. Here, we describe an approach combining classical and functionalized tip atomic force microscopy and scanning microwave microscopy to characterize how MUC1 induces changes in buccal cells' morphology, hydrophobicity, and electric properties to elucidate the physicochemical mechanisms involved in the enhancement of the anchoring of salivary proteins. We show that MUC1 expression did not modify drastically the morphology of the epithelial cells' surface. MUC1 expression, however, resulted in the presence of more hydrophobic and more charged areas at the cell surface. The presence of salivary proteins decreased the highest attractive and repulsive forces recorded between the cell surface and a functionalized hydrophobic atomic force microscopy (AFM) tip, suggesting that the most hydrophobic and charged areas participate in the binding of salivary proteins. The cells' dielectric properties were altered by both MUC1 expression and the presence of a mucosal pellicle. We finally show that in the absence of MUC1, the pellicle appeared as a distinct layer poorly interacting with the cells' surface. This integrative AFM/scanning microwave microscopy approach may usefully describe the surface properties of various cell types, with relevance to the bioadhesion or biomimetics fields.
Collapse
Affiliation(s)
- Ece Neslihan Aybeke
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté , Dijon F-21000 , France
| | - Sarah Ployon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté , Dijon F-21000 , France
| | - Marine Brulé
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté , Dijon F-21000 , France
| | - Brice De Fonseca
- ICB UMR CNRS 6303, Université de Bourgogne Franche-Comté , Dijon F-21078 , France
| | - Eric Bourillot
- ICB UMR CNRS 6303, Université de Bourgogne Franche-Comté , Dijon F-21078 , France
| | - Martine Morzel
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté , Dijon F-21000 , France
| | - Eric Lesniewska
- ICB UMR CNRS 6303, Université de Bourgogne Franche-Comté , Dijon F-21078 , France
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté , Dijon F-21000 , France
| |
Collapse
|
53
|
Thomas-Danguin T, Guichard E, Salles C. Cross-modal interactions as a strategy to enhance salty taste and to maintain liking of low-salt food: a review. Food Funct 2019; 10:5269-5281. [PMID: 31436262 DOI: 10.1039/c8fo02006j] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Salt reduction in foods is becoming an important challenge to protect population health from severe diseases as recommended by different health agencies worldwide. Among the reduction strategies already evaluated in order to lower sodium salt content in foods, the use of cross-modal interactions between taste and odour, regardless of saltiness, was revealed to be a very promising method to improve saltiness perception. Cross-modal odour-taste interactions, as means to enhance salty taste in foods, is reviewed. Salt-related odours can enhance salty taste in water solutions containing a low level of sodium chloride through odour-induced changes in taste perception. Odour-induced saltiness perception enhancement (OISE) depends on salt concentration (intensity). OISE was also found to be effective in low salt content solid model cheese but was texture- and composition-dependent. A significant enhancement in saltiness perception induced by Comté cheese and sardine odours was observed only in model foods with soft textures. In ternary odour-sour-salty solutions, sourness additively enhanced saltiness perception with salt-related odours. Finally, in cream-based food systems, a strategy combining OISE and heterogeneous distribution of stimuli was found to compensate for a greater than 35% decrease in salt content without significant loss of acceptability. However, variation in the composition of the food matrix influenced aroma and salt release and consequently the overall saltiness perception. A better knowledge of the mechanisms involved in cross-modal perceptual interactions at the central level should allow for the optimization of their use as salt reduction strategies for healthier food design.
Collapse
Affiliation(s)
- Thierry Thomas-Danguin
- CSGA (Centre des Sciences du Goût et de l'Alimentation), AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Elisabeth Guichard
- CSGA (Centre des Sciences du Goût et de l'Alimentation), AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Christian Salles
- CSGA (Centre des Sciences du Goût et de l'Alimentation), AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
54
|
Individual differences and effect of phenolic compounds in the immediate and prolonged in-mouth aroma release and retronasal aroma intensity during wine tasting. Food Chem 2019; 285:147-155. [DOI: 10.1016/j.foodchem.2019.01.152] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
|
55
|
Motoi L, Morgenstern MP, Paredes D, Wilson AJ, Hedderley DI, Wade C, Tartaglia JM, Green C. The effect of flavour modulators on chewing gum flavour duration. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lidia Motoi
- The New Zealand Institute for Plant and Food Research Limited Private Bag 4704, Christchurch Mail Centre Christchurch 8140New Zealand
| | - Marco P. Morgenstern
- The New Zealand Institute for Plant and Food Research Limited Private Bag 4704, Christchurch Mail Centre Christchurch 8140New Zealand
| | - Dulce Paredes
- Takasago International Corporation (USA) 4 Volvo Drive Rockleigh NJ 07647 USA
| | - Arran J. Wilson
- The New Zealand Institute for Plant and Food Research Limited Private Bag 4704, Christchurch Mail Centre Christchurch 8140New Zealand
| | - Duncan I. Hedderley
- The New Zealand Institute for Plant and Food Research Limited Private Bag 11600 Palmerston North 4442 New Zealand
| | - Cath Wade
- The New Zealand Institute for Plant and Food Research Limited Private Bag 4704, Christchurch Mail Centre Christchurch 8140New Zealand
| | | | - Carter Green
- Takasago International Corporation (USA) 4 Volvo Drive Rockleigh NJ 07647 USA
| |
Collapse
|
56
|
Pu D, Zhang H, Zhang Y, Sun B, Ren F, Chen H, He J. Characterization of the aroma release and perception of white bread during oral processing by gas chromatography-ion mobility spectrometry and temporal dominance of sensations analysis. Food Res Int 2019; 123:612-622. [PMID: 31285010 DOI: 10.1016/j.foodres.2019.05.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to investigate the aroma release and perception from white bread during oral processing by gas chromatography-ion mobility spectrometry (GC-IMS) and dynamic sensory evaluation of temporal dominance of sensations (TDS). TDS curves indicated that two maximum aroma perception signals, fermentation-like and flour-like attributes, were perceived at the beginning and swallowing, respectively. The fermentation-like, flour-like, and sour attributes were the 3 dominant aromas during oral processing. A total of 35 volatile compounds were detected in the mouth cavity during chewing white bread, 19 of them were confirmed and quantified by using the respective external standard. Based on PLSR analysis, 8 aroma compounds were predicted as potent odorants contributing to the aroma perception from chewing white bread. By application of odor activity values analysis and addition experiments, ethyl butanoate, butyl acetate, hexanal, 3-(methylthio)-propanal, 3-methylbutanal, and 2,3-butanedione were confirmed as the key odorants contributing to the aroma perception during chewing of white bread.
Collapse
Affiliation(s)
- Dandan Pu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Huiying Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Jinna He
- Shandong Hanon Instruments Co., Ltd., Dezhou 253000, China
| |
Collapse
|
57
|
Tarrega A, Yven C, Semon E, Mielle P, Salles C. Effect of Oral Physiology Parameters on In-Mouth Aroma Compound Release Using Lipoprotein Matrices: An In Vitro Approach. Foods 2019; 8:foods8030106. [PMID: 30901890 PMCID: PMC6462901 DOI: 10.3390/foods8030106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
Temporal aroma compound release during eating is a function of the physicochemical properties of the food matrix, aroma compounds, and oral physiology of individuals. However, the influence of each parameter on the release of each aroma component should be clarified. Two flavored lipoprotein matrices varying in composition were chewed in a chewing simulator that reproduced most of the physiological functions of the mouth. Aroma compound releases (butanoic acid, 2-heptanone, ethyl butyrate, 3-octanone, and 2-nonanone) were followed in real time by direct connection of the device to APCI-MS (atmospheric pressure chemical ionization mass spectrometry). Each oral parameter was controlled and decoupled using the in vitro device. The food matrix composition had only a low impact on aroma compound release, but the controlled oral parameters had significantly different influences on the release of aroma compounds according to their physicochemical characteristics. The release of certain compounds seemed more sensitive to bite force, while others seemed more sensitive to the shearing angle. The salivary flow rate primarily influenced the more hydrophobic compounds. Significant interactions were also observed between shear angle, salivary flow rate, and lipoprotein matrix composition, mainly for the release of the more hydrophobic volatile compounds; this needs further investigations to be clarified.
Collapse
Affiliation(s)
- Amparo Tarrega
- CSGA (Centre des Sciences du Goût et de l'Alimentation), AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Claude Yven
- CSGA (Centre des Sciences du Goût et de l'Alimentation), AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Etienne Semon
- CSGA (Centre des Sciences du Goût et de l'Alimentation), AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, F-21000 Dijon, France.
- ChemoSens Platform, CSGA, F-21000 Dijon, France.
| | - Patrick Mielle
- CSGA (Centre des Sciences du Goût et de l'Alimentation), AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Christian Salles
- CSGA (Centre des Sciences du Goût et de l'Alimentation), AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
58
|
Orthonasal vs. retronasal: Studying how volatiles' hydrophobicity and matrix composition modulate the release of wine odorants in simulated conditions. Food Res Int 2019; 116:548-558. [DOI: 10.1016/j.foodres.2018.08.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/14/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022]
|
59
|
Ethnicity, gender and physiological parameters: Their effect on in vivo flavour release and perception during chewing gum consumption. Food Res Int 2018; 116:57-70. [PMID: 30716982 DOI: 10.1016/j.foodres.2018.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/20/2018] [Accepted: 12/17/2018] [Indexed: 01/25/2023]
Abstract
In this study, the impact of physiological parameters, ethnicity and gender on flavour perception and flavour release of chewing gum was investigated. Proton Transfer Reaction Mass Spectrometry in-nose monitoring of volatile organic compounds was coupled to discontinuous time intensity sensory evaluation for mint flavour and sweetness perception. Each of the 29 subjects, 14 European and 15 Chinese panelists (13 male and 16 females, age 24 ± 1.4 years old) consumed the samples in triplicates. Physiological parameters (oral cavity volume, salivary flow, acetone and isoprene concentration and fungiform papillae density) were measured. Significant differences for in vivo flavour release between Chinese and European panelists after 90 s of consumption and after the gum was removed from the mouth were found. Significant differences were observed also in flavour and sweetness perception while no gender effect was detected. In this work, for the first time an effect of ethnicity on in-nose flavour release monitored through PTR-MS was noticed during chewing gum consumption, in agreement with the findings from sensory evaluation. Single physiological parameters do not explain the relation between flavour in nose release and perception during consumption.
Collapse
|
60
|
Muñoz-González C, Brulé M, Feron G, Canon F. Does interindividual variability of saliva affect the release and metabolization of aroma compounds ex vivo? The particular case of elderly suffering or not from hyposalivation. J Texture Stud 2018; 50:36-44. [PMID: 30520036 DOI: 10.1111/jtxs.12382] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/11/2018] [Accepted: 11/22/2018] [Indexed: 12/25/2022]
Abstract
The aim of this work was to study the effects of interindividual variability of human elderly saliva on aroma release and metabolization by ex vivo approaches. Thirty individuals suffering or not from hyposalivation were selected from a panel formed by 110 elderly people (aged >65 years old) that were matched by age and sex. Then, their stimulated saliva samples were independently incubated in presence of three aroma compounds (ethyl hexanoate, octanal, 2-nonanone) to perform headspace-gas chromatography and liquid/liquid extraction-gas chromatography mass spectrometry analyses. These assays revealed that the extent of saliva effect on the release and metabolization of aroma compounds was highly dependent on the chemical family of the compounds (octanal>ethyl hexanoate>2-nonanone). Moreover, salivas from the hyposalivator (HPS) group exerted a significant lower release and/or higher metabolization than those of the control group for the three assayed compounds. Regarding the biochemical characterization of the saliva samples, no significant differences were found in the total protein content between the two groups. This does not preclude the involvement of specific proteins on the observed results that need to be clarified in further experiments. Saliva from the HPS group presented a significantly higher total antioxidant capacity than that of the control group, which suggests that this parameter could be related to the metabolization of aroma compounds by saliva. Such effects might alter aroma perception in individuals suffering from hyposalivation. PRACTICAL APPLICATIONS: The world population is getting older so fast that most countries are not prepared to handle this demographic challenge, characterized by an increasing prevalence of noncommunicable chronic diseases (e.g., diabetes, gastrointestinal disorders) associated to inadequate eating patterns. Thus, supporting a balanced diet is one of the most cost-effective strategies to maintain a good quality of life. A suitable diet needs to take into account both, specific sensory and nutritional individual needs. However, aging is often accompanied by deterioration in oral health (e.g., low salivary secretions), which could alter the capacities to taste and smell. Results from this work contribute to a better understanding of the role of human saliva in aroma release and metabolization, a first step to comprehend retronasal aroma release and perception. This knowledge will help to propose innovative solutions for the reformulation of food products better adapted to the elderly's needs, thus allowing delayed onset of dependency.
Collapse
Affiliation(s)
- Carolina Muñoz-González
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRA, UMR6265 CNRS Université de Bourgogne, Agrosup Dijon, Dijon, France
| | - Marine Brulé
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRA, UMR6265 CNRS Université de Bourgogne, Agrosup Dijon, Dijon, France
| | - Gilles Feron
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRA, UMR6265 CNRS Université de Bourgogne, Agrosup Dijon, Dijon, France
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRA, UMR6265 CNRS Université de Bourgogne, Agrosup Dijon, Dijon, France
| |
Collapse
|
61
|
Frank D, Piyasiri U, Archer N, Jenifer J, Appelqvist I. Influence of saliva on individual in-mouth aroma release from raw cabbage ( Brassica oleracea var. capitata f. rubra L.) and links to perception. Heliyon 2018; 4:e01045. [PMID: 30603687 PMCID: PMC6304465 DOI: 10.1016/j.heliyon.2018.e01045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Raw or minimally processed vegetables are popular for health reasons and for their unique textural and flavor attributes. While many aroma volatiles are produced in situ when plant tissues are mechanically disrupted, enzymes expressed in bacteria in oral microbiota such as cysteine-β-lyase (EC 4.4.1.13) may also contribute to aroma formation in-mouth during consumption. Interactions between raw cabbage and fresh human saliva (n = 21) were measured ex vivo by real-time monitoring of sulfur volatile production by proton transfer reaction mass spectrometry (PTR-MS). Inter-individual differences in the concentration of sulfur volatiles from the breakdown of S-methyl-L-cysteine sulfoxide (SMCSO) in fresh cabbage by saliva were characterized and a 10-fold difference in the extent of sulfur volatile production was measured across individuals. The overall intensity and garlic odor of raw cabbage was positively correlated with the concentration of sulfur volatiles after incubation with fresh human saliva. A buildup of SMSCO-derived sulfur volatiles in vivo, over twenty repeated mouthfuls was demonstrated, indicating that these reactions can affect sensory perception within the timescale of eating. These findings show the perceived odor experienced when eating cabbage differs, thus resulting in a unique flavor experience between individuals.
Collapse
Affiliation(s)
- Damian Frank
- CSIRO, 11 Julius Ave, North Ryde, NSW 2113, Australia
| | | | | | | | | |
Collapse
|
62
|
Pérez‐Jiménez M, Rocha‐Alcubilla N, Pozo‐Bayón MÁ. Effect of saliva esterase activity on ester solutions and possible consequences for thein‐mouthester release during wine intake. J Texture Stud 2018; 50:62-70. [DOI: 10.1111/jtxs.12371] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/12/2023]
Affiliation(s)
- María Pérez‐Jiménez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) CSIC‐UAM Madrid Spain
| | - Nuria Rocha‐Alcubilla
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) CSIC‐UAM Madrid Spain
| | | |
Collapse
|
63
|
Genovese A, Yang N, Linforth R, Sacchi R, Fisk I. The role of phenolic compounds on olive oil aroma release. Food Res Int 2018; 112:319-327. [DOI: 10.1016/j.foodres.2018.06.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
|
64
|
Canon F, Neiers F, Guichard E. Saliva and Flavor Perception: Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7873-7879. [PMID: 29962207 DOI: 10.1021/acs.jafc.8b01998] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper reports the main trends and perspectives related to the current understanding of the relationships between saliva and flavor perception. Saliva is a key factor in flavor perception and controls the transport of flavor molecules to their receptors, their adsorption onto the mouth surfaces (i.e., oral mucosa), their metabolism by enzymatic modification, and the friction force in the oral cavity. The proteins in free saliva or in the mucosal pellicle contribute to flavor perception by interacting with or metabolizing flavor compounds. Most of these reactions were observed when using fresh whole saliva; however, they were absent or less frequently observed when using artificial saliva or depleted/frozen whole saliva. There is a need to better understand the role of protein aggregates in flavor perception. Within humans, there is great interindividual variation in salivary composition, which has been related to differences in flavor perception. However, the relative role of salivary proteins and the microbiota should be deeply investigated together with the impact of their composition on individual perception during life. Finally, future results must also consider cross-modal interactions at the brain level.
Collapse
Affiliation(s)
- Francis Canon
- UMR Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA) , Université Bourgogne Franche-Comté , 21000 Dijon , France
| | - Fabrice Neiers
- UMR Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA) , Université Bourgogne Franche-Comté , 21000 Dijon , France
| | - Elisabeth Guichard
- UMR Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA) , Université Bourgogne Franche-Comté , 21000 Dijon , France
| |
Collapse
|
65
|
Main effects of human saliva on flavour perception and the potential contribution to food consumption. Proc Nutr Soc 2018; 77:423-431. [DOI: 10.1017/s0029665118000113] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Whole saliva is a mixture composed by the secretions of the major and minor salivary glands and the crevicular fluid, bacteria, cells and food debris. Its properties (flow and composition) are highly intra- and inter-individually dependent and reflect the health status of individuals. Saliva plays a key role in the eating process and on the perception of flavour. Flavour corresponds to the combined effect of taste sensations, aromatics and chemical feeling factors evoked by food in the oral cavity. It is a key determinant of food consumption and intake. This review summarises the evidence about the role of saliva in flavour perception and its potential contribution to food intake. All in all, evidence on the relationships between salivary parameters and both food perception and feeding behaviour is presented. This review emphasises that new studies accounting for the effect of salivary constituents on flavour alterations due to diseases (i.e. cancer, obesity and diabetes) are lacking and are expected in the incoming years.
Collapse
|
66
|
Guichard E, Galindo-Cuspinera V, Feron G. Physiological mechanisms explaining human differences in fat perception and liking in food spreads-a review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
67
|
Parker M, Black CA, Barker A, Pearson W, Hayasaka Y, Francis IL. The contribution of wine-derived monoterpene glycosides to retronasal odour during tasting. Food Chem 2017; 232:413-424. [DOI: 10.1016/j.foodchem.2017.03.163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 01/21/2023]
|
68
|
Aroma release in the oral cavity after wine intake is influenced by wine matrix composition. Food Chem 2017; 243:125-133. [PMID: 29146318 DOI: 10.1016/j.foodchem.2017.09.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/29/2017] [Accepted: 09/19/2017] [Indexed: 01/15/2023]
Abstract
The aim of this study has been to investigate if wine matrix composition might influence the interaction between odorants and oral mucosa in the oral cavity during a "wine intake-like" situation. Aroma released after exposing the oral cavity of three individuals to different wines (n=12) previously spiked with six target aromas was followed by an -in vivo intra-oral SPME approach. Results showed a significant effect of wine matrix composition on the intra-oral aroma release of certain odorants. Among the wine matrix parameters, phenolic compounds showed the largest impact. This effect was dependent on their chemical structure. Some phenolic acids (e.g. hippuric, caffeic) were associated to an increase in the intra-oral release of certain odorants (e.g. linalool, β-ionone), while flavonoids showed the opposite effect, decreasing the intra-oral release of aliphatic esters (ethyl hexanoate). This work shows for the first time, the impact of wine composition on oral-mucosa interactions under physiological conditions.
Collapse
|
69
|
Quintero-Flórez A, Beltrán G, Sánchez-Ortiz A. Changes in Virgin Olive Oil Volatiles Caused by in Vitro Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7900-7907. [PMID: 28803464 DOI: 10.1021/acs.jafc.7b01965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Volatile compounds are responsible for some sensory characteristics of virgin olive oil (VOO); however, they have not been studied from a nutritional point view. In this work, the effect of the simulated digestion on VOO volatile compounds responsible for green flavor was studied, analyzing their changes through the three steps of an in vitro digestion model (mouth, stomach, and small intestine). Index of recovery and bioaccessibility were determined for the main volatiles of "Picual" VOO. At end of the duodenal step, higher recoveries of ethanol, pent-1-en-3-ol, β-ocimene, and nonanal were observed. From the 10 volatile compounds analyzed, only six compounds were bioaccessible. The compounds with the highest bioaccessibility were pent-1-en-3-ol, nonanal, β-ocimene, and ethanol. The results showed for the first time the recovery and bioaccessibility of several volatile compounds present in VOO.
Collapse
Affiliation(s)
- Angélica Quintero-Flórez
- Instituto de Investigación y Formación Agraria y Pesquera- IFAPA Centro Venta del Llano, Ctra Bailén - Motril Km 18.5, 23620 Mengibar, Spain
| | - Gabriel Beltrán
- Instituto de Investigación y Formación Agraria y Pesquera- IFAPA Centro Venta del Llano, Ctra Bailén - Motril Km 18.5, 23620 Mengibar, Spain
| | - Araceli Sánchez-Ortiz
- Instituto de Investigación y Formación Agraria y Pesquera- IFAPA Centro Venta del Llano, Ctra Bailén - Motril Km 18.5, 23620 Mengibar, Spain
| |
Collapse
|
70
|
Kindleysides S, Beck KL, Walsh DCI, Henderson L, Jayasinghe SN, Golding M, Breier BH. Fat Sensation: Fatty Acid Taste and Olfaction Sensitivity and the Link with Disinhibited Eating Behaviour. Nutrients 2017; 9:nu9080879. [PMID: 28809792 PMCID: PMC5579672 DOI: 10.3390/nu9080879] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023] Open
Abstract
Perception of fat taste, aroma, and texture are proposed to influence food preferences, thus shaping dietary intake and eating behaviour and consequently long-term health. In this study, we investigated associations between fatty acid taste, olfaction, mouthfeel of fat, dietary intake, eating behaviour, and body mass index (BMI). Fifty women attended three sessions to assess oleic acid taste and olfaction thresholds, the olfactory threshold for n-butanol and subjective mouthfeel ratings of custard samples. Dietary intake and eating behaviour were evaluated using a Food Frequency and Three-Factor Eating Questionnaire, respectively. Binomial regression analysis was used to model fat taste and olfaction data. Taste and olfactory detection for oleic acid were positively correlated (r = 0.325; p < 0.02). Oleic acid taste hypersensitive women had significantly increased n-butanol olfactory sensitivity (p < 0.03). The eating behaviour disinhibition and BMI were higher in women who were hyposensitive to oleic acid taste (p < 0.05). Dietary intake of nuts, nut spreads, and seeds were significantly correlated with high olfactory sensitivity to oleic acid (p < 0.01). These findings demonstrate a clear link between fatty acid taste sensitivity and olfaction and suggest that fat taste perception is associated with specific characteristics of eating behaviour and body composition.
Collapse
Affiliation(s)
- Sophie Kindleysides
- School of Food and Nutrition, Massey Institute of Food Science and Technology, College of Health, Massey University, Auckland 0745, New Zealand.
| | - Kathryn L Beck
- School of Food and Nutrition, Massey Institute of Food Science and Technology, College of Health, Massey University, Auckland 0745, New Zealand.
| | | | - Lisa Henderson
- School of Food and Nutrition, Massey Institute of Food Science and Technology, College of Health, Massey University, Auckland 0745, New Zealand.
| | - Shakeela N Jayasinghe
- School of Food and Nutrition, Massey Institute of Food Science and Technology, College of Health, Massey University, Auckland 0745, New Zealand.
| | - Matt Golding
- School of Food and Nutrition, Massey Institute of Food Science and Technology, College of Health, Massey University, Auckland 0745, New Zealand.
| | - Bernhard H Breier
- School of Food and Nutrition, Massey Institute of Food Science and Technology, College of Health, Massey University, Auckland 0745, New Zealand.
| |
Collapse
|
71
|
Muñoz-González C, Feron G, Brulé M, Canon F. Understanding the release and metabolism of aroma compounds using micro-volume saliva samples by ex vivo approaches. Food Chem 2017; 240:275-285. [PMID: 28946273 DOI: 10.1016/j.foodchem.2017.07.060] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/23/2017] [Accepted: 07/11/2017] [Indexed: 01/25/2023]
Abstract
This study investigated the behaviour of key aroma compounds in the presence of human saliva (200μL) from different individuals (n=3) submitted or not to centrifugation (whole vs clarified saliva). HS-GC results showed that human saliva strongly decreased the release of carbonyl compounds (aldehydes and ketones). This effect was dependent on i) the structure of the aroma compounds and ii) the saliva composition. Whole saliva exerted a higher effect than clarified saliva on aroma compounds. Moreover, this effect was individual-dependent and related to the total protein content and the total antioxidant capacity of saliva. HS-SPME and LLE-GC/MS analyses revealed that metabolism of the compounds by salivary enzymes was involved. This observation indicates that some aroma compounds could be metabolized in the oral cavity in an individual manner, which could have implications for aroma perception (e.g., formation of new metabolites with different odor thresholds and qualities) and/or organisms' health status (e.g., compound detoxification).
Collapse
Affiliation(s)
- Carolina Muñoz-González
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRA, UMR6265 CNRS Université de Bourgogne, Agrosup Dijon, F-21000 Dijon, France.
| | - Gilles Feron
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRA, UMR6265 CNRS Université de Bourgogne, Agrosup Dijon, F-21000 Dijon, France
| | - Marine Brulé
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRA, UMR6265 CNRS Université de Bourgogne, Agrosup Dijon, F-21000 Dijon, France
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRA, UMR6265 CNRS Université de Bourgogne, Agrosup Dijon, F-21000 Dijon, France
| |
Collapse
|