51
|
Llopart EE, Verdini RA, Delorenzi NJ, Busti PA. Characterization of polyphenols compounds extracted from stressed apple peel and their interaction with β-lactoglobulin. Heliyon 2023; 9:e20010. [PMID: 37809818 PMCID: PMC10559732 DOI: 10.1016/j.heliyon.2023.e20010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
This paper proposes to apply a postharvest environmental stress to red apples, Malus domestica, variety Red Delicious in order to increase the polyphenols compounds (PP) content in their peels. The possibility of enhancing extractable PP provides a useful alternative for the use of discarded crops in the food industry. A great increase in PP was observed in response to light damage produced by the environmental stress applied in this work. Flavonols > anthocyanins > flavanols > dihydrochalcones > phenolic acids is the order in PP content. The interaction of the extracted PP from unstressed and stressed apple peels with beta-lactoglobulin (β-LG) was characterized. A PP/β-LG complex which was formed with one single binding site in the protein was determined. The interaction was spontaneous and enthalpy driven. PP extracted from unstressed samples had greater affinity for the protein than PP extracted from stressed samples, possibly due to the polar characteristic of anthocyanins. The results of this last study could provide a better understanding of the interaction between PP and β-LG to incorporate them into functional foods.
Collapse
Affiliation(s)
- Emilce E. Llopart
- Área Alimentos y Sociedad, Departamento de Ciencias de los Alimentos y del Medio Ambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
- Instituto de Química Rosario (IQUIR, UNR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Roxana A. Verdini
- Instituto de Química Rosario (IQUIR, UNR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
- Área Bromatología y Nutrición, Departamento de Ciencias de los Alimentos y del Medio Ambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Néstor J. Delorenzi
- Área Tecnología de los Alimentos, Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Pablo A. Busti
- Área Tecnología de los Alimentos, Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
52
|
Zhang L, Zhou QM, Xu L, Xie X, Wang PX, Xie ZH, Li JL, Tu ZC. Extraction optimization and identification of four advanced glycation-end products inhibitors from lotus leaves and interaction mechanism analysis. Food Chem 2023; 414:135712. [PMID: 36808023 DOI: 10.1016/j.foodchem.2023.135712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/15/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Previous research indicated lotus leaves extract could effectively inhibit advanced glycation end-products (AGEs) formation, but the optimal extraction condition, bio-active compounds and interaction mechanism remain unclear. The current study was designed to optimize the extraction parameters of AGEs inhibitors from lotus leaves by bio-activity-guided approach. The bio-active compounds were enriched and identified, the interaction mechanisms of inhibitors with ovalbumin (OVA) were investigated by fluorescence spectroscopy and molecular docking. The optimum extraction parameters were solid-liquid ratio of 1:30, ethanol concentration of 70 %, ultrasonic time of 40 min, temperature of 50 °C, and power of 400 W. Isoquercitrin, hyperoside, astragalin, and trifolin were identified from the 80 % ethanol fraction of lotus leaves (80HY). Hyperoside and isoquercitrin were dominant AGEs inhibitors and accounted for 55.97 % of 80HY. Isoquercitrin, hyperoside, trifolin interacted with OVA via the same mechanism, hyperoside exhibited the strongest affinity, trifolin caused the most conformational changes.
Collapse
Affiliation(s)
- Lu Zhang
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi, College of Life Science, Jiangxi Normal University, Nanchang, China; Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun, Jiangxi 331208, China.
| | - Qi-Ming Zhou
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi, College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Liang Xu
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi, College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Xing Xie
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi, College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Pei-Xin Wang
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi, College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Zuo-Hua Xie
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun, Jiangxi 331208, China
| | - Jin-Lin Li
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi, College of Life Science, Jiangxi Normal University, Nanchang, China.
| | - Zong-Cai Tu
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi, College of Life Science, Jiangxi Normal University, Nanchang, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
53
|
Dai YH, Wei JR, Chen XQ. Interactions between tea polyphenols and nutrients in food. Compr Rev Food Sci Food Saf 2023; 22:3130-3150. [PMID: 37195216 DOI: 10.1111/1541-4337.13178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/08/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Tea polyphenols (TPs) are important secondary metabolites in tea and are active in the food and drug industry because of their rich biological activities. In diet and food production, TPs are often in contact with other food nutrients, affecting their respective physicochemical properties and functional activity. Therefore, the interaction between TPs and food nutrients is a very important topic. In this review, we describe the interactions between TPs and food nutrients such as proteins, polysaccharides, and lipids, highlight the forms of their interactions, and discuss the changes in structure, function, and activity resulting from their interactions.
Collapse
Affiliation(s)
- Yi-Hui Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Jia-Ru Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Xiao-Qiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| |
Collapse
|
54
|
Gui H, Jiang Q, Tian J, Zhihuan Z, Yang S, Yang Y, Xin M, Zhao M, Dai J, Li B. Interaction and binding mechanism of cyanidin-3-O-glucoside to lysozyme in varying pH conditions: Multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Chem 2023; 425:136509. [PMID: 37295211 DOI: 10.1016/j.foodchem.2023.136509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Due to pH sensitivity, the interaction between lysozyme and cyanidin-3-O-glucoside was investigated at pH 3.0 and 7.4 via multi-spectroscopic approaches, with additional molecular docking and molecular dynamics simulation (MD). Binding with cyanidin-3-O-glucoside, the enhanced UV spectra and the reduced the α-helicity of lysozyme were both more significant at pH 7.4 than that at pH 3.0 (p < 0.05), corresponding to Fourier transform infrared spectroscopy (FTIR) study. Fluorescence quenching indicated the static mode was major at pH 3.0 with a part dynamic mode at pH 7.4 with a significantly high of Ks at 310 K (p < 0.05), corresponding to their MD. An instantaneous conformation of lysozyme was observed during C3G addition at pH 7.4 in fluorescence phase diagram. Cyanidin-3-O-glucoside derivatives bind with lysozyme at a common site via hydrogen-bond and π-π interactions in molecular docking and tryptophan played a potential role in the interaction based on the MD.
Collapse
Affiliation(s)
- Hailong Gui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zang Zhihuan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., No. 20 Xinyangguang Road, Jiyang Street, Zhuji City, Zhejiang Province 311800, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd., No. 20 Xinyangguang Road, Jiyang Street, Zhuji City, Zhejiang Province 311800, China
| | - Meili Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Min Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jian Dai
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
55
|
Ma Y, Zhang S, Feng Y, Wang H, Liu Y, Wang C. Modification of the Structural and Functional Characteristics of Mung Bean Globin Polyphenol Complexes: Exploration under Heat Treatment Conditions. Foods 2023; 12:foods12112091. [PMID: 37297336 DOI: 10.3390/foods12112091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
During the storage and processing of mung beans, proteins and polyphenols are highly susceptible to interactions with each other. Using globulin extracted from mung beans as the raw material, the study combined it with ferulic acid (FA; phenolic acid) and vitexin (flavonoid). Physical and chemical indicators were combined with spectroscopy and kinetic methods, relying on SPSS and peak fit data to statistically analyze the conformational and antioxidant activity changes of mung bean globulin and two polyphenol complexes before and after heat treatment and clarify the differences and the interaction mechanism between globulin and the two polyphenols. The results showed that, with the increase in polyphenol concentration, the antioxidant activity of the two compounds increased significantly. In addition, the antioxidant activity of the mung bean globulin-FA complex was stronger. However, after heat treatment, the antioxidant activity of the two compounds decreased significantly. The interaction mechanism of the mung bean globulin-FA/vitexin complex was static quenching, and heat treatment accelerated the occurrence of the quenching phenomenon. Mung bean globulin and two polyphenols were combined through a hydrophobic interaction. However, after heat treatment, the binding mode with vitexin changed to an electrostatic interaction. The infrared characteristic absorption peaks of the two compounds shifted to different degrees, and new peaks appeared in the areas of 827 cm-1, 1332 cm-1, and 812 cm-1. Following the interaction between mung bean globulin and FA/vitexin, the particle size decreased, the absolute value of zeta potential increased, and the surface hydrophobicity decreased. After heat treatment, the particle size and zeta potential of the two composites decreased significantly, and the surface hydrophobicity and stability increased significantly. The antioxidation and thermal stability of the mung bean globulin-FA were better than those of the mung bean globulin-vitexin complex. This study aimed to provide a theoretical reference for the protein-polyphenol interaction mechanism and a theoretical basis for the research and development of mung bean functional foods.
Collapse
Affiliation(s)
- Yantao Ma
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
| | - Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
- National Coarse Cereals Engineering Research Centre, Daqing 163319, China
| | - Yuchao Feng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
| | - Haoyu Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
| | - Yuhang Liu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
- National Coarse Cereals Engineering Research Centre, Daqing 163319, China
- Heilongjiang Food and Biotechnology Innovation and Research Center (International Cooperation), Daqing 163319, China
| |
Collapse
|
56
|
Taniguchi M, LaRocca CA, Bernat JD, Lindsey JS. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. JOURNAL OF NATURAL PRODUCTS 2023; 86:1087-1119. [PMID: 36848595 DOI: 10.1021/acs.jnatprod.2c00720] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flavonoids play diverse roles in plants, comprise a non-negligible fraction of net primary photosynthetic production, and impart beneficial effects in human health from a plant-based diet. Absorption spectroscopy is an essential tool for quantitation of flavonoids isolated from complex plant extracts. The absorption spectra of flavonoids typically consist of two major bands, band I (300-380 nm) and band II (240-295 nm), where the former engenders a yellow color; in some flavonoids the absorption tails to 400-450 nm. The absorption spectra of 177 flavonoids and analogues of natural or synthetic origin have been assembled, including molar absorption coefficients (109 from the literature, 68 measured here). The spectral data are in digital form and can be viewed and accessed at http://www.photochemcad.com. The database enables comparison of the absorption spectral features of 12 distinct types of flavonoids including flavan-3-ols (e.g., catechin, epigallocatechin), flavanones (e.g., hesperidin, naringin), 3-hydroxyflavanones (e.g., taxifolin, silybin), isoflavones (e.g., daidzein, genistein), flavones (e.g., diosmin, luteolin), and flavonols (e.g., fisetin, myricetin). The structural features that give rise to shifts in wavelength and intensity are delineated. The availability of digital absorption spectra for diverse flavonoids facilitates analysis and quantitation of these valuable plant secondary metabolites. Four examples are provided of calculations─multicomponent analysis, solar ultraviolet photoprotection, sun protection factor (SPF), and Förster resonance energy transfer (FRET)─for which the spectra and accompanying molar absorption coefficients are sine qua non.
Collapse
Affiliation(s)
- Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Connor A LaRocca
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jake D Bernat
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
57
|
Deng Y, Zhao G, Cheng K, Shi C, Xiao G. Effect of Apple Polyphenols on the Antioxidant Activity and Structure of Three-Dimensional Printed Processed Cheese. Foods 2023; 12:foods12081731. [PMID: 37107526 PMCID: PMC10137760 DOI: 10.3390/foods12081731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Additives can influence the processability and quality of three-dimensional (3D)-printed foods. Herein, the effects of apple polyphenols on the antioxidant activity and structure of 3D-printed processed cheese were investigated. The antioxidant activities of processed cheese samples with different contents of apple polyphenols (0%, 0.4%, 0.8%, 1.2%, or 1.6%) were evaluated using 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) assays. In addition, the rheological properties and structural characteristics of the processed cheeses were investigated using rheometry, Fourier transform infrared spectroscopy, and fluorescence spectroscopy. Then, the final printed products were analyzed for comparative molding effects and dimensional characteristics. it was found that apple polyphenols can significantly improve the antioxidant activity of processed cheese. When the amount of apple polyphenols added was 0.8%, the 3D shaping effect was optimal with a porosity rate of 4.1%. Apple polyphenols can be used as a good antioxidant additive, and the moderate addition of apple polyphenols can effectively improve the antioxidant and structural stability of 3D-printed processed cheese.
Collapse
Affiliation(s)
- Yiqiu Deng
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Guangsheng Zhao
- Hangzhou New Hope Shuangfeng Dairy Products Co., Ltd., Hangzhou 311100, China
| | - Kewei Cheng
- Hangzhou Institute for Food and Drug Control, Hangzhou 310017, China
| | | | - Gongnian Xiao
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
58
|
Yu Y, Kleuter M, Taghian Dinani S, Trindade LM, van der Goot AJ. The role of plant age and leaf position on protein extraction and phenolic compounds removal from tomato (Solanum lycopersicum) leaves using food-grade solvents. Food Chem 2023; 406:135072. [PMID: 36470086 DOI: 10.1016/j.foodchem.2022.135072] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
The large availability and considerable amount of proteins (approx. 30 % on dry matter) make tomato leaves attractive as a potential new protein source. In this study, the feasibility of extracting proteins and removing phenolic compounds from tomato leaves using food-grade solvents as function of plant age and leaf position was investigated. Water and 50-50 % ethanol-water were used. We found that most proteins (>70 mg/g leaf protein) remained in the pellet after extraction. The protein purity of the dry matter present in the supernatant did not exceed the original leaf protein content. Additionally, leaf position had stronger effect than plant age on the leaf protein content and extraction yield. Ethanol-water was more efficient in removing phenolic compounds than water. The most phenolic compounds was removed from the top leaves. For future processing, the diversity of leaves has to be considered when striving for full utilization of tomato plants (fruits and leaves).
Collapse
Affiliation(s)
- Yafei Yu
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| | - Marietheres Kleuter
- Laboratory of Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Somayeh Taghian Dinani
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| | - Luisa M Trindade
- Laboratory of Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Atze Jan van der Goot
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
59
|
Geng Q, McClements DJ, Wu Z, Li T, He X, Shuai X, Liu C, Dai T. Investigation of bovine β-lactoglobulin-procyanidin complexes interactions and its utilization in O/W emulsion. Int J Biol Macromol 2023; 240:124457. [PMID: 37068535 DOI: 10.1016/j.ijbiomac.2023.124457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Procyanidins are bioactive polyphenols that have a strong affinity to proteins. Beta-lactoglobulin (BLG) is widely used as an emulsifier in the food and other industries. This study evaluated the interaction between BLG and A-type procyanidin dimer (PA2) using the spectroscopic, thermodynamic, and molecular simulation. PA2 decreased the transmissivity and quenched the intrinsic fluorescence of BLG, suggesting that the two molecules formed a complex. The binding of PA2 reduced the surface hydrophobicity and altered the conformation of BLG with increasing the random coil regions. Thermodynamic and isothermal titration calorimetry analyses suggested that the main driving force of PA2-BLG interaction was hydrophobic attraction. Molecular docking simulations were used to identify the main interaction sites and forces in the BLG-PA2 complexes, which again indicated that hydrophobic interactions dominated. In addition, the influence of PA2 on the ability of BLG to form and stabilize O/W emulsions was analyzed. Emulsions formulated using BLG-PA2 complexes contained relatively small droplets (D4,3 ≈ 0.7 μm) and high surface potentials (absolute value >50 mV). Compared to BLG alone, BLG-PA2 complexes improved the storage stability of the emulsions. This study provides valuable new insights into the formation, properties, and application of protein-polyphenol complexes as functional ingredients in foods.
Collapse
Affiliation(s)
- Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | | | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xuemei He
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, Guangxi 530007, China
| | - Xixiang Shuai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, Guangxi 530007, China.
| |
Collapse
|
60
|
Xu J, Huang Y, Wei Y, Weng X, Wei X. Study on the Interaction Mechanism of Theaflavin with Whey Protein: Multi-Spectroscopy Analysis and Molecular Docking. Foods 2023; 12:1637. [PMID: 37107433 PMCID: PMC10137913 DOI: 10.3390/foods12081637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The interaction mechanism of whey proteins with theaflavin (TF1) in black tea was analyzed using multi-spectroscopy analysis and molecular docking simulations. The influence of TF1 on the structure of bovine serum albumin (BSA), β-lactoglobulin (β-Lg), and α-lactoalbumin (α-La) was examined in this work using the interaction of TF1 with these proteins. Fluorescence and ultraviolet-visible (UV-vis) absorption spectroscopy revealed that TF1 could interact with BSA, β-Lg and α-La through a static quenching mechanism. Furthermore, circular dichroism (CD) experiments revealed that TF1 altered the secondary structure of BSA, β-Lg and α-La. Molecular docking demonstrated that the interaction of TF1 with BSA/β-Lg/α-La was dominated by hydrogen bonding and hydrophobic interaction. The binding energies were -10.1 kcal mol-1, -8.4 kcal mol-1 and -10.4 kcal mol-1, respectively. The results provide a theoretical basis for investigating the mechanism of interaction between tea pigments and protein. Moreover, the findings offered technical support for the future development of functional foods that combine tea active ingredients with milk protein. Future research will focus on the effects of food processing methods and different food systems on the interaction between TF1 and whey protein, as well as the physicochemical stability, functional characteristics, and bioavailability of the complexes in vitro or in vivo.
Collapse
Affiliation(s)
- Jia Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinchu Weng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
61
|
Chen Y, Li M, Kong J, Liu J, Zhang Q. Molecular Interaction Mechanism and Preservative Effect of Lactone Sophorolipid and Lactoferrin/ β-Lactoglobulin Systems. Foods 2023; 12:foods12081561. [PMID: 37107357 PMCID: PMC10137667 DOI: 10.3390/foods12081561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Multispectral and molecular docking methods were used to study the interaction mode and mechanism of two important components of whey proteins, lactoferrin (LF) and β-lactoglobulin (β-LG), and of a lactone sophorolipid (LSL) mixed system. The preservation effect of the mixed system on milk was also studied and compared. The results showed that the quenching mechanism of LSL on both β-LG and LF was static, but that the non-covalent complexes formed were the result of the different interacting forces: hydrogen bonds and the van der Waals force for the LSL-β-LG system, and electrostatic force for the LSL-LF system. The binding constants of LSL-β-LG and LSL-LF were all relatively small, and the interaction of LSL with β-LG was stronger than its interaction with LF. After adding β-LG, LF, or the mixed system with LSL to the milk, the stability of milk emulsion was effectively improved in all cases, while the preservative ability was effectively enhanced only by the addition of LF or LSL-LF. These results provide supportive data and a theoretical basis for enhancing the production of dairy products and other byproducts.
Collapse
Affiliation(s)
- Yanrong Chen
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Mingyuan Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jing Kong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
62
|
Lian Z, Han J, Cao Y, Yao W, Niu X, Xu M, Xu J, Zhu Q. Epicatechin Inhibited Lipid Oxidation and Protein Lipoxidation in a Fish Oil-Fortified Dairy Mimicking System. Foods 2023; 12:foods12071559. [PMID: 37048380 PMCID: PMC10094342 DOI: 10.3390/foods12071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
In this study, a typical tea polyphenol epicatechin (EC) was investigated for its impact on the oxidative stability of whey protein isolate (WPI) in a fish oil-fortified emulsion. The oil-in-water emulsion system consisted of fish oil (1%, w/w), WPI (6 mg/mL), and EC (0.1, 1, and 2 mM), and the oxidation reaction was catalyzed by Fenton's reagent at 25 °C for 24 h. The results showed EC exhibited a dose-dependent activity in the reduction of lipid oxidation (TBARS) and protein carbonylation. A Western blot analysis demonstrated that protein lipoxidation was inhibited by EC via interrupting the covalent binding of lipid secondary oxidation products, MDA, onto proteins. In addition, protein lipoxidation induced a loss of tryptophan fluorescence, and protein hydrolysis was partially recovered by EC. The findings of this study provide an in-depth understanding of the performance of phenolic antioxidants in relieving lipid oxidation and subsequent protein lipoxidation in oil-containing dairy products.
Collapse
Affiliation(s)
- Zhenghao Lian
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiahui Han
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Cao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenhua Yao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoying Niu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingfeng Xu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Xu
- Jiaxing Key Laboratory of Preparation and Application of Advanced Materials for Energy Conservation and Emission Reduction, School of Advanced Materials & Engineering, Jiaxing Nanhu University, 572 South Yuexiu Road, Jiaxing 314001, China
| | - Qin Zhu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
63
|
Liu M, Shan S, Gao X, Shi Y, Lu W. The effect of sweet tea polysaccharide on the physicochemical and structural properties of whey protein isolate gels. Int J Biol Macromol 2023; 240:124344. [PMID: 37028627 DOI: 10.1016/j.ijbiomac.2023.124344] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
In this study, we investigated the effect of sweet tea polysaccharide (STP) on the physicochemical and structural properties of heat-induced whey protein isolate (WPI) gels, and explored the potential mechanism. The results indicated that STP promoted the unfolding and cross-linking of WPI to form a stable three-dimensional network structure, and significantly improved the strength, water-holding capacity and viscoelasticity of WPI gels. However, the addition of STP was limited to 2 %, too much STP would loosen the gel network and affect the gel properties. The results of FTIR and fluorescence spectroscopy suggested that STP affected the secondary and tertiary structures of WPI, promoted the movement of aromatic amino acids to the protein surface and the conversion of α-helix to β-sheet. In addition, STP reduced the surface hydrophobicity of the gel, increased the free sulfhydryl content, and enhanced the hydrogen bonding, disulfide bonding, and hydrophobic interactions between protein molecules. These findings can provide a reference for the application of STP as a gel modifier in the food industry.
Collapse
Affiliation(s)
- Mengyao Liu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Shan Shan
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Xin Gao
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Yudong Shi
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China; Inner Mongolia Mengniu Dairy Co., Ltd., Inner Mongolia, China
| | - Weihong Lu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
64
|
Liu J, Song G, Zhou L, Wang D, Yuan T, Li L, He G, Xiao G, Gong J. Comparison of non-covalent binding interactions of six caffeoylquinic acids with β-lactoglobulin: Spectroscopic analysis, molecular docking and embedding of curcumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
65
|
Li T, Li J, Huang Y, Qayum A, Jiang Z, Liu Z. Comparison of interaction, structure, and cell proliferation of α-lactalbumin-safflower yellow complex induced by microwave heating or conventional heating. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1846-1855. [PMID: 36347624 DOI: 10.1002/jsfa.12325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The protein-polyphenol interaction mechanism has always been a research hotspot, but their interaction is affected by heat treatment, which is widely applied in food processing. Moreover, the effects of microwave or water-bath heating on the protein-polyphenol interaction mechanism have been not clarified. The pasteurization condition (65 °C, 30 min) was selected to compare the effects of microwave or water bath on binding behavior, structure, and cell proliferation between α-lactalbumin (α-LA) and safflower yellow (SY), thus providing a guide for the selection of functional dairy processing conditions. RESULTS Microwave heat treatment of α-LA-SY resulted in stronger fluorescence quenching than that of conventional heat treatment. Moreover, the binding constant Ka of all α-LA-SY samples was augmented significantly after microwave or water bath treatment, and microwave-heated α-LA-SY showed the maximum Ka . Fourier transform infrared spectroscopy showed that microwave heating resulted in more ordered structures of α-LA into its disordered structures than water bath heating. However, the ferric reducing antioxidant power and chroma value of α-LA-SY were more reduced by microwave heating than by water bath heating. Moreover, microwave heating facilitated the cell proliferation of α-LA-SY compared with water bath treatment. CONCLUSION It was demonstrated that microwave heating promoted interaction between α-LA and SY more than water bath heating did. Microwave heat treatment was a safe and effective way to enhance the binding affinity of α-LA to SY, being a potential application in food industry. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tianqi Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai, China
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Harbin, People's Republic of China
| | - Jinzhe Li
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Harbin, People's Republic of China
| | - Yuxuan Huang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Harbin, People's Republic of China
| | - Abdul Qayum
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Harbin, People's Republic of China
| | - Zhanmei Jiang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai, China
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Harbin, People's Republic of China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai, China
| |
Collapse
|
66
|
He Y, Yeo IKX, Guo C, Kai Y, Lu Y, Yang H. Elucidating the inhibitory mechanism on polyphenol oxidase from mushroom and melanosis formation by slightly acid electrolysed water. Food Chem 2023; 404:134580. [DOI: 10.1016/j.foodchem.2022.134580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/13/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
|
67
|
Hydrophobic interaction at the O/W interface: Impacts on the interfacial stability, encapsulation and bioaccessibility of polyphenols. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
68
|
Ding H, Yan H, Yu Z, Liu L. Spectroscopic analysis of the effect of glycation on casein structure and aggregation and its dependence on lactose concentration. Food Chem 2023; 404:134679. [DOI: 10.1016/j.foodchem.2022.134679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/08/2022] [Accepted: 10/16/2022] [Indexed: 11/30/2022]
|
69
|
How do the hydroxyl group number and position of polyphenols affect the foaming properties of ovalbumin? Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
70
|
Saricaoglu B, Yılmaz H, Subaşı BG, Capanoglu E. Effect of de-phenolization on protein-phenolic interactions of sunflower protein isolate. Food Res Int 2023; 164:112345. [PMID: 36737937 DOI: 10.1016/j.foodres.2022.112345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
Proteins and phenolic compounds are significant components of foods that can interact, and this interaction can impact the functional properties of proteins and the bioactivity of phenolic compounds. Sunflower meal, which has a high potential to be an important alternative protein source, contains phenolic compounds mostly bonded with proteins. In this study, the interaction between proteins and phenolic compounds which naturally exist in sunflower and prone to oxidation during alkaline treatment (for protein isolation) was investigated. There was a significant decrease up to 96.21% in the content of total phenolics by methanol washing. Chlorogenic acid, cryptochlorogenic acid and caffeic acid were detected in the phenolic extract obtained from sunflower protein isolate, and they exhibited different levels of reduction after methanol washing. For the total antioxidant capacity analysis, a decrease by 50% was observed after 4hwashing with methanol solution, and there was no significant decrease afterwards. In addition, the fluorescence intensity of sunflower protein was diminished with reduced washing time, which was mostly attributed to the protein-phenolic interaction. According to hydrodynamic parameters, the main force of the sunflower protein-phenolic complex formation was assumed to be hydrophobic attraction. The Stern-Volmer plot indicated that the main quenching mechanism was only static at all temperature conditions.
Collapse
Affiliation(s)
- Beyza Saricaoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Hilal Yılmaz
- Department of Biotechnology, Faculty of Science, Bartın University, Kutlubey Campus, Bartın 74100, Turkey
| | - Büşra Gültekin Subaşı
- Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
71
|
Kong D, Han R, Yuan M, Xi Q, Du Q, Li P, Yang Y, Applegate B, Wang J. Ultrasound combined with slightly acidic electrolyzed water thawing of mutton: Effects on physicochemical properties, oxidation and structure of myofibrillar protein. ULTRASONICS SONOCHEMISTRY 2023; 93:106309. [PMID: 36706669 PMCID: PMC9938326 DOI: 10.1016/j.ultsonch.2023.106309] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/08/2023] [Accepted: 01/21/2023] [Indexed: 05/24/2023]
Abstract
The effects of air thawing (AT), water immersion thawing (WT), microwave thawing (MT) and ultrasound combined with slightly acidic electrolyzed water thawing (UST) on the myofibrillar protein (MP) properties (surface hydrophobicity, solubility, turbidity, particle size and zeta potential), protein oxidation (carbonyl content and sulfhydryl content) and structure (primary, secondary and tertiary) of frozen mutton were investigated in comparison with fresh mutton (FM). The solubility and turbidity results showed that the MP properties were significantly improved in the UST treatment. UST treatment could effectively reduce the MP aggregation and enhance the stability, which was similar to the FM. In addition, UST treatment could effectively inhibit protein oxidation during thawing as well. The primary structure of MP was not damaged by the thawing methods. UST treatment could reduce the damage to MP secondary and tertiary structure during the thawing process compared to other thawing methods. Overall, the UST treatment had a positive influence in maintaining the MP properties by inhibiting protein oxidation and protecting protein structure.
Collapse
Affiliation(s)
- Dewei Kong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengdi Yuan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qian Xi
- College of Food Science and Engineering, Tarim University, Alar 843300, China
| | - Qijing Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Bruce Applegate
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
72
|
Chen W, Li J, Ma Y, Shi R, Yu H, Gantumur MA, Bilawal A, Jiang Z. Binding interaction and stability of alpha-lactalbumin and retinol: Effects of pre- or post-acidification. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
73
|
Improving gas-water interface properties and bioactivities of α-lactalbumin induced by three structurally different saponins. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
74
|
Han L, Peng X, Cheng Y, Zhu Y, Huang Y, Zhang S, Qi B. Effects of catechin types found in tea polyphenols on the structural and functional properties of soybean protein isolate–catechin covalent complexes. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
75
|
Chai TT, Huang YN, Ren ST, Jin DL, Fu JJ, Guo JY, Chen YW. Inhibitory effects of ultrasonic and rosmarinic acid on lipid oxidation and lipoxygenase in large yellow croaker during cold storage. ULTRASONICS SONOCHEMISTRY 2023; 92:106229. [PMID: 36459902 PMCID: PMC9712690 DOI: 10.1016/j.ultsonch.2022.106229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Lipid oxidation will lead to the deterioration of flavor, color and texture of aquatic products with high fatty acid content. The mechanism of ultrasound (US) combined with rosmarinic acid (RA) on lipid oxidation and endogenous enzyme activities of large yellow croaker during cold-storage (4 ℃) was investigated. The result showed that the US and RA have synergistic effects in delaying lipid oxidation and inhibiting endogenous lipase and lipoxygenase (LOX) activities related to oxidation. The inhibition of LOX activity by RA was dose-dependent, and US showed a negative effect on the inhibition of enzyme activity in the presence of low concentration RA. Moreover, RA changes the enzyme structure through static fluorescence quenching and interaction with enzyme molecules. Hydrogen bonding and hydrophobic interaction are the main interaction forces between RA and LOX. This study could provide basic mechanism of US treatment cooperating with polyphenols to inhibit lipid oxidation during food preservation.
Collapse
Affiliation(s)
- Ting-Ting Chai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yang-Na Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Shao-Tian Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Dan-Li Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Jun-Yan Guo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| |
Collapse
|
76
|
Ren Y, Zhu Y, Qi X, Yan H, Zhao Y, Wu Y, Zhang N, Ding Z, Yuan L, Liu M. Noncovalent interaction of chlorogenic acid and/or gallocatechin gallate with β-lactoglobulin: Effect on stability and bioaccessibility of complexes and nanoparticles. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
77
|
Wu Q, Zang M, Zhao B, Wang S, Zhang S, Zhu N, Liu M, Li S, Lv G, Liu B, Zhao Y, Qiao X. Effect of citrus fiber on the phosphate-mediated gel properties of myofibrillar protein and partial replacement of phosphate. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
78
|
Abdollahi K, Condict L, Hung A, Kasapis S. Examination of β-lactoglobulin-ferulic acid complexation at elevated temperature using biochemical spectroscopy, proteomics and molecular dynamics. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
79
|
Shen X, Xue S, Tan Y, Zhong W, Liang X, Wang J. Binding of Licochalcone A to Whey Protein Enhancing Its Antioxidant Activity and Maintaining Its Antibacterial Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15917-15927. [PMID: 36484772 DOI: 10.1021/acs.jafc.2c06125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Incorporating LA into whey protein by forming whey protein isolate-LA (WPI-LA) and polymerized whey protein-LA (PWP-LA) complexes is a good way to maintain its bioactivity and improve its functional performance within food matrices. Herein, we found that WPI and PWP were able to interact with LA as suggested by multi-spectroscopy, molecular docking, and molecular dynamics simulations. The interaction between whey protein and LA was a spontaneous non-covalent binding process, while PWP had a higher affinity for LA than WPI, resulting from its more negatively binding free energy with LA. Hydrogen bonds, van der Waals forces, and electrostatic interactions were responsible for WPI-LA interactions. Hydrophobic forces, van der Waals, and hydrogen bonds positively accounted for PWP-LA interactions. The antioxidant activity of LA was improved by complexation with whey proteins as identified by DPPH and ABTS. The antimicrobial efficiency of LA was partially screened by complexation with whey protein with MIC values increased by seven-fold compared to free LA but successfully recovered to its original efficiency upon isolating it from the complex. This work demonstrates the promising antioxidant and antibacterial activities of the whey protein-LA complex and provides a good candidate for developing a new class of natural functional ingredients for food systems.
Collapse
Affiliation(s)
- Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun130062, China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun130062, China
| | - Shiqi Xue
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun130062, China
| | - Yuying Tan
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun130062, China
| | - Weigang Zhong
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun130062, China
| | - Xiaoying Liang
- Department of Internal Medicine, University of South Florida, Tampa, Florida33612, United States
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun130062, China
| |
Collapse
|
80
|
Manivel P, Marimuthu P, Yu S, Chen X. Multispectroscopic and Computational Investigations on the Binding Mechanism of Dicaffeoylquinic Acids with Ovalbumin. J Chem Inf Model 2022; 62:6133-6147. [PMID: 36398926 DOI: 10.1021/acs.jcim.2c01011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, studies on the interactions between ovalbumin (OVA) and polyphenols have received a great deal of interest. This study explored the conformational changes and the interaction mechanism of the binding between OVA and chlorogenic acid (CGA) isomers such as 3,4-dicaffeoylquinic acids (3,4-diCQA), 4,5-dicaffeoylquinic acids (4,5-diCQA), and 3,5-dicaffeoylquinic acids (3,5-diCQA) using multispectroscopic and in silico analyses. The emission spectra show that the diCQAs caused strong quenching of OVA fluorescence under different temperatures through a static quenching mechanism with hydrogen bond (H-bond) and van der Waals (vdW) interactions. The values of binding constants (OVA-3,4-diCQA = 6.123 × 105, OVA-3,5-diCQA = 2.485 × 105, OVA-4,5-diCQA = 4.698 × 105 dm3 mol-1 at 298 K) suggested that diCQAs had a strong binding affinity toward OVA, among which OVA-3,4-diCQA exhibits higher binding constant. The results of UV-vis absorption and synchronous fluorescence indicated that the binding of all three diCQAs to OVA induced conformational and micro-environmental changes in the protein. The findings of molecular modeling further validate the significant role of vdW force and H-bond interactions in ensuring the stable binding of OVA-diCQA complexes. Temperature-dependent molecular dynamics simulation studies allow estimation of the individual components that contribute to the total bound free energy value, which allows evaluation of the nature of the interactions involved. This research can provide information for future investigations on food proteins' physicochemical stability and CGA bioavailability in vitro or in vivo.
Collapse
Affiliation(s)
- Perumal Manivel
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China
| | - Parthiban Marimuthu
- Structural Bioinformatics Laboratory (SBL─Biochemistry) and Pharmaceutical Science Laboratory (PSL─Pharmacy), Faculty of Science and Engineering, Åbo Akademi University, TurkuFI-20520, Finland
| | - Sun Yu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China.,Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China.,International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang212013, China
| |
Collapse
|
81
|
Interactions between Hazelnut (Corylus avellana L.) Protein and Phenolics and In Vitro Gastrointestinal Digestibility. SEPARATIONS 2022. [DOI: 10.3390/separations9120406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
In this study, we investigated the formation of protein–phenolic complexes from dephenolized hazelnut meal protein isolates (dHPI) and hazelnut skin phenolic extracts (HSE) and their effects on the bioaccessibility of both hazelnut proteins and phenolics. The dHPI–HSE complexes were of considerable size and were dependent on HSE concentration due to aggregation. Although catechin was the main component of HSE, it did not cause aggregation, except for a slight rise in particle size. According to fluorescence quenching, the hazelnut protein–phenolic extract complex had a linear Stern–Volmer plot expressing static quenching between 0–0.5 mM concentration; the interaction was mainly dependent on hydrogen bonding and van der Waals forces (ΔH < 0 and ΔS < 0), and the reaction was spontaneous (ΔG < 0). According to Fourier transform infrared (FTIR) spectroscopy results, higher phenolic extract concentration caused an increase in irregular structures in hazelnut protein, while the lowest catechin and phenolic concentration altered the regular structure. Skin extracts did not alter the digestibility of dephenolized proteins, but dephenolization reduced the degree of hydrolysis by pancreatin. The formation of the protein–phenolic complex had a beneficial effect on the bioaccessibility of hazelnut skin phenols, predominantly those on the galloylated form of the catechins, such as gallocatechin gallate and epigallocatechin gallate. Thus, the bioaccessibility and antioxidant activity analysis results showed that protein–phenolic complexes obtained from hazelnut meal and skin may promote the transition of phenolic compounds from the gastrointestinal tract without degradation.
Collapse
|
82
|
Zhao Y, Li G, Xu D, Wu T, Wang S, Cao Y, Gao W. Protective effect of pangasius myosin on thermal stability of lycopene and their interaction mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
83
|
Chen L, Chen N, He Q, Sun Q, Gao MR, Zeng WC. Effects of different phenolic compounds on the interfacial behaviour of casein and the action mechanism. Food Res Int 2022; 162:112110. [DOI: 10.1016/j.foodres.2022.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
84
|
Liu C, Lv N, Xu YQ, Tong H, Sun Y, Huang M, Ren G, Shen Q, Wu R, Wang B, Cao Z, Xie H. pH-dependent interaction mechanisms between β-lactoglobulin and EGCG: Insights from multi-spectroscopy and molecular dynamics simulation methods. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
85
|
Ke C, Liu B, Dudu OE, Zhang S, Meng L, Wang Y, Wei W, Cheng J, Yan T. Modification of structural and functional characteristics of casein treated with quercetin via two interaction modes: Covalent and non-covalent interactions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
86
|
Jia N, Lin S, Yu Y, Zhang G, Li L, Zheng D, Liu D. The Effects of Ethanol and Rutin on the Structure and Gel Properties of Whey Protein Isolate and Related Mechanisms. Foods 2022; 11:foods11213480. [PMID: 36360094 PMCID: PMC9654987 DOI: 10.3390/foods11213480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
The effects of different levels of rutin (0, 0.05%, 0.1%, 0.2% and 0.3% w/v) and ethanol on the structure and gel properties of whey protein isolate (WPI) were examined. The results showed that the addition of ethanol promoted the gel formation of WPI. The addition of rutin increased the gel strength of WPI and maintained the water-holding capacity of the gel. Ethanol caused an increase in thiol content and surface hydrophobicity, but rutin decreased the thiol content and surface hydrophobicity of WPI. The particle size, viscosity and viscoelasticity of WPI increased at rutin levels of 0.2% and 0.3%, indicating that rutin caused cross-linking and aggregation of WPI, but rutin had no significant effect on the zeta-potential, indicating that electrostatic interactions were not the main force causing the changes in protein conformation and gel properties. Ethanol and rutin improved the gel properties of WPI possibly by inducing cross-linking of WPIs via hydrophobic and covalent interactions.
Collapse
|
87
|
El-Maksoud AAA, Cheng W, Petersen SV, Pandiselvam R, Guo Z. Covalent phenolic acid-grafted β-lactoglobulin conjugates: Synthesis, characterization, and evaluation of their multifunctional properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
88
|
Lu Y, Zhao R, Wang C, Zhang X, Wang C. Deciphering the non-covalent binding patterns of three whey proteins with rosmarinic acid by multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
89
|
Effects of Pineapple Peel Ethanolic Extract on the Physicochemical and Textural Properties of Surimi Prepared from Silver Carp ( Hypophthalmichthys molitrix). Foods 2022. [PMCID: PMC9601345 DOI: 10.3390/foods11203223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effects of ethanolic pineapple peel extract (PPE) powder at various concentrations (0–1.50%, w/w) on the gelling properties of silver carp surimi were investigated. The pineapple peel extract produced with 0–100% ethanol, revealed that 100% ethanol had the highest bioactive properties. Surimi gels with added PPE powder demonstrated improved gel strength (504.13 ± 11.78 g.cm) and breaking force (511.64 ± 11.80 g) up to 1% PPE addition; however, as PPE concentration increased beyond 1%, the gel strength decreased. Similarly, with the addition of 1% PPE powder, more hydrophobic bonds and fewer sulfhydryl groups and free amino groups were seen. However, the gels with PPE powder added showed a slight reduction in the whiteness of the surimi gels. FTIR analysis indicated that the fortification with PPE powder brought about the secondary structure of myofibrillar proteins; peaks shifted to the β-sheet region (PPE gels) from the α-helix region (control). SEM analysis indicated that the gel with 1% PPE powder had a relatively organized, finer and denser gel architecture. Overall results suggested that the addition of PPE powder up to 1% to the surimi gels enhanced the gelling properties as well as the microstructure of the surimi.
Collapse
|
90
|
Zhang S, Li X, Ai B, Zheng L, Zheng X, Yang Y, Xiao D, Sheng Z. Binding of β-lactoglobulin to three phenolics improves the stability of phenolics studied by multispectral analysis and molecular modeling. Food Chem X 2022; 15:100369. [PMID: 35769329 PMCID: PMC9234335 DOI: 10.1016/j.fochx.2022.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 06/12/2022] [Indexed: 10/25/2022] Open
|
91
|
Xi C, Sun Z, Chen X, Ding X, Zhang T. Characterization of coacervation behavior between whey protein isolate and propylene glycol alginate: A morphology, spectroscopy, and thermodynamics study. Food Chem X 2022; 15:100402. [PMID: 36211725 PMCID: PMC9532732 DOI: 10.1016/j.fochx.2022.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022] Open
|
92
|
Exploring the lentil protein and onion skin phenolics interaction by fluorescence quenching method. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
93
|
The nanomicelles consisting of lotus root amylopectin and quinoa protein: Construction and encapsulation for quercetin. Food Chem 2022; 387:132924. [DOI: 10.1016/j.foodchem.2022.132924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022]
|
94
|
Zhong Y, Yang L, Dai T, Zhu Z, Chen H, Wu J, Gong ES. Flavonoids enhance gel strength of ovalbumin: Properties, structures, and interactions. Food Chem 2022; 387:132892. [DOI: 10.1016/j.foodchem.2022.132892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/14/2022] [Accepted: 04/02/2022] [Indexed: 11/04/2022]
|
95
|
Li W, Zhang X, Tan S, Li X, Gu M, Tang M, Zhao X, Wu Y. Zein enhanced the digestive stability of five citrus flavonoids via different binding interaction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4780-4790. [PMID: 35218206 DOI: 10.1002/jsfa.11838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/03/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Zein is commonly used to construct food flavonoid delivery systems. This study investigated the effect and mechanism of zein on the digestive stability of five citrus flavonoids, namely hesperetin (HET), hesperidin (HED), neohesperidin (NHD), naringenin (NEN), and naringin (NIN). RESULTS Zein enhanced the digestive stability of the five citrus flavonoids, especially that of HET and NEN, during digestion in the stomach and small intestine. Fluorescence spectroscopy results suggested that citrus flavonoids spontaneously quenched the endogenous fluorescence of zein in static quenching mode. The binding of HET, HED and NHD to zein was driven respectively by electrostatic, hydrophobic and electrostatic interaction. However, Van der Waals' force and hydrogen (H)-bond interaction represented the primary driving force for binding NEN, and NIN to zein to form complexes. The binding of the five citrus flavonoids to zein also caused a diverse bathochromic shift in ultraviolet absorbance. Analysis using Fourier-transform infrared and Raman spectroscopy revealed that the binding behavior of the five citrus flavonoids had different effects on changes in the secondary structures, disulfide bonds, and tyrosine exposure of zein. The results were also partially verified by molecular dynamic simulation. CONCLUSIONS Zein enhanced the digestive stability of the five citrus flavonoids via different binding interactions that was due to the difference in molecular structure of citrus flavonoids. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Xiaohua Zhang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Si Tan
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Xueping Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Mengyuan Gu
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Mengqi Tang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Yingmei Wu
- The Chongqing Engineering Laboratory for Green Cultivation and Deep Processing of the Three Gorges Reservoir Area's Medicinal Herbs, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
96
|
Characterization, Stability, and Antibrowning Effects of Oxyresveratrol Cyclodextrin Complexes Combined Use of Hydroxypropyl Methylcellulose. Foods 2022; 11:foods11162471. [PMID: 36010470 PMCID: PMC9407340 DOI: 10.3390/foods11162471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Oxyresveratrol (Oxy) has attracted much attention by employing it as an antibrowning agent in fruits and vegetables. In this study, the formation of cyclodextrin (CD) inclusion exhibited a certain protective effect on Oxy oxidative degradation, while hydroxypropyl-β-cyclodextrin (HP–β-CD) inclusion complex showed stronger stabilizing effects than those of β-cyclodextrin (β-CD). The combined use of CD and hydroxypropyl methylcellulose (HPMC) greatly improved the stability of Oxy–CD inclusion complexes, with approximately 70% of the trans-Oxy retained after 30 days of storage under light conditions at 25 °C. The results of the interaction between CD and Oxy determined by phase solubility studies and fluorescence spectroscopic analysis showed that the binding strength of CD and Oxy increased in the presence of HPMC. Moreover, Oxy combined with ascorbic acid and HPMC showed an excellent antibrowning effect on fresh-cut apple slices during the 48 h test period, indicating that adding HPMC as the third component will not influence the antibrowning activity of Oxy.
Collapse
|
97
|
Wang Y, Zhang J, Zhang L. Study on the mechanism of non-covalent interaction between rose anthocyanin extracts and whey protein isolate under different pH conditions. Food Chem 2022; 384:132492. [PMID: 35217461 DOI: 10.1016/j.foodchem.2022.132492] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
The non-covalent interaction between anthocyanin and dietary protein had an impact on their physicochemical property. The purpose of this study was to study the non-covalent interaction mechanism between rose anthocyanin extract (RAEs) and whey protein isolate (WPI), and further compare the interaction mechanism with pure anthocyanin (PC) and WPI. At pH 3.0 and pH 7.0, RAEs and WPI had non-covalent interactions in the two systems with two types of unequal and mutually influencing binding sites, and the interaction forces were both hydrogen bonds and van der Waals forces. Interestingly, PC and WPI also had non-covalent interactions in both systems, the number of which binding sites was about one type, and the forces were hydrogen bonds and van der Waals forces. In addition, a variety of spectral combination techniques indicated that RAEs and PC caused similar changes in the secondary structure of WPI.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi Jiangsu 214122, China
| | - Jian Zhang
- The Food College of Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi Jiangsu 214122, China; The Food College of Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
98
|
Encapsulation of EGCG by Zein-Gum Arabic Complex Nanoparticles and In Vitro Simulated Digestion of Complex Nanoparticles. Foods 2022; 11:foods11142131. [PMID: 35885374 PMCID: PMC9317346 DOI: 10.3390/foods11142131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Epigallocatechin gallate (EGCG) has many excellent qualities such as its antitumor, antiradiation and anti-oxidation properties, but its application is limited because its oral bioavailability is low and stability is poor. In this paper, zein and gum arabic (GA) were used as wall materials to prepare Zein-GA complex nanoparticles for encapsulating and protecting the EGCG. The particle size of Zein-GA-EGCG complex nanoparticles ranged from 128.03–221.23 nm, and the EGCG encapsulation efficiency reached a maximum of 75.23% when the mass ratio of zein to GA was 1:1. The FTIR and XRD results illustrated that the components of the Zein-GA-EGCG complex nanoparticles interacted by electrostatic, hydrogen bonding, and hydrophobic interactions. The EGCG release rate of Zein-GA-EGCG nanoparticles (16.42%) was lower than that of Zein-EGCG (25.52%) during gastric digestion, and a large amount of EGCG was released during intestinal digestion, suggesting that the Zein-GA-EGCG nanoparticles could achieve the sustained release of EGCG during in vitro digestion. Hence, using Zein-GA complexes to encapsulate EGCG effectively increased the encapsulation efficiency of EGCG and realized the purpose of sustained release during simulated gastrointestinal digestion.
Collapse
|
99
|
Xu Z, Cao Q, Manyande A, Xiong S, Du H. Analysis of the binding selectivity and inhibiting mechanism of chlorogenic acid isomers and their interaction with grass carp endogenous lipase using multi-spectroscopic, inhibition kinetics and modeling methods. Food Chem 2022; 382:132106. [PMID: 35240531 DOI: 10.1016/j.foodchem.2022.132106] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 11/19/2022]
Abstract
Polyphenols are inhibitors for lipase, but the binding selectivity and mechanism of polyphenol isomers and how they interact with lipase are not clear. Here, chlorogenic acid (CGA) isomers, neochlorogenic acid (NCGA) and cryptochlorogenic acid (CCGA) were used to explore the binding selectivity and mechanism of lipase. An inhibition assay indicated that both CGA isomers had dose-dependent inhibitory effects on lipase; however, the inhibitory effect of NCGA was better (IC50: 0.647 mg/mL) than that of CCGA (IC50: 0.677 mg/mL). NCGA and CCGA formed complexes with lipase at a molar ratio of 1:1, and the electrostatic interaction force plays a major role in the lipase-CCGA system. Molecular dynamics studies demonstrated that NCGA had a greater impact on the structure of lipase. The multi-spectroscopic and modeling results explained the effects of micro-structural changes on the binding site, the interaction force and the inhibition rate of the isomers when they combined with lipase.
Collapse
Affiliation(s)
- Zeru Xu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Qiongju Cao
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW8 9GA, UK
| | - Shanbai Xiong
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Hongying Du
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
100
|
Baruah I, Kashyap C, Guha AK, Borgohain G. Insights into the Interaction between Polyphenols and β-Lactoglobulin through Molecular Docking, MD Simulation, and QM/MM Approaches. ACS OMEGA 2022; 7:23083-23095. [PMID: 35847254 PMCID: PMC9280950 DOI: 10.1021/acsomega.2c00336] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we have explored the interaction of three different polyphenols with the food protein β-lactoglobulin. Antioxidant activities of polyphenols are influenced by complexation with the protein. However, studies have shown that polyphenols after complexation with the protein can be more beneficial due to enhanced antioxidant activities. We have carried out molecular docking, molecular dynamics (MD) simulation, and quantum mechanics/molecular mechanics (QM/MM) studies on the three different protein-polyphenol complexes. We have found from molecular docking studies that apigenin binds in the internal cavity, luteolin binds at the mouth of the cavity, and eriodictyol binds outside the cavity of the protein. Docking studies have also provided binding free energy and inhibition constant values that showed that eriodictyol and apigenin exhibit better binding interactions with the protein than luteolin. For eriodictyol and luteolin, van der Waals, hydrophobic, and hydrogen bonding interactions are the main interacting forces, whereas for apigenin, hydrophobic and van der Waals interactions play major roles. We have calculated the root mean square deviation (RMSD), root mean square fluctuations (RMSF), solvent-accessible surface area (SASA), interaction energies, and hydrogen bonds of the protein-polyphenol complexes. Results show that the protein-eriodictyol complex is more stable than the other complexes. We have performed ONIOM calculations to study the antioxidant properties of the polyphenols. We have found that apigenin and luteolin act as better antioxidants than eriodictyol does on complexation with the protein, which is consistent with the results obtained from MD simulations.
Collapse
|