51
|
Characteristic Volatile Fingerprints and Odor Activity Values in Different Citrus-Tea by HS-GC-IMS and HS-SPME-GC-MS. Molecules 2020; 25:molecules25246027. [PMID: 33352716 PMCID: PMC7766395 DOI: 10.3390/molecules25246027] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
Citrus tea is an emerging tea drink produced from tea and the pericarp of citrus, which consumers have increasingly favored due to its potential health effects and unique flavor. This study aimed to simultaneously combine the characteristic volatile fingerprints with the odor activity values (OAVs) of different citrus teas for the first time by headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). Results showed that the establishment of a citrus tea flavor fingerprint based on HS-GC-IMS data can provide an effective means for the rapid identification and traceability of different citrus varieties. Moreover, 68 volatile compounds (OAV > 1) were identified by HS-SPME-GC-MS, which reflected the contribution of aroma compounds to the characteristic flavor of samples. Amongst them, the contribution of linalool with sweet flower fragrance was the highest. Odorants such as decanal, β-lonone, β-ionone, β-myrcene and D-limonene also contributed significantly to all samples. According to principal component analysis, the samples from different citrus teas were significantly separated. Visualization analysis based on Pearson correlation coefficients suggested that the correlation between key compounds was clarified. A comprehensive evaluation of the aroma of citrus tea will guide citrus tea flavor quality control and mass production.
Collapse
|
52
|
Liang Z, Zhang P, Fang Z. Modern technologies for extraction of aroma compounds from fruit peels: a review. Crit Rev Food Sci Nutr 2020; 62:1284-1307. [PMID: 33124893 DOI: 10.1080/10408398.2020.1840333] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fruit peel is an agricultural by-product and potential source to extract natural aroma compounds with low cost. In the past few decades, the extraction of plant aroma volatiles experienced a transition from traditional to modern technologies. This review summarizes the main aroma compounds in different fruit peels, evaluates modern extraction techniques applicable for these aroma compounds in terms of mechanism, procedure, merits and demerits, and practice. Additionally, the applications of fruit peel aroma extract in food, pharmaceutical and cosmetic industries are also discussed. This review provides comprehensive information for extraction and application of aroma compounds from fruit peels, which could facilitate the valorization of the agricultural by-products and reduce environmental impacts.
Collapse
Affiliation(s)
- Zijian Liang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
53
|
Effect of Various Postharvest Treatment on Aroma Volatile Compounds of Blood Orange Fruit Exposed to Chilling Temperature After Long-Term Storage. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02547-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
54
|
Wang J, Zhu Y, Shi J, Yan H, Wang M, Ma W, Zhang Y, Peng Q, Chen Y, Lin Z. Discrimination and Identification of Aroma Profiles and Characterized Odorants in Citrus Blend Black Tea with Different Citrus Species. Molecules 2020; 25:molecules25184208. [PMID: 32937894 PMCID: PMC7570765 DOI: 10.3390/molecules25184208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/25/2022] Open
Abstract
Citrus blend black teas are popular worldwide, due to its unique flavor and remarkable health benefits. However, the aroma characteristics, aroma profiles and key odorants of it remain to be distinguished and cognized. In this study, the aroma profiles of 12 representative samples with three different cultivars including citrus (Citrus reticulata), bergamot (Citrus bergamia), and lemon (Citrus limon) were determined by a novel approach combined head space-solid phase microextraction (HS-SPME) with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS). A total of 348 volatile compounds, among which comprised esters (60), alkenes (55), aldehydes (45), ketones (45), alcohols (37), aromatic hydrocarbons (20), and some others were ultimately identified. The further partial least squares discrimination analysis (PLS-DA) certified obvious differences existed among the three groups with a screening result of 30 significant differential key volatile compounds. A total of 61 aroma-active compounds that mostly presented green, fresh, fruity, and sweet odors were determined in three groups with gas chromatography-olfactometry/mass spectrometry (GC-O/MS) assisted analysis. Heptanal, limonene, linalool, and trans-β-ionone were considered the fundamental odorants associated with the flavors of these teas. Comprehensive analysis showed that limonene, ethyl octanoate, copaene, ethyl butyrate (citrus), benzyl acetate, nerol (bergamot) and furfural (lemon) were determined as the characterized odorants for each type.
Collapse
Affiliation(s)
- Jiatong Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, Hangzhou 310000, China; (J.W.); (Y.Z.); (H.Y.); (M.W.); (W.M.); (Y.Z.); (Q.P.)
- Graduate School of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430000, China;
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, Hangzhou 310000, China; (J.W.); (Y.Z.); (H.Y.); (M.W.); (W.M.); (Y.Z.); (Q.P.)
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, Hangzhou 310000, China; (J.W.); (Y.Z.); (H.Y.); (M.W.); (W.M.); (Y.Z.); (Q.P.)
- Correspondence: (J.S.); (Z.L.); Tel.: +86-0571-86652263 (J.S.); +86-0571-86650617 (Z.L.)
| | - Han Yan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, Hangzhou 310000, China; (J.W.); (Y.Z.); (H.Y.); (M.W.); (W.M.); (Y.Z.); (Q.P.)
- Graduate School of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Mengqi Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, Hangzhou 310000, China; (J.W.); (Y.Z.); (H.Y.); (M.W.); (W.M.); (Y.Z.); (Q.P.)
- Graduate School of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Wanjun Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, Hangzhou 310000, China; (J.W.); (Y.Z.); (H.Y.); (M.W.); (W.M.); (Y.Z.); (Q.P.)
- Graduate School of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, Hangzhou 310000, China; (J.W.); (Y.Z.); (H.Y.); (M.W.); (W.M.); (Y.Z.); (Q.P.)
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, Hangzhou 310000, China; (J.W.); (Y.Z.); (H.Y.); (M.W.); (W.M.); (Y.Z.); (Q.P.)
| | - Yuqiong Chen
- College of Horticulture and Forestry Science, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430000, China;
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, Hangzhou 310000, China; (J.W.); (Y.Z.); (H.Y.); (M.W.); (W.M.); (Y.Z.); (Q.P.)
- Correspondence: (J.S.); (Z.L.); Tel.: +86-0571-86652263 (J.S.); +86-0571-86650617 (Z.L.)
| |
Collapse
|
55
|
Figueira JA, Porto-Figueira P, Pereira JA, Câmara JS. A comprehensive methodology based on NTME/GC-MS data and chemometric tools for lemons discrimination according to geographical origin. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
56
|
Shi M, Liu X, Zhang H, He Z, Yang H, Chen J, Feng J, Yang W, Jiang Y, Yao JL, Deng CH, Xu J. The IAA- and ABA-responsive transcription factor CgMYB58 upregulates lignin biosynthesis and triggers juice sac granulation in pummelo. HORTICULTURE RESEARCH 2020; 7:139. [PMID: 32922811 PMCID: PMC7458917 DOI: 10.1038/s41438-020-00360-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 05/08/2023]
Abstract
In citrus, lignin overaccumulation in the juice sac results in granulation and an unpleasant fruit texture and taste. By integrating metabolic phenotyping and transcriptomic analyses, we found 702 differentially expressed genes (DEGs), including 24 transcription factors (TFs), to be significantly correlated with lignin content. CgMYB58 was further identified as a critical R2R3 MYB TF involved in lignin overaccumulation owing to its high transcript levels in Huanong Red-fleshed pummelo (HR, Citrus grandis) fruits. Transient expression of CgMYB58 led to an increase in the lignin content in the pummelo fruit mesocarp, whereas its stable overexpression significantly promoted lignin accumulation and upregulated 19 lignin biosynthetic genes. Among these genes, CgPAL1, CgPAL2, Cg4CL1, and CgC3H were directly modulated by CgMYB58 through interaction with their promoter regions. Moreover, we showed that juice sac granulation in pummelo fruits could be affected by indole-3-acetic acid (IAA) and abscisic acid (ABA) treatments. In HR pummelo, ABA significantly accelerated this granulation, whereas IAA effectively inhibited this process. Taken together, these results provide novel insight into the lignin accumulation mechanism in citrus fruits. We also revealed the theoretical basis via exogenous IAA application, which repressed the expression of CgMYB58 and its target genes, thus alleviating juice sac granulation in orchards.
Collapse
Affiliation(s)
- Meiyan Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Xiao Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Zhenyu He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Hongbin Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Jiajing Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Jia Feng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Wenhui Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Youwu Jiang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142 New Zealand
| | - Cecilia Hong Deng
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142 New Zealand
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| |
Collapse
|
57
|
Pinto L, Cefola M, Bonifacio MA, Cometa S, Bocchino C, Pace B, De Giglio E, Palumbo M, Sada A, Logrieco AF, Baruzzi F. Effect of red thyme oil (Thymus vulgaris L.) vapours on fungal decay, quality parameters and shelf-life of oranges during cold storage. Food Chem 2020; 336:127590. [PMID: 32763742 DOI: 10.1016/j.foodchem.2020.127590] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
This work has been aimed at studying the effect of red thyme oil (RTO, Thymus vulgaris L.) on the shelf-life and Penicillium decay of oranges during cold storage. RTO vapours significantly reduced (P ≤ 0.05) the percentage of infected wounds, the external growth area and the production of spores in inoculated orange fruit stored for 12 days at 7 °C in a polypropylene film selected for its appropriate permeability. Among the RTO compounds, p-cymene and thymol were the most abundant in packed boxes at the end of cold storage. The RTO vapours did not affect the main quality parameters of the oranges, or the taste and odour of the juice. The results have shown that an active packaging, using RTO vapours, could be employed, by the citrus industry, to extend the shelf-life of oranges for fresh market use and juice processing.
Collapse
Affiliation(s)
- L Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - M Cefola
- Institute of Sciences of Food Production, National Research Council of Italy, Via M. Protano, 71121 Foggia, Italy.
| | - M A Bonifacio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy.
| | - S Cometa
- Jaber Innovation S.r.l., Via Calcutta 8, 00144 Rome, Italy.
| | - C Bocchino
- Sada Packaging S.r.l., Via G. Salvemini snc, 84098 Pontecagnano Faiano, Salerno, Italy.
| | - B Pace
- Institute of Sciences of Food Production, National Research Council of Italy, Via M. Protano, 71121 Foggia, Italy.
| | - E De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy.
| | - M Palumbo
- Institute of Sciences of Food Production, National Research Council of Italy, Via M. Protano, 71121 Foggia, Italy.
| | - A Sada
- Antonio Sada & Figli S.p.a., Via A. Pacinotti 30, 84098 Pontecagnano Faiano, Salerno, Italy.
| | - A F Logrieco
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - F Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
58
|
|
59
|
Comparison of the Physical and Sensory Properties of Hybrid Citrus Fruit Jaffa ® Sweetie in Relation to the Parent Fruits. Molecules 2020; 25:molecules25122748. [PMID: 32545821 PMCID: PMC7357158 DOI: 10.3390/molecules25122748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022] Open
Abstract
In the presented study, an overall Jaffa sweetie evaluation was made to find a correlation between Citrus grandis Osbeck × Citrus paradisi Macf. and its parent fruits’ (Citrus grandis Osbeck, Citrus paradisi Macf.) properties. Based on the sensory analysis, it was found that the taste and aroma of the new hybrid fruit are close to pummelo. By the use of chromatographic analysis, the selected monoterpenes present in the fruits were quantified. α-terpineol was typed as the main monoterpene compound in the headspace of sweetie and grapefruit, with the concentrations: 20.96 and 87.9 μg/g, respectively. In turn, γ-terpinene was chosen as the most important monoterpene determining the flavor of sweetie fruit. Based on two-dimensional gas chromatography (GC × GC-TOF-MS) and principal component analysis (PCA) of the data, several volatile compounds were associated with analyzed fruits’ aroma. Jaffa Sweetie is the hybrid fruit with sensory properties similar to pummelo with a higher content of monoterpenes, which improves its health benefits compared to the parent fruit. The research presents an instrumental method for assessing the aroma properties of the fruit as a reference method for sensory analysis, commonly used in the industry.
Collapse
|
60
|
Liu M, Liu X, Hu J, Xue Y, Zhao X. Genetic diversity of limonene synthase genes in Rongan kumquat (Fortunella crassifolia). FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:425-439. [PMID: 32248892 DOI: 10.1071/fp19051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 12/08/2019] [Indexed: 06/11/2023]
Abstract
D-limonene is the main component of citrus essential oils. In the monoterpene biosynthetic pathway, geranyl diphosphate reacts with monoterpenes to form the prenyl-carbocation intermediate to produce d-limonene. In this study, d-limonene synthase (FcLS) genes were first isolated from Rongan kumquat (Fortunella crassifolia Swingle). Sequencing analysis revealed that the open reading frames of 18 FcLS genes contain 12 single nucleotide polymorphisms, which resulted in the variation of FcLS proteins, indicating that the limonene synthase genes are a large family in F. crassifolia. This phenomenon has not been reported in Citrus. The predicted FcLS proteins showed a high amino acid sequence identity with other Citrus limonene synthases and also had the typical structures of limonene synthase protein. FcLS1 was validated to be a functional d-limonene synthase by prokaryotic expression.
Collapse
Affiliation(s)
- Mengyu Liu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China; and National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Xiaofeng Liu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China; and National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Junhua Hu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China; and National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Yang Xue
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China; and National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China; and National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China; and Corresponding author.
| |
Collapse
|
61
|
Comparative Metabolites and Citrate-Degrading Enzymes Activities in Citrus Fruits Reveal the Role of Balance between ACL and Cyt-ACO in Metabolite Conversions. PLANTS 2020; 9:plants9030350. [PMID: 32164290 PMCID: PMC7154853 DOI: 10.3390/plants9030350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/28/2022]
Abstract
Citric acid metabolism is considered to be the central cellular process of metabolite conversions. ATP-citrate lyase (ACL) and cytosolic aconitase (cyt-ACO) are the two citrate-degrading enzymes that decide the carbon flux towards different metabolite biosynthesis pathways. However, the correlation of their activities with metabolite concentrations in citrus fruits is still unclear. Here, the concentrations of soluble sugars, organic acids, acetyl-CoA, flavonoids, carotenoids, and γ-aminobutyric acid, as well as the activities of ACL, cyt-ACO, acetyl-CoA C-acetyltransferase, and acetyl-CoA carboxylase, were compared among the fruits of six citrus cultivars during fruit development and ripening. The results showed that the correlation between citrate concentration and cyt-ACO or ACL activity varied greatly among cultivars, while the activities of cyt-ACO and ACL had a significantly negative correlation (r = −0.4431). Moreover, ACL overexpression and RNA interference in the Citrus callus indicated that increasing and decreasing the ACL activity could reduce and induce cyt-ACO activity, respectively. In addition, significant correlation was only observed between the ACL activity and the concentration of acetyl-CoA (r = 0.4333). Taken together, the present study suggested that ACL and cyt-ACO synergistically control the citrate fate for the biosynthesis of other metabolites, but they are not the key determinants for the accumulation of citrate, as well as other metabolites in citrus fruits.
Collapse
|
62
|
Tian F, He X, Sun J, Liu X, Zhang Y, Cao H, Wu M, Ma Z. Simultaneous quantitative analysis of nine constituents in six Chinese medicinal materials from
Citrus
genus by high‐performance liquid chromatography and high‐resolution mass spectrometry combined with chemometric methods. J Sep Sci 2020; 43:736-747. [DOI: 10.1002/jssc.201901033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/04/2019] [Accepted: 11/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Fang Tian
- College of PharmacyJinan University Guangzhou P. R. China
| | - Xiao‐Fang He
- College of PharmacyJinan University Guangzhou P. R. China
| | - Jie Sun
- College of PharmacyJinan University Guangzhou P. R. China
| | - Xin‐Dan Liu
- Research Center for TCM of Lingnan (Southern China)Jinan University Guangzhou P. R. China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine Lingnan Resources Branch Guangzhou P. R. China
| | - Ying Zhang
- College of PharmacyJinan University Guangzhou P. R. China
| | - Hui Cao
- College of PharmacyJinan University Guangzhou P. R. China
- Research Center for TCM of Lingnan (Southern China)Jinan University Guangzhou P. R. China
| | - Meng‐Hua Wu
- Research Center for TCM of Lingnan (Southern China)Jinan University Guangzhou P. R. China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine Lingnan Resources Branch Guangzhou P. R. China
| | - Zhi‐Guo Ma
- College of PharmacyJinan University Guangzhou P. R. China
| |
Collapse
|
63
|
Zhang W, Chen T, Tang J, Sundararajan B, Zhou Z. Tracing the production area of citrus fruits using aroma-active compounds and their quality evaluation models. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:517-526. [PMID: 31512252 DOI: 10.1002/jsfa.10026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Aroma is one of the most important aspects of fruit quality and can reflect the characteristics of different fruits. Aroma-active compounds can usefully be employed to trace the production areas of two citrus cultivars ('Eureka' lemon and 'Huapi' kumquat) and to evaluate their aroma quality. RESULTS 'Huapi' kumquat peel displayed higher monoterpene and sesquiterpene compound content, whereas 'Eureka' lemon peel exhibited higher monoterpene and monoterpene aldehyde compound content. 'Eureka' lemon peel ('Wanzhou' cultivar) had higher nerol acetate and geraniol acetate compound content. Kumquat peel ('Suichuan' and 'Rongan' cultivars) had higher sesquiterpene content. In addition, 30 and 31 aroma-active compounds were observed in kumquat and lemon, respectively, based on their odor activity values. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) results indicated that classification for production areas based on aroma-active compounds was useful. The selected aroma-active compounds have been checked as aroma quality parameters that could be used with multivariate analysis to establish a model of aroma quality evaluation. Higher aroma quality values from kumquat and lemon were collected from Rongan and Wanzhou cultivars, respectively. CONCLUSION Aroma-active compounds can be used to discriminate production areas using multivariate statistics. An objective method was established to evaluate the aroma quality of citrus fruits. 'Huapi' kumquat and 'Eureka' lemon, which had the highest aroma quality, was harvested from the Rongan and Wanzhou production areas. This was the first time that the aroma quality of citrus fruits was evaluated using multivariate analysis. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenlin Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Centre of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Tingting Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jianmin Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Centre of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | | | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- The Southwest Institute of Fruits Nutrition, Chongqing, China
| |
Collapse
|
64
|
Zhang H, Chen M, Wen H, Wang Z, Chen J, Fang L, Zhang H, Xie Z, Jiang D, Cheng Y, Xu J. Transcriptomic and metabolomic analyses provide insight into the volatile compounds of citrus leaves and flowers. BMC PLANT BIOLOGY 2020; 20:7. [PMID: 31906915 PMCID: PMC6945444 DOI: 10.1186/s12870-019-2222-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/30/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Previous reports have mainly focused on the volatiles in citrus fruits, and there have been few reports about the volatiles in citrus leaves and flowers. However, citrus leaves and flowers are also rich in volatile compounds with unique aromas. Here, to investigate the volatiles in citrus leaves and flowers, volatile profiling was performed on leaves from 62 germplasms and flowers from 25 germplasms. RESULTS In total, 196 and 82 volatile compounds were identified from leaves of 62 citrus germplasms and flowers of 25 citrus germplasms, respectively. The dominant volatile terpenoids were more diverse in citrus leaves than in peels. A total of 34 volatile terpenoids were commonly detected in the leaves of at least 20 germplasms, among which 31 were overaccumulated in the leaves of wild or semiwild germplasms. This result was consistent with the high expression levels of five genes and one key gene of the mevalonate and 2-C-methyl-D-erythritol-4-phosphate (MEP) biosynthetic pathways, respectively, as well as the low expression levels of geranylgeranyl diphosphate synthase of the MEP pathway, relative to the levels in cultivars. Fully open flowers showed increased levels of four terpene alcohols and a decrease in sabinene content compared with balloon-stage flowers, especially in sweet orange. A monoterpene synthase gene was identified and functionally characterized as a sabinene synthase in vitro. CONCLUSIONS Collectively, our results suggest that 31 important terpenoids are abundant in wild or semiwild citrus germplasms, possibly because of a negative effect of domestication on the volatiles in citrus leaves. The sweet smell of fully open flowers may be attributed to increased levels of four terpene alcohols. In addition, a sabinene synthase gene was identified by combined transcriptomic and metabolomic analyses.
Collapse
Affiliation(s)
- Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Mengjun Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Huan Wen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Zhenhua Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Jiajing Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Liu Fang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hongyan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Dong Jiang
- Citrus Research Institute of Southwest University, National Citrus Germplasm Repository, Chongqing, 400712 People’s Republic of China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
65
|
Zhang M, Jing L, Wu Q, Zhu K, Ke F, Xu J, Zhao S, Wang G, Zhang C. Metabolite profile comparison of a graft chimera 'Hongrou Huyou' (Citrus changshan-huyou + Citrus unshiu) and its two donor plants. BMC PLANT BIOLOGY 2019; 19:582. [PMID: 31878871 PMCID: PMC6933880 DOI: 10.1186/s12870-019-2173-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Chimeras synthesized artificially by grafting are crucial to the breeding of perennial woody plants. 'Hongrou Huyou' (Citrus changshan-huyou + Citrus unshiu) is a new graft chimera originating from the junction where a Citrus changshan-huyou ("C") scion was top-grafted onto a stock Satsuma mandarin 'Owari' (C. unshiu, "O"). The chimera was named OCC because the cell layer constitutions were O for Layer 1(L1) and C for L2 and L3. In this study, profiles of primary metabolites, volatiles and carotenoids derived from different tissues in OCC and the two donors were investigated, with the aim of determining the relationship between the layer donors and metabolites. RESULTS The comparison of the metabolite profiles showed that the amount and composition of metabolites were different between the peels and the juice sacs, as well as between OCC and each of the two donors. The absence or presence of specific metabolites (such as the carotenoids violaxanthin and β-cryptoxanthin, the volatile hydrocarbon germacrene D, and the primary metabolites citric acid and sorbose) in each tissue was identified in the three phenotypes. According to principal component analysis (PCA), overall, the metabolites in the peel of the chimera were derived from donor C, whereas those in the juice sac of the chimera came from donor O. CONCLUSION The profiles of primary metabolites, volatiles and carotenoids derived from the peels and juice sacs of OCC and the two donors were systematically compared. The content and composition of metabolites were different between the tissues and between OCC and the each of the two donors. A clear donor dominant pattern of metabolite inheritance was observed in the different tissues of OCC and was basically consistent with the layer origin; the peel of the chimera was derived from C, and the juice sacs of the chimera came from O. These profiles provide potential chemical markers for genotype differentiation, citrus breeding assessment, and donor selection during artificial chimera synthesis.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A& F University, Hangzhou, 311300 China
| | - Luyang Jing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A& F University, Hangzhou, 311300 China
| | - Qun Wu
- Quzhou Technical Extension Station for Cash Crops, Quzhou, 324000 China
| | - Kaijie Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Fuzhi Ke
- Citrus Research Institute of Zhejiang Province, Huangyan, 318020 China
| | - Jianguo Xu
- Citrus Research Institute of Zhejiang Province, Huangyan, 318020 China
| | - Siqing Zhao
- Changshan Huyou Research Institute, Quzhou, 324000 China
| | - Gang Wang
- Changshan Huyou Research Institute, Quzhou, 324000 China
| | - Chi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A& F University, Hangzhou, 311300 China
| |
Collapse
|
66
|
Volatile Compounds in Fruit Peels as Novel Biomarkers for the Identification of Four Citrus Species. Molecules 2019; 24:molecules24244550. [PMID: 31842378 PMCID: PMC6943597 DOI: 10.3390/molecules24244550] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/01/2023] Open
Abstract
The aroma quality of citrus fruit is determined by volatile compounds, which bring about different notes to allow discrimination among different citrus species. However, the volatiles with various aromatic traits specific to different citrus species have not been identified. In this study, volatile profiles in the fruit peels of four citrus species collected from our previous studies were subjected to various analyses to mine volatile biomarkers. Principal component analysis results indicated that different citrus species could almost completely be separated. Thirty volatiles were identified as potential biomarkers in discriminating loose-skin mandarin, sweet orange, pomelo, and lemon, while 17 were identified as effective biomarkers in discriminating clementine mandarins from the other loose-skin mandarins and sweet oranges. Finally, 30 citrus germplasms were used to verify the classification based on β-elemene, valencene, nootkatone, and limettin as biomarkers. The accuracy values were 90.0%, 96.7%, 96.7%, and 100%, respectively. This research may provide a novel and effective alternative approach to identifying citrus genetic resources.
Collapse
|
67
|
Bouwmeester H, Schuurink RC, Bleeker PM, Schiestl F. The role of volatiles in plant communication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:892-907. [PMID: 31410886 PMCID: PMC6899487 DOI: 10.1111/tpj.14496] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 05/08/2023]
Abstract
Volatiles mediate the interaction of plants with pollinators, herbivores and their natural enemies, other plants and micro-organisms. With increasing knowledge about these interactions the underlying mechanisms turn out to be increasingly complex. The mechanisms of biosynthesis and perception of volatiles are slowly being uncovered. The increasing scientific knowledge can be used to design and apply volatile-based agricultural strategies.
Collapse
Affiliation(s)
- Harro Bouwmeester
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Robert C. Schuurink
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Petra M. Bleeker
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Florian Schiestl
- Department of Systematic and Evolutionary BotanyUniversity of ZürichZollikerstrasse 107CH‐8008ZürichSwitzerland
| |
Collapse
|
68
|
Zhang H, Liu C, Yao JL, Deng CH, Chen S, Chen J, Wang Z, Yu Q, Cheng Y, Xu J. Citrus mangshanensis Pollen Confers a Xenia Effect on Linalool Oxide Accumulation in Pummelo Fruit by Enhancing the Expression of a Cytochrome P450 78A7 Gene CitLO1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9468-9476. [PMID: 31379158 DOI: 10.1021/acs.jafc.9b03158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The aroma quality of citrus fruit is determined by volatiles that are present at extremely low levels in the citrus fruit juice sacs; it can be greatly improved by increasing volatiles. In this study, we showed that the contents of cis- and trans-linalool oxides were significantly increased in the juice sacs of three pummelos artificially pollinated with the Citrus mangshanensis (MS) pollen. A novel cytochrome P450 78A7 gene (CitLO1) was significantly upregulated in the juice sacs of Huanong Red pummelo pollinated with MS pollen in comparison to that with open pollination. Compared to wild-type tobacco Bright-Yellow2 cells, transgenic cells overexpressing CitLO1 promoted a 3- to 4-fold more conversion of (-)-linalool to cis- and trans-linalool oxides. Overall, our results suggest that MS pollen has a xenia effect on pummelo fruit aroma quality, and CitLO1 is a linalool oxide synthase gene that played an important role in the xenia effect.
Collapse
Affiliation(s)
- Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Cuihua Liu
- College of Horticulture , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited , Private Bag 92169 , Auckland 1142 , New Zealand
| | - Cecilia Hong Deng
- The New Zealand Institute for Plant & Food Research Limited , Private Bag 92169 , Auckland 1142 , New Zealand
| | - Shilin Chen
- Agricultural Bureau of Yichang District , Yiling 443310 , P. R. China
| | - Jiajing Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Zhenhua Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Qiaoming Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| |
Collapse
|
69
|
Xu Y, Zhu C, Xu C, Sun J, Grierson D, Zhang B, Chen K. Integration of Metabolite Profiling and Transcriptome Analysis Reveals Genes Related to Volatile Terpenoid Metabolism in Finger Citron ( C. medica var. sarcodactylis). Molecules 2019; 24:molecules24142564. [PMID: 31311090 PMCID: PMC6680504 DOI: 10.3390/molecules24142564] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 01/19/2023] Open
Abstract
Finger citron (Citrus medica var. sarcodactylis) is a popular ornamental tree and an important source of essential oils rich in terpenoids, but the mechanisms behind volatile formation are poorly understood. We investigated gene expression changes combined with volatile profiling of ten samples from three developing organs: flower, leaf, and fruit. A total of 62 volatiles were identified with limonene and γ-terpinene being the most abundant ones. Six volatiles were identified using partial least squares discriminant analysis (PLS-DA) that could be used as markers for distinguishing finger citron from other citrus species. RNA-Seq revealed 1,611,966,118 high quality clean reads that were assembled into 32,579 unigenes. From these a total of 58 terpene synthase (TPS) gene family members were identified and the spatial and temporal distribution of their transcripts was measured in developing organs. Transcript levels of transcription factor genes AP2/ERF (251), bHLH (169), bZIP (76), MYB (155), NAC (184), and WRKY (66) during finger citron development were also analyzed. From extracted subnetworks of three modules constructed by weighted gene co-expression network analysis (WGCNA), thirteen TPS genes and fifteen transcription factors were suggested to be related to volatile terpenoid formation. These results provide a framework for future investigations into the identification and regulatory network of terpenoids in finger citron.
Collapse
Affiliation(s)
- Yaying Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Laboratory of Fruit Quality Biology, Zhejiang University, Hangzhou 310058, China
| | - Changqing Zhu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Laboratory of Fruit Quality Biology, Zhejiang University, Hangzhou 310058, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Laboratory of Fruit Quality Biology, Zhejiang University, Hangzhou 310058, China
| | - Jun Sun
- Zhejiang Agricultural Technology Extension Center, Hangzhou 310029, China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Laboratory of Fruit Quality Biology, Zhejiang University, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Bo Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Laboratory of Fruit Quality Biology, Zhejiang University, Hangzhou 310058, China.
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Laboratory of Fruit Quality Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
70
|
Characterization of Key Aroma Compounds and Construction of Flavor Base Module of Chinese Sweet Oranges. Molecules 2019; 24:molecules24132384. [PMID: 31252622 PMCID: PMC6651742 DOI: 10.3390/molecules24132384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 11/23/2022] Open
Abstract
Sweet orange flavor, with its refreshing, joyful and attractive aroma, is favored by the majority of consumers all over the world. However, the industry terminology between flavorists for flavor evaluation is a bit vague and not intuitive for customers. Therefore, the study focused on analysis of sweet orange aroma and establishment of base module of orange flavor. The approach to the research involves screening key aroma compounds, identifying the attributes aroma and building base module of sweet orange. The notes of sweet orange flavor were determined by GC-O olfaction and sensory evaluation. 25 key aroma compounds with OAV ≥ 1 were screened and divided into eight notes: citrus, fruity, fresh, green, peely, woody, fatty, floral. Partial least squares regression (PLSR) was used to further verify the corresponding relationship between the volatile substances and notes. Terpenes, esters, aldehydes and alcohols compounds can provide these notes. Based on the notes, 8 base modules of sweet orange were built by selecting and matching aroma ingredients. Through this study, beginners could be trained according to the 8 notes of base modules and flavorists can engage in dialogue with different raw material sourcing teams or providers.
Collapse
|
71
|
Ramírez-Pelayo C, Martínez-Quiñones J, Gil J, Durango D. Coumarins from the peel of citrus grown in Colombia: composition, elicitation and antifungal activity. Heliyon 2019; 5:e01937. [PMID: 31245648 PMCID: PMC6582165 DOI: 10.1016/j.heliyon.2019.e01937] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 12/04/2022] Open
Abstract
The present work analyses the chromatographic profile of the peels from fruits of different citrus cultivated in Colombia: sweet orange (Citrus sinensis [L.] Osbeck var. Valencia), mandarins (Citrus reticulata L. var. Arrayana and Oneco), Key lime (Citrus aurantifolia [Christ.] Swingle var. Pajarito), Mandarine lime (Citrus x limonia, a hybrid between Citrus reticulata and Citrus x limon) and Tahitian lime (C. latifolia Tanaka, syn. Persian lime). Coumarins, furanocoumarins and polymethoxylated flavones are the major compounds. Then, six coumarins were isolated and identified from fruits of Tahitian and Key lime corresponding to 5-geranyloxy-7-methoxycoumarin; 5,7-dimethoxycoumarin (syn. limettin); 5,8-dimethoxypsoralen (syn. isopimpinellin); 5-methoxypsoralen (syn. bergaptene); 5-geranoxypsoralen (syn. bergamottin) and 5-(2,3-dihydroxy-3-methylbutoxy) psoralen (syn. oxypeucedanin hydrate). Coumarins and furanocoumarins were quantified by liquid chromatography (HPLC-DAD). Results show that the prenylated compounds were present in high concentrations in Tahitian and Key lime but in very low amounts in mandarins and sweet orange. Subsequently, the antifungal activity (inhibition of mycelial growth and germination of spores) of the coumarins against the fungus causing the anthracnose, Colletotrichum sp. (isolated from aerial parts of Tahitian lime) was determined. The compounds limettin and bergaptene, as well as mixtures of them, showed significant inhibitory effect (radial growth and spore germination) when compared to the control. Finally, the effect of some recognized elicitors to induce the coumarin production in fruits of C. latifolia was evaluated. The results showed that the chemical profiles are dependent on the applied elicitor and the post-induction time. As a result of the induction, a high concentration of some coumarins and furanocoumarins was maintained in the course of time for the Tahitian lime. In conclusion, isolated coumarins could be involved in the defense mechanisms of C. latifolia, C. aurantifolia and C. limonia and their accumulation may be modulated by the application of elicitors.
Collapse
Affiliation(s)
- Cesar Ramírez-Pelayo
- Universidad Nacional de Colombia-Sede Medellín. Facultad de Ciencias, Escuela de Química, Carrera 65 No. 59a-110, Medellín, Colombia
| | - Janio Martínez-Quiñones
- Universidad Nacional de Colombia-Sede Medellín. Facultad de Ciencias, Escuela de Química, Carrera 65 No. 59a-110, Medellín, Colombia
| | - Jesús Gil
- Universidad Nacional de Colombia-Sede Medellín. Facultad de Ciencias Agrarias, Departamento de Ingeniería Agrícola y Alimentos, Carrera 65 No. 59a-110, Medellín, Colombia
| | - Diego Durango
- Universidad Nacional de Colombia-Sede Medellín. Facultad de Ciencias, Escuela de Química, Carrera 65 No. 59a-110, Medellín, Colombia
| |
Collapse
|
72
|
Lado J, Gurrea A, Zacarías L, Rodrigo MJ. Influence of the storage temperature on volatile emission, carotenoid content and chilling injury development in Star Ruby red grapefruit. Food Chem 2019; 295:72-81. [PMID: 31174812 DOI: 10.1016/j.foodchem.2019.05.108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/29/2022]
Abstract
Grapefruits are sensitive to develop chilling injury (CI) on the peel upon postharvest storage at low temperature. We investigated the influence of the storage at 2 and 12 °C on CI, carotenoids, and emission of volatiles by intact fruit. CI symptoms at 12 °C were restricted to green fruit peel sectors but at 2 °C the CI severity was higher and distributed through the whole fruit surface. Fruit peel coloration and carotenes content increased at 12 °C whereas experienced minor changes at 2 °C. At 2 °C the emission of total volatiles and specific monoterpenes, mainly limonene, but also linalool and α-terpineol was enhanced, while storage at 12 °C resulted in higher emission and diversity of cyclic sesquiterpenes and aliphatic esters. Results indicate a selective emission of volatiles by intact red grapefruit that appears to be a specific response to the storage temperature or to the cold-induced damage.
Collapse
Affiliation(s)
- Joanna Lado
- Instituto Nacional de Investigación Agropecuaria (INIA), Salto, Uruguay; Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain.
| | - Aránzazu Gurrea
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain.
| | - Lorenzo Zacarías
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain.
| | - María Jesús Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
73
|
Matsuo Y, Miura LA, Araki T, Yoshie-Stark Y. Proximate composition and profiles of free amino acids, fatty acids, minerals and aroma compounds in Citrus natsudaidai peel. Food Chem 2019; 279:356-363. [DOI: 10.1016/j.foodchem.2018.11.146] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/08/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
74
|
Liu X, Deng J, Bi J, Wu X, Zhang B. Cultivar classification of cloudy apple juices from substandard fruits in China based on aroma profile analyzed by HS-SPME/GC-MS. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
75
|
González-Mas MC, Rambla JL, López-Gresa MP, Blázquez MA, Granell A. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. FRONTIERS IN PLANT SCIENCE 2019; 10:12. [PMID: 30804951 PMCID: PMC6370709 DOI: 10.3389/fpls.2019.00012] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/07/2019] [Indexed: 05/09/2023]
Abstract
The essential oil fraction obtained from the rind of Citrus spp. is rich in chemical compounds of interest for the food and perfume industries, and therefore has been extensively studied during the last decades. In this manuscript, we provide a comprehensive review of the volatile composition of this oil fraction and rind extracts for the 10 most studied Citrus species: C. sinensis (sweet orange), C. reticulata (mandarin), C. paradisi (grapefruit), C. grandis (pummelo), C. limon (lemon), C. medica (citron), C. aurantifolia (lime), C. aurantium (bitter orange), C. bergamia (bergamot orange), and C. junos (yuzu). Forty-nine volatile organic compounds have been reported in all 10 species, most of them terpenoid (90%), although about half of the volatile compounds identified in Citrus peel are non-terpenoid. Over 400 volatiles of different chemical nature have been exclusively described in only one of these species and some of them could be useful as species biomarkers. A hierarchical cluster analysis based on volatile composition arranges these Citrus species in three clusters which essentially mirrors those obtained with genetic information. The first cluster is comprised by C. reticulata, C. grandis, C. sinensis, C. paradisi and C. aurantium, and is mainly characterized by the presence of a larger abundance of non-terpenoid ester and aldehyde compounds than in the other species reviewed. The second cluster is comprised by C. junos, C. medica, C. aurantifolia, and C. bergamia, and is characterized by the prevalence of mono- and sesquiterpene hydrocarbons. Finally, C. limon shows a particular volatile profile with some sulfur monoterpenoids and non-terpenoid esters and aldehydes as part of its main differential peculiarities. A systematic description of the rind volatile composition in each of the species is provided together with a general comparison with those in leaves and blossoms. Additionally, the most widely used techniques for the extraction and analysis of volatile Citrus compounds are also described.
Collapse
Affiliation(s)
- M. Carmen González-Mas
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - José L. Rambla
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| | - M. Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| | - M. Amparo Blázquez
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| |
Collapse
|
76
|
Velásquez S, Peña N, Bohórquez JC, Gutierrez N, Sacks GL. Volatile and sensory characterization of roast coffees – Effects of cherry maturity. Food Chem 2019; 274:137-145. [DOI: 10.1016/j.foodchem.2018.08.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
|
77
|
Variation in limonin and nomilin content in citrus fruits of eight varieties determined by modified HPLC. Food Sci Biotechnol 2018; 28:641-647. [PMID: 31093421 DOI: 10.1007/s10068-018-0509-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/25/2018] [Accepted: 11/11/2018] [Indexed: 01/25/2023] Open
Abstract
The nomilin and limonin content in citrus fruits of different varieties was determined at fruit growth and maturation stages by HPLC. The results showed that the two limonoids can be separated, identified, and quantified in citrus fruits within 10 min by the developed method. The method exhibited good precision, repeatability, stability, and recovery rate. The content of limonin and nomilin in most citrus fruits presented an increasing trend initially, and then decreased during fruit growth and maturation; a peak was observed at the young fruit or fruit expansion stage. The dropped fruits also contained some amount of limonoids, suggesting their industrial application. The variation and cluster analyses results revealed that the orange varieties contained the highest amount of limonoids at the mature stage. The results of this study will enable better use of citrus limonoids.
Collapse
|
78
|
Różańska A, Sieńska D, Dymerski T, Namieśnik J. Analysis of volatile fraction of sweetie ( Citrus maxima × Citrus paradisi) and its parent fruit using proton transfer reaction mass spectrometry. MONATSHEFTE FUR CHEMIE 2018; 149:1629-1634. [PMID: 30174350 PMCID: PMC6105219 DOI: 10.1007/s00706-018-2229-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/13/2018] [Indexed: 01/26/2023]
Abstract
Abstract The quality of the fruit is affected by several main ingredients and the aroma plays a fundamental role during the selection of fruit by consumers. In the case where several fruit have similar aromas and only one of them has specific health properties, it is very important to find the differences in the volatile organic compounds (VOCs) composition to distinguish these samples. Such situations are often found for hybrid fruit. Sweetie is a hybrid of grapefruit and pummelo. Sweetie fruit is characterized by high antioxidant potential and a positive effect on human health. The aim of this study was to verify the unique volatile compositional traits of three species of citrus fruit. Proton transfer reaction Time-of-Flight mass spectrometry (PTR-TOF-MS) was utilized to obtain the mass-resolved fingerprints of VOCs. The chemical formula of these VOC masses was tentatively identified. Principal component analysis was performed to evaluate the differences between the groups. Graphical abstract
Collapse
Affiliation(s)
- Anna Różańska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Dorota Sieńska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Tomasz Dymerski
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
79
|
He Y, Li Z, Wang W, Sooranna SR, Shi Y, Chen Y, Wu C, Zeng J, Tang Q, Xie H. Chemical Profiles and Simultaneous Quantification of Aurantii fructus by Use of HPLC-Q-TOF-MS Combined with GC-MS and HPLC Methods. Molecules 2018; 23:molecules23092189. [PMID: 30200226 PMCID: PMC6225099 DOI: 10.3390/molecules23092189] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/22/2023] Open
Abstract
Aurantii fructus (AF) is a traditional Chinese medicine that has been used to improve gastrointestinal motility disorders for over a thousand years, but there is no exhaustive identification of the basic chemical components and comprehensive quality control of this herb. In this study, high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS) and gas chromatography coupled mass spectrometry (GC-MS) were employed to identify the basic chemical compounds, and high-performance liquid chromatography (HPLC) was developed to determine the major biochemical markers from AF extract. There were 104 compounds belonging to eight structure types, including 13 amino acids or peptides, seven alkaloids, 18 flavanones, 14 flavones, 15 polymethoxyflavonoids, six triterpenoids, nine coumarins, and 18 volatile oils, as well as four other compounds that were systematically identified as the basic components from AF, and among them, 41 compounds were reported for the first time. Twelve bioactive ingredients were chosen as the benchmark markers to evaluate the quality of AF. The analysis was completed with a gradient elution at a flow rate of 0.7 mL/min within 55 min. This efficient method was validated showing good linearity, precision, stability, repeatability and recovery. Furthermore, the method was successfully applied to the simultaneous determination of 12 chemical markers in different samples of AF. This study could be applied to the identification of multiple bioactive substances and improve the quality control of AF.
Collapse
Affiliation(s)
- Yingjie He
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China.
| | - Zongkai Li
- School of Medicine, Guangxi University of Science and Technology, Liuzhou 565006, China.
| | - Wei Wang
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China.
| | - Suren R Sooranna
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London SW10 9NH, UK.
| | - Yiting Shi
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China.
| | - Yun Chen
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China.
| | - Changqiao Wu
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China.
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China.
| | - Qi Tang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China.
| | - Hongqi Xie
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
80
|
Analysis of changes in volatile constituents and expression of genes involved in terpenoid metabolism in oleocellosis peel. Food Chem 2018; 243:269-276. [DOI: 10.1016/j.foodchem.2017.09.142] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/24/2017] [Accepted: 09/27/2017] [Indexed: 01/02/2023]
|
81
|
Zhu M, Lin J, Ye J, Wang R, Yang C, Gong J, Liu Y, Deng C, Liu P, Chen C, Cheng Y, Deng X, Zeng Y. A comprehensive proteomic analysis of elaioplasts from citrus fruits reveals insights into elaioplast biogenesis and function. HORTICULTURE RESEARCH 2018; 5:6. [PMID: 29423236 PMCID: PMC5802726 DOI: 10.1038/s41438-017-0014-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/07/2017] [Accepted: 12/10/2017] [Indexed: 05/02/2023]
Abstract
Elaioplasts of citrus peel are colorless plastids which accumulate significant amounts of terpenes. However, other functions of elaioplasts have not been fully characterized to date. Here, a LC-MS/MS shotgun technology was applied to identify the proteins from elaioplasts that were highly purified from young fruit peel of kumquat. A total of 655 putative plastid proteins were identified from elaioplasts according to sequence homology in silico and manual curation. Based on functional classification via Mapman, ~50% of the identified proteins fall into six categories, including protein metabolism, transport, and lipid metabolism. Of note, elaioplasts contained ATP synthase and ADP, ATP carrier proteins at high abundance, indicating important roles for ATP generation and transport in elaioplast biogenesis. Additionally, a comparison of proteins between citrus chromoplast and elaioplast proteomes suggest a high level of functional conservation. However, some distinctive protein profiles were also observed in both types of plastids notably for isoprene biosynthesis in elaioplasts, and carotenoid metabolism in chromoplasts. In conclusion, this comprehensive proteomic study provides new insights into the major metabolic pathways and unique characteristics of elaioplasts and chromoplasts in citrus fruit.
Collapse
Affiliation(s)
- Man Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jiajia Lin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Rui Wang
- Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233 China
| | - Chao Yang
- Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233 China
| | - Jinli Gong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yun Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chongling Deng
- Guangxi Citrus Research Institute, Guangxi, 541004 China
| | - Ping Liu
- Guangxi Citrus Research Institute, Guangxi, 541004 China
| | - Chuanwu Chen
- Guangxi Citrus Research Institute, Guangxi, 541004 China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|