51
|
Roschel GG, da Silveira TFF, Cajaíba LM, Ferrari RA, Castro IA. Combination of natural strategies to improve the oxidative stability of echium seed oil. J Food Sci 2021; 86:411-419. [PMID: 33448021 DOI: 10.1111/1750-3841.15590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 12/11/2020] [Indexed: 11/29/2022]
Abstract
Echium seed oil is an alternative source of omega 3 fatty acids but it is highly susceptible to oxidation. A combination of three natural strategies was proposed in this study aiming to improve the oxidative stability of echium oil obtained by pressing (PO) or solvent extraction (PSO), kept in the storage condition for 180 days or during the consumption for 30 days. Our results showed that the reduction of temperature was sufficient to keep the oil stable during storage for both samples. During the consumption time, the best stability was achieved by adding a mixture of antioxidants, composed of sinapic (500 ppm), ascorbic (250 ppm), and citric (150 ppm) acids, and/or 20% of high oleic sunflower oil. The combined strategies promoted a 34 to 80% reduction of peroxide value and 0 to 85% reduction of malondialdehyde concentrations in the samples, showing to be a feasible and natural alternative to improve the oxidative stability of echium oil. PRACTICAL APPLICATION: Our study successfully applied an optimized combination of simple and low-cost strategies to enhance the chemical stability of echium seed oil. As the use of echium oil expands around the world, the oil industry and final consumers may benefit from our results to increase the oil shelf-life.
Collapse
Affiliation(s)
- Gabriela Grassmann Roschel
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Av. Lineu Prestes, 580, B14, Sao Paulo, 05508-000, Brazil
| | - Tayse Ferreira Ferreira da Silveira
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Av. Lineu Prestes, 580, B14, Sao Paulo, 05508-000, Brazil
| | - Letícia Maeda Cajaíba
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Av. Lineu Prestes, 580, B14, Sao Paulo, 05508-000, Brazil
| | - Roseli Aparecida Ferrari
- Food Science and Quality Center, Institute of Food Technology (ITAL), Av. Brazil 2880, Campinas, Sao Paulo, 13070-178, Brazil
| | - Inar Alves Castro
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Av. Lineu Prestes, 580, B14, Sao Paulo, 05508-000, Brazil
| |
Collapse
|
52
|
Grape ( Vitis vinifera L.) Seed Oil: A Functional Food from the Winemaking Industry. Foods 2020; 9:foods9101360. [PMID: 32992712 PMCID: PMC7599587 DOI: 10.3390/foods9101360] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Wine production is an ancient human activity that generates several by-products, which include some constituents known for their potential in health care and for their role in the food or cosmetic industries. Any variety of grape (Vitis vinifera L.) contains nutrients and bioactive compounds available from their juice or solid parts. Grape seed extract has demonstrated many activities in disease prevention, such as antioxidant effects, which make it a potential source of nutraceuticals. Grape seed is a remarkable winery industry by-product due to the bioactivity of its constituents. Methods for recovery of oil from grape seeds have evolved to improve both the quantity and quality of the yield. Both the lipophilic and hydrophilic chemicals present in the oil of V. vinifera L. make this wine by-product a source of natural nutraceuticals. Food and non-food industries are becoming novel targets of oil obtained from grape seeds given its various properties. This review focuses on the advantages of grape seed oil intake in our diet regarding its chemical composition in industries not related to wine production and the economic and environmental impact of oil production.
Collapse
|
53
|
Rosa ACS, Stevanato N, Santos Garcia VA, Silva C. Simultaneous extraction of the oil from the kernel and pulp of macauba fruit using a green solvent. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Natália Stevanato
- Departamento de Engenharia Química Universidade Estadual de Maringá (UEM) Maringá Brasil
| | - Vitor Augusto Santos Garcia
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo (USP) Pirassununga Brasil
| | - Camila Silva
- Departamento de Engenharia Química Universidade Estadual de Maringá (UEM) Maringá Brasil
- Departamento de Tecnologia Universidade Estadual de Maringá (UEM) Umuarama Brasil
| |
Collapse
|
54
|
Mushtaq A, Roobab U, Denoya GI, Inam‐Ur‐Raheem M, Gullón B, Lorenzo JM, Barba FJ, Zeng X, Wali A, Aadil RM. Advances in green processing of seed oils using ultrasound‐assisted extraction: A review. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14740] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anam Mushtaq
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Gabriela I. Denoya
- Instituto Nacional de Tecnología Agropecuaria (INTA) Instituto Tecnología de Alimentos Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina
| | - Muhammad Inam‐Ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science University of Vigo (Campus Ourense) Ourense Spain
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia Parque Tecnológico de Galicia Ourense Spain
| | - Francisco J. Barba
- Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area Universitat de València Burjassot Spain
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Asif Wali
- Department of Agriculture and Food Technology Karakoram International University Gilgit Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
55
|
Portilho Trentini C, de Mello BTF, Ferreira Cabral V, da Silva C. Crambe seed oil: Extraction and reaction with dimethyl carbonate under pressurized conditions. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
56
|
Castejón N, Señoráns FJ. Enzymatic modification to produce health-promoting lipids from fish oil, algae and other new omega-3 sources: A review. N Biotechnol 2020; 57:45-54. [PMID: 32224214 DOI: 10.1016/j.nbt.2020.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 01/23/2023]
Abstract
Lipases are a versatile class of enzymes that have aroused great interest in the food and pharmaceutical industries due to their ability to modify and synthesize new lipids for functional foods. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have shown important biological functions promoting human health, especially in the development and maintenance of brain function and vision. Lipases allow selective production of functional lipids enriched in omega-3 PUFAs and are unique enzymatic tools to improve the natural composition of lipids and provide specific bioactivities. This review comprises recent research trends on the enzymatic production of bioactive, structured lipids with improved nutritional characteristics, using new enzymatic processing technologies in combination with novel raw materials, including microalgal lipids and new seed oils high in omega-3 fatty acids. An extensive number of lipase applications in the synthesis of health-promoting lipids enriched in omega-3 fatty acids by enzymatic modification is reviewed, considering the main advances in recent years for production of ethyl esters, 2-monoacylglycerols and structured triglycerides and phospholipids with omega-3 fatty acids, in order to achieve bioactive lipids as new foods and drugs.
Collapse
Affiliation(s)
- Natalia Castejón
- Healthy-Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Francisco J Señoráns
- Healthy-Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
57
|
Abstract
Crude tall oil (CTO) is the third largest by-product at kraft pulp and paper mills. Due the large presence of value-added fatty and resin acids, CTO has a huge valorization potential as a biobased, readily available, non-food, and low-cost biorefinery feedstock. The objective of this work was to present a method for the isolation of high-value linoleic acid (LA), an omega (ω)-6 essential fatty acid, from CTO using a combination of pretreatment, fractionation, and purification techniques. Following the distillation of CTO to separate the tall oil fatty acids (TOFAs) from CTO, LA was isolated and purified from TOFAs by urea complexation (UC) and low-temperature crystallization (LTC) in the temperature range between −7 and −15 °C. The crystallization yield of LA from CTO in that range was 7.8 w/w at 95.2% purity, with 3.8% w/w of ω-6 γ-linolenic acid (GLA) and 1.0% w/w of ω-3 α-linolenic (ALA) present as contaminants. This is the first report on the isolation of LA from CTO. The approach presented here can be applied to recover other valuable fatty acids. Furthermore, once the targeted fatty acid(s) are isolated, the rest of the TOFAs can be utilized for the production of biodiesel, biobased surfactants, or other valuable bioproducts.
Collapse
|
58
|
Rincón‐Cervera MÁ, Galleguillos‐Fernández R, González‐Barriga V, Valenzuela R, Speisky H, Fuentes J, Valenzuela A. Fatty Acid Profile and Bioactive Compound Extraction in Purple Viper's Bugloss Seed Oil Extracted with Green Solvents. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Valeria González‐Barriga
- Institute of Nutrition and Food TechnologyUniversity of Chile El Líbano 5524, Macul, Santiago 7830490 Chile
| | - Rodrigo Valenzuela
- Institute of Nutrition and Food TechnologyUniversity of Chile El Líbano 5524, Macul, Santiago 7830490 Chile
- Department of Nutrition, Faculty of MedicineUniversity of Chile Avenida Independencia 1027, Independencia, Santiago 8380453 Chile
| | - Hernán Speisky
- Institute of Nutrition and Food TechnologyUniversity of Chile El Líbano 5524, Macul, Santiago 7830490 Chile
| | - Jocelyn Fuentes
- Institute of Nutrition and Food TechnologyUniversity of Chile El Líbano 5524, Macul, Santiago 7830490 Chile
| | - Alfonso Valenzuela
- Institute of Nutrition and Food TechnologyUniversity of Chile El Líbano 5524, Macul, Santiago 7830490 Chile
| |
Collapse
|
59
|
Mwaurah PW, Kumar S, Kumar N, Attkan AK, Panghal A, Singh VK, Garg MK. Novel oil extraction technologies: Process conditions, quality parameters, and optimization. Compr Rev Food Sci Food Saf 2019; 19:3-20. [DOI: 10.1111/1541-4337.12507] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Peter Waboi Mwaurah
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Sunil Kumar
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Nitin Kumar
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Anil Panghal
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Vijay Kumar Singh
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Mukesh Kumar Garg
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| |
Collapse
|
60
|
Simultaneous extraction of oil and bioactive compounds from pecan nut using pressurized solvents. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
61
|
Gong M, Hu Y, Wei W, Jin Q, Wang X. Production of conjugated fatty acids: A review of recent advances. Biotechnol Adv 2019; 37:107454. [PMID: 31639444 DOI: 10.1016/j.biotechadv.2019.107454] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/26/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Conjugated fatty acids (CFAs) have received a deal of attention due to the increasing understanding of their beneficial physiological effects, especially the anti-cancer effects and metabolism-regulation activities. However, the production of CFAs is generally difficult. Several challenges are the low CFAs content in natural sources, the difficulty to chemically synthesize target CFA isomers in high purity, and the sensitive characteristics of CFAs. In this article, the current technologies to produce CFAs, including physical, chemical, and biotechnical approaches were summarized, with a focus on the conjugated linoleic acids (CLAs) and conjugated linolenic acids (CLNAs) which are the most common investigated CFAs. CFAs usually demonstrate stronger physiological effects than other non-conjugated fatty acids; however, they are more sensitive to heat and oxidation. Consequently, the quality control throughout the entire production process of CFAs is significant. Special attention was given to the micro- or nano-encapsulation which presented as an emerging technique to improve the bioavailability and storage stability of CFAs. The current applications of CFAs and the potential research directions were also discussed.
Collapse
Affiliation(s)
- Mengyue Gong
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yulin Hu
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 3K7, Canada
| | - Wei Wei
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
62
|
Optimizing and Comparing Ultrasound- and Microwave-Assisted Extraction Methods Applied to the Extraction of Antioxidant Capsinoids in Peppers. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9100633] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Capsinoids are very similar antioxidant compounds to capsaicinoids, but less irritating, non-pungent and more palatable, and can thus be used in greater concentrations for food applications. To date, three capsinoids (capsiate, dihydrocapsiate, and nordihydrocapsiate) have been isolated from the pepper fruits. Due to its substantial commercial importance, it would be convenient to determine which pepper varieties have a richer content. Ultrasound- (UAE) and microwave- (MAE) assisted extraction have been implemented and analyzed using multivariate statistical methods. Firstly, different solvents were tested individually. The three best solvents were used in a set mixture design, where 42% methanol and 58% ethyl acetate were determined as the optimum combination for UAE, and 100% methanol for MAE. Subsequently, a Box–Behnken experimental design with four variables for both UAE and MAE (time, temperature, pH and sample mass:solvent volume “ratio”) was performed. The sample mass:solvent volume was the most influential variable in UAE; while for MAE no variable was any more influential than the others. Finally, both optimized extraction methods were successfully applied to different varieties of peppers. Besides, to demonstrate the efficiency of both extraction methods, a recovery study was performed. The results prove the potential of both techniques as highly adequate methods for the extraction of capsinoids from peppers.
Collapse
|
63
|
Sánchez RJ, Fernández MB, Nolasco SM. Canola Oil with High Antioxidant Content Obtained by Combining Emerging Technologies: Microwave, Ultrasound, and a Green Solvent. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ramiro J. Sánchez
- Núcleo TECSE Facultad de Ingeniería Universidad Nacional del Centro de la Provincia de Buenos Aires Olavarría 7400 Argentina
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires C1425 Argentina
| | - María B. Fernández
- Núcleo TECSE Facultad de Ingeniería Universidad Nacional del Centro de la Provincia de Buenos Aires Olavarría 7400 Argentina
- CIFICEN Universidad Nacional del Centro de la Provincia de Buenos Aires – CONICET‐CIC Tandil 7000 Argentina
| | - Susana M. Nolasco
- Núcleo TECSE Facultad de Ingeniería Universidad Nacional del Centro de la Provincia de Buenos Aires Olavarría 7400 Argentina
- CIC Comisión de Investigaciones Científicas de la Provincia de Buenos Aires La Plata B1900 Argentina
| |
Collapse
|
64
|
Ferreira DF, Barin JS, Binello A, Veselov VV, Cravotto G. Highly efficient pumpkin-seed extraction with the simultaneous recovery of lipophilic and hydrophilic compounds. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
65
|
Ooi J, Ng DKS, Chemmangattuvalappil NG. A Systematic Molecular Design Framework with the Consideration of Competing Solvent Recovery Processes. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jecksin Ooi
- Department of Chemical and Environmental Engineering/ Centre of Excellence for Green Technologies, University of Nottingham Malaysia, Broga Road, Semenyih, Selangor 43500, Malaysia
- Department of Chemical & Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University Kuala Lumpur (South Wing, Block E, Level 10), No.1, Jalan Menara Gading, UCSI Heights, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Denny K. S. Ng
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, No. 1, Jalan Venna P5/2, Precinct 5, Putrajaya 62200, Malaysia
| | - Nishanth G. Chemmangattuvalappil
- Department of Chemical and Environmental Engineering/ Centre of Excellence for Green Technologies, University of Nottingham Malaysia, Broga Road, Semenyih, Selangor 43500, Malaysia
| |
Collapse
|
66
|
Massa TB, Stevanato N, Cardozo‐Filho L, da Silva C. Pumpkin (
Cucurbita maxima
) by‐products: Obtaining seed oil enriched with active compounds from the peel by ultrasonic‐assisted extraction. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Thainara Bovo Massa
- Departamento de Engenharia QuímicaUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | - Natália Stevanato
- Departamento de Engenharia QuímicaUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | | | - Camila da Silva
- Departamento de Engenharia QuímicaUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
- Departamento de TecnologiaUniversidade Estadual de Maringá Umuarama Brazil
| |
Collapse
|
67
|
Castejón N, Señoráns FJ. Strategies for Enzymatic Synthesis of Omega‐3 Structured Triacylglycerols from
Camelina sativa
Oil Enriched in EPA and DHA. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Natalia Castejón
- Healthy‐Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid28049 MadridSpain
| | - Francisco J. Señoráns
- Healthy‐Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid28049 MadridSpain
| |
Collapse
|
68
|
Assessment of Ultrasound Assisted Extraction as an Alternative Method for the Extraction of Anthocyanins and Total Phenolic Compounds from Maqui Berries (Aristotelia chilensis (Mol.) Stuntz). AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030148] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research interest regarding maqui (Aristotelia chilensis) has increased over the last years due to its potential health benefits as one of the most antioxidant-rich berries. Ultrasound-assisted extraction (UAE) is an advanced green, fast, and ecological extraction technique for the production of high quality extracts from natural products, so it has been proposed in this work as an ideal alternative extraction technique for obtaining extracts of high bioactivity from maqui berries. In order to determine the optimal conditions, the extraction variables (percentage of methanol, pH, temperature, ratio “sample mass/volume of solvent”, amplitude, and cycle) were analyzed by a Box-Behnken design, in conjunction with the response surface method. The statistical analysis revealed that the temperature and the percentage of methanol were the most influential variables on the extraction of the total phenolic compounds and total anthocyanins, respectively. The optimal extraction time was determined at 15 min for total phenolic compounds, while it was only 5 min for anthocyanins. The developed methods showed a high precision level with a coefficient of variation of less than 5%. Finally, the new methods were successfully applied to several real samples. Subsequently, the results were compared to those that were obtained in previous experiments by means of microwave assisted extraction (MAE). Similar extraction yields were obtained for phenolic compounds under optimized conditions. However, UAE proved to be slightly more efficient than MAE in the extraction of anthocyanins.
Collapse
|
69
|
|
70
|
Ville A, Viault G, Hélesbeux JJ, Guilet D, Richomme P, Séraphin D. Efficient Semi-Synthesis of Natural δ-( R)-Tocotrienols from a Renewable Vegetal Source. JOURNAL OF NATURAL PRODUCTS 2019; 82:51-58. [PMID: 30629440 DOI: 10.1021/acs.jnatprod.8b00517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent studies have highlighted the biological potential of tocotrienols, a vitamin E subfamily. The major natural sources of tocotrienols are complex mixtures requiring particularly challenging purification processes. The present study describes efficient semi-synthetic strategies toward relevant δ-( R)-tocotrienol derivatives, using as a starting material δ-( R)-garcinoic acid, the major vitamin E derivative isolated from Garcinia kola nuts, a renewable vegetal source.
Collapse
Affiliation(s)
- Alexia Ville
- SONAS, EA921, UNIV Angers , SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 bd Daviers , 49045 Angers Cedex 01, France
| | - Guillaume Viault
- SONAS, EA921, UNIV Angers , SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 bd Daviers , 49045 Angers Cedex 01, France
| | - Jean-Jacques Hélesbeux
- SONAS, EA921, UNIV Angers , SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 bd Daviers , 49045 Angers Cedex 01, France
| | - David Guilet
- SONAS, EA921, UNIV Angers , SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 bd Daviers , 49045 Angers Cedex 01, France
| | - Pascal Richomme
- SONAS, EA921, UNIV Angers , SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 bd Daviers , 49045 Angers Cedex 01, France
| | - Denis Séraphin
- SONAS, EA921, UNIV Angers , SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 bd Daviers , 49045 Angers Cedex 01, France
| |
Collapse
|
71
|
Synthesis of omega-3 ethyl esters from chia oil catalyzed by polyethylene glycol-modified lipases with improved stability. Food Chem 2019; 271:433-439. [DOI: 10.1016/j.foodchem.2018.07.215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/06/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
|
72
|
Simultaneous extraction and fractionation of omega-3 acylglycerols and glycolipids from wet microalgal biomass of Nannochloropsis gaditana using pressurized liquids. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
73
|
Zhou C, Sun D, Sun X, Zhu C, Wang Q. Combining Ultrasound and Microwave to Improve the Yield and Quality of Single-Cell Oil from Mortierella isabellina
NTG1−121. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cuixia Zhou
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering; Shandong Agricultural University, Daizong Road No.61; Taian, 271018 China
| | - Dengyue Sun
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering; Shandong Agricultural University, Daizong Road No.61; Taian, 271018 China
| | - Xin Sun
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering; Shandong Agricultural University, Daizong Road No.61; Taian, 271018 China
| | - Chuanhe Zhu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering; Shandong Agricultural University, Daizong Road No.61; Taian, 271018 China
| | - Qun Wang
- Department of Chemical and Biological Engineering, 2114 Sweeney Hall, 618 Bissell Road; Iowa State University; Ames IA, 50011 USA
| |
Collapse
|
74
|
Jayanegara A, Harahap RP, Rozi RF, Nahrowi. Effects of lipid extraction on nutritive composition of winged bean ( Psophocarpus tetragonolobus), rubber seed ( Hevea brasiliensis), and tropical almond ( Terminalia catappa). Vet World 2018; 11:446-451. [PMID: 29805208 PMCID: PMC5960782 DOI: 10.14202/vetworld.2018.446-451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/14/2018] [Indexed: 11/16/2022] Open
Abstract
AIM This experiment aimed to evaluate the nutritive composition and in vitro rumen fermentability and digestibility of intact and lipid-extracted winged bean, rubber seed, and tropical almond. MATERIALS AND METHODS Soybean, winged bean, rubber seed, and tropical almond were subjected to lipid extraction and chemical composition determination. Lipid extraction was performed through solvent extraction by Soxhlet procedure. Non-extracted and extracted samples of these materials were evaluated for in vitro rumen fermentation and digestibility assay using rumen: Buffer mixture. Parameters measured were gas production kinetics, total volatile fatty acid (VFA) concentration, ammonia, in vitro dry matter (IVDMD) and in vitro organic matter digestibility (IVOMD). Data were analyzed by analysis of variance and Duncan's multiple range test. RESULTS Soybean, winged bean, rubber seed, and tropical almond contained high amounts of ether extract, i.e., above 20% DM. Crude protein contents of soybean, winged bean, rubber seed, and tropical almond increased by 17.7, 4.7, 55.2, and 126.5% after lipid extraction, respectively. In vitro gas production of intact winged bean was the highest among other materials at various time point intervals (p<0.05), followed by soybean > rubber seed > tropical almond. Extraction of lipid increased in vitro gas production, total VFA concentration, IVDMD, and IVOMD of soybean, winged bean, rubber seed, and tropical almond (p<0.05). After lipid extraction, all feed materials had similar IVDMD and IVOMD values. CONCLUSION Lipid extraction improved the nutritional quality of winged bean, rubber seed, and tropical almond.
Collapse
Affiliation(s)
- Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Rakhmad P Harahap
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Richard F Rozi
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Nahrowi
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor 16680, Indonesia
| |
Collapse
|