51
|
Bhat IUH, Bhat R. Quercetin: A Bioactive Compound Imparting Cardiovascular and Neuroprotective Benefits: Scope for Exploring Fresh Produce, Their Wastes, and By-Products. BIOLOGY 2021; 10:586. [PMID: 34206761 PMCID: PMC8301140 DOI: 10.3390/biology10070586] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022]
Abstract
Quercetin, a bioactive secondary metabolite, holds incredible importance in terms of bioactivities, which has been proved by in vivo and in vitro studies. The treatment of cardiovascular and neurological diseases by quercetin has been extensively investigated over the past decade. Quercetin is present naturally in appreciable amounts in fresh produce (fruits and vegetables). However, today, corresponding to the growing population and global demand for fresh fruits and vegetables, a paradigm shift and focus is laid towards exploring industrial food wastes and/or byproducts as a new resource to obtain bioactive compounds such as quercetin. Based on the available research reports over the last decade, quercetin has been suggested as a reliable therapeutic candidate for either treating or alleviating health issues, mainly those of cardiovascular and neurological diseases. In the present review, we have summarized some of the critical findings and hypotheses of quercetin from the available databases foreseeing its future use as a potential therapeutic agent to treat cardiovascular and neurological diseases. It is anticipated that this review will be a potential reference material for future research activities to be undertaken on quercetin obtained from fresh produce as well as their respective processing wastes/byproducts that rely on the circular concept.
Collapse
Affiliation(s)
- Irshad Ul Haq Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, 51006 Tartu, Estonia;
| | | |
Collapse
|
52
|
Metabolomic analysis based on EESI-MS indicate blue LED light promotes aliphatic-glucosinolates biosynthesis in broccoli sprouts. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
53
|
Effect of Chlorophyll Hybrid Nanopigments from Broccoli Waste on Thermomechanical and Colour Behaviour of Polyester-Based Bionanocomposites. Polymers (Basel) 2020; 12:polym12112508. [PMID: 33126539 PMCID: PMC7692781 DOI: 10.3390/polym12112508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 01/07/2023] Open
Abstract
Natural dyes obtained from agro-food waste can be considered promising substitutes of synthetic dyes to be used in several applications. With this aim, in the present work, we studied the use of chlorophyll dye (CD) extracted from broccoli waste to obtain hybrid nanopigments based on calcined hydrotalcite (HT) and montmorillonite (MMT) nanoclays. The synthesized chlorophyll hybrid nanopigments (CDNPs), optimized by using statistical designed experiments, were melt-extruded with a polyester-based matrix (INZEA) at 7 wt% loading. Mechanical, thermal, structural, morphological and colour properties of the obtained bionanocomposites were evaluated. The obtained results evidenced that the maximum CD adsorption into HT was obtained when adding 5 wt% of surfactant (sodium dodecyl sulphate) without using any biomordant and coupling agent, while the optimal conditions for MMT were achieved without adding any of the studied modifiers. In both cases, an improvement in CD thermal stability was observed by its incorporation in the nanoclays, able to protect chlorophyll degradation. The addition of MMT to INZEA resulted in large ΔE* values compared to HT incorporation, showing bionanocomposite green/yellow tones as a consequence of the CDNPs addition. The results obtained by XRD and TEM revealed a partially intercalated/exfoliated structure for INZEA-based bionanocomposites, due to the presence of an inorganic filler in the formulation of the commercial product, which was also confirmed by TGA analysis. CDNPs showed a reinforcement effect due to the presence of the hybrid nanopigments and up to 26% improvement in Young's modulus compared to neat INZEA. Finally, the incorporation of CDNPs induced a decrease in thermal stability as well as limited effect in the melting/crystallization behaviour of the INZEA matrix. The obtained results showed the potential use of green natural dyes from broccoli wastes, adsorbed into nanoclays, for the development of naturally coloured bionanocomposites.
Collapse
|
54
|
Ilahy R, Tlili I, Pék Z, Montefusco A, Siddiqui MW, Homa F, Hdider C, R'Him T, Lajos H, Lenucci MS. Pre- and Post-harvest Factors Affecting Glucosinolate Content in Broccoli. Front Nutr 2020; 7:147. [PMID: 33015121 PMCID: PMC7511755 DOI: 10.3389/fnut.2020.00147] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/23/2020] [Indexed: 12/01/2022] Open
Abstract
Owing to several presumed health-promoting biological activities, increased attention is being given to natural plant chemicals, especially those frequently entering the human diet. Glucosinolates (GLs) are the main bioactive compounds found in broccoli (Brassica oleracea L. var. italica Plenck). Their regular dietary assumption has been correlated with reduced risk of various types of neoplasms (lung, colon, pancreatic, breast, bladder, and prostate cancers), some degenerative diseases, such as Alzheimer's, and decreased incidence of cardiovascular pathologies. GL's synthesis pathway and regulation mechanism have been elucidated mainly in Arabidopsis. However, nearly 56 putative genes have been identified as involved in the B. oleracea GL pathway. It is widely recognized that there are several pre-harvest (genotype, growing environment, cultural practices, ripening stage, etc.) and post-harvest (harvesting, post-harvest treatments, packaging, storage, etc.) factors that affect GL synthesis, profiles, and levels in broccoli. Understanding how these factors act and interact in driving GL accumulation in the edible parts is essential for developing new broccoli cultivars with improved health-promoting bioactivity. In this regard, any systematic and comprehensive review outlining the effects of pre- and post-harvest factors on the accumulation of GLs in broccoli is not yet available. Thus, the goal of this paper is to fill this gap by giving a synoptic overview of the most relevant and recent literature. The existence of substantial cultivar-to-cultivar variation in GL content in response to pre-harvest factors and post-harvest manipulations has been highlighted and discussed. The paper also stresses the need for adapting particular pre- and post-harvest procedures for each particular genotype in order to maintain nutritious, fresh-like quality throughout the broccoli value chain.
Collapse
Affiliation(s)
- Riadh Ilahy
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Imen Tlili
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Zoltán Pék
- Laboratory of Horticulture, Faculty of Agricultural and Environmental Sciences, Horticultural Institute, Szent István University, Budapest, Hungary
| | - Anna Montefusco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento (DiSTeBA), Lecce, Italy
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Bhagalpur, India
| | - Fozia Homa
- Department of Statistics, Mathematics, and Computer Application, Bihar Agricultural University, Bhagalpur, India
| | - Chafik Hdider
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Thouraya R'Him
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Helyes Lajos
- Laboratory of Horticulture, Faculty of Agricultural and Environmental Sciences, Horticultural Institute, Szent István University, Budapest, Hungary
| | - Marcello Salvatore Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento (DiSTeBA), Lecce, Italy
| |
Collapse
|
55
|
Brito TBN, R S Lima L, B Santos MC, A Moreira RF, Cameron LC, C Fai AE, S L Ferreira M. Antimicrobial, antioxidant, volatile and phenolic profiles of cabbage-stalk and pineapple-crown flour revealed by GC-MS and UPLC-MS E. Food Chem 2020; 339:127882. [PMID: 32889131 DOI: 10.1016/j.foodchem.2020.127882] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/21/2020] [Accepted: 08/16/2020] [Indexed: 12/19/2022]
Abstract
Unconventional parts of vegetables represent a rich source of health-promoting phytochemicals. The phenolic profile of cabbage-stalk flour (CSF), pineapple-crown flour (PCF), and their essential oils were characterized via UPLC-ESI-QTOF-MSE and GC-FID/MS. Antimicrobial activity was tested against five strains, and antioxidant activities were determined in free and bound extracts. Globally, 177 phenolics were tentatively identified in PCF (major p-coumaric acid, ferulic acid, and 4-hydroxybenzaldehyde) and 56 in CSF (major chlorogenicacid, quercetin 3-O-glucuronide, and p-coumaric acid). PCF exhibited a distinguished profile (lignans, stilbenes) and antioxidant capacity, especially in bound extracts (1.3 g GAE.100 g-1; 0.6 g catechin eq.100 g-1; DPPH: 244.7; ABTS: 467.8; FRAP: 762.6 µg TE.g-1, ORAC: 40.9 mg TE.g-1). The main classes of volatile compounds were fatty acids, their esters, and terpenes in CSF (30) and PCF (41). A comprehensive metabolomic approach revealed CSF and PCF as a promising source of PC, showing great antioxidant and discrete antimicrobial activities.
Collapse
Affiliation(s)
- T B N Brito
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - L R S Lima
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - M C B Santos
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - R F A Moreira
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - L C Cameron
- Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Rio de Janeiro, Brazil
| | - A E C Fai
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil; Department of Basic and Experimental Nutrition, Nutrition Institute, University of State of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - M S L Ferreira
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil; Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Rio de Janeiro, Brazil.
| |
Collapse
|
56
|
Li M, Xie F, Li J, Sun B, Luo Y, Zhang Y, Chen Q, Wang Y, Zhang F, Zhang Y, Lin Y, Wang X, Tang H. Tumorous Stem Development of Brassica Juncea: A Complex Regulatory Network of Stem Formation and Identification of Key Genes in Glucosinolate Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1006. [PMID: 32784853 PMCID: PMC7466272 DOI: 10.3390/plants9081006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022]
Abstract
Stem mustard is a stem variety of mustard, an important Brassica vegetable. The formation and development of the tumorous stem, which is the key organ for the direct yield and quality, is a complex biological process involving morphogenesis, material accumulation and gene regulation. In this study, we demonstrated through anatomical studies that stem swelling is mainly dependent on the increase in the number of cells and the volume of parenchyma cells in the cortex and pith. To further understand transcript and metabolic changes during stem swelling, we obtained 27,901 differentially expressed genes, of which 671 were specifically detected using transcriptome sequencing technology in all four stages of stem swelling. Functional annotation identified enrichment for genes involved in photosynthesis, energy metabolism, cell growth, sulfur metabolism and glucosinolate biosynthesis. Glucosinolates are a group of nitrogen- and sulfur-containing secondary metabolites, which largely exist in the Cruciferous vegetables. HPLC analysis of the contents and components of glucosinolates in four different stem development stages revealed eight glucosinolates, namely, three aliphatic glucosinolates (sinigrin, glucoalyssin and gluconapin), four indole glucosinolates (4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin and neoglucobrassicin) and one aromatic glucosinolate (gluconasturtiin). All these types of glucosinolates showed a significant downward trend during the stem swelling period. The content of aliphatic glucosinolates was the highest, with sinigrin being the main component. In addition, qPCR was used to validate the expression of nine genes involved in glucosinolate biosynthesis. Most of these genes were down-regulated during stem swelling in qPCR, which is consistent with transcriptome data. These data provide a basic resource for further molecular and genetic research on Brassica juncea.
Collapse
Affiliation(s)
- Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
| | - Fangjie Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
| | - Jie Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
57
|
Esparza I, Jiménez-Moreno N, Bimbela F, Ancín-Azpilicueta C, Gandía LM. Fruit and vegetable waste management: Conventional and emerging approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110510. [PMID: 32275240 DOI: 10.1016/j.jenvman.2020.110510] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/04/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Valorization of Fruit and Vegetable Wastes (FVW) is challenging owing to logistic-related problems, as well as to their perishable nature and heterogeneity, among other factors. In this work, the main existing routes for food waste valorization are critically reviewed. The study focuses on FVW because they constitute an important potential source for valuable natural products and chemicals. It can be concluded that FVW management can be carried out following different processing routes, though nowadays the best solution is to find an adequate balance between conventional waste management methods and some emerging valorization technologies. Presently, both conventional and emerging technologies must be considered in a coordinated manner to enable an integral management of FVW. By doing so, impacts on food safety and on the environment can be minimized whilst wasting of natural resources is avoided. Depending on the characteristics of FVW and on the existing market demand, the most relevant valorization options are extraction of bioactive compounds, production of enzymes and exopolysaccharides, synthesis of bioplastics and biopolymers and production of biofuels. The most efficient emergent processing technologies must be promoted in the long term, in detriment of the conventional ones used nowadays. In consequence, future integral valorization of FVW will probably comprise two stages: direct processing of FVW into value-added products, followed by processing of the residual streams, byproducts and leftover matter by means of conventional waste management technologies.
Collapse
Affiliation(s)
- Irene Esparza
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Nerea Jiménez-Moreno
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain
| | - Fernando Bimbela
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Carmen Ancín-Azpilicueta
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006, Pamplona, Spain.
| | - Luis M Gandía
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006, Pamplona, Spain.
| |
Collapse
|
58
|
Blanching impact on pigments, glucosinolates, and phenolics of dehydrated broccoli by-products. Food Res Int 2020; 132:109055. [DOI: 10.1016/j.foodres.2020.109055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022]
|
59
|
Radünz M, Hackbart HCDS, Bona NP, Pedra NS, Hoffmann JF, Stefanello FM, Da Rosa Zavareze E. Glucosinolates and phenolic compounds rich broccoli extract: Encapsulation by electrospraying and antitumor activity against glial tumor cells. Colloids Surf B Biointerfaces 2020; 192:111020. [PMID: 32339867 DOI: 10.1016/j.colsurfb.2020.111020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 01/19/2023]
Abstract
Gliomas, intracranial malignant tumors, are aggressive, asymptomatic and difficult to treat due to their degree of infiltration, alternatives are needed to treat the disease. In this sense, natural compounds from the specialized metabolism of plants can act to control the disease. Glucosinolates and phenolic compounds, present in broccoli, have a potential to promote tumor cell death, however due to the low stability of these compounds, encapsulation becomes an alternative for their preservation. The objective was to encapsulate the broccoli extract by electrospraying and to evaluate its cytotoxicity in the primary cell culture of astrocytes and gliomas. The capsules were produced and characterized by encapsulation efficiency, functional groups, thermal stability and morphology, the capsule that presented the best parameters was used for the evaluation of cell cytotoxicity and antitumor activity. Capsules with equal or less than 50 % extract showed high encapsulation efficiency, high thermal stability and uniform morphology due to non-saturation of the active zein sites, which allowed a complete encapsulation of the added extract, as well as a greater protection of the compounds. The capsule with 50 % of the extract showed good results of the efficiency, morphology and thermal stability and was used to evaluate the antitumor activity, since the addition of extract in proportions greater than 60 % promoted saturation of the active sites and lower encapsulation efficiency, and directly affects the morphology and thermal stability. The encapsulated and unencapsulated extracts showed strong selective antitumor effect against glial tumor cells without toxicity to non-tumor cells.
Collapse
Affiliation(s)
- Marjana Radünz
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS, Brazil.
| | - Helen Cristina Dos Santos Hackbart
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Jessica Fernanda Hoffmann
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Elessandra Da Rosa Zavareze
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
60
|
Qu C, Yin N, Chen S, Wang S, Chen X, Zhao H, Shen S, Fu F, Zhou B, Xu X, Liu L, Lu K, Li J. Comparative Analysis of the Metabolic Profiles of Yellow- versus Black-Seeded Rapeseed Using UPLC-HESI-MS/MS and Transcriptome Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3033-3049. [PMID: 32052629 DOI: 10.1021/acs.jafc.9b07173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The high levels of secondary metabolites in rapeseed play important roles in determining the oil quality and feeding value. Here, we characterized the metabolic profiles in seeds of various yellow- and black-seeded rapeseed accessions. Two hundred and forty-eight features were characterized, including 31 phenolic acids, 54 flavonoids, 24 glucosinolates, 65 lipid compounds, and 74 other polar compounds. The most abundant phenolic acids and various flavonoids (epicatechin, isorhamnetin, kaempferol, quercetin, and their derivatives) were widely detected and showed significant differences in distribution between the yellow- and black-seeded rapeseed. Furthermore, the related genes (e.g., BnTT3, BnTT18, BnTT10, BnTT12, and BnBAN) involved in the proanthocyanidin pathway had lower expression levels in yellow-seeded rapeseed, strongly suggesting that the seed coat color could be mainly determined by the levels of epicatechin and their derivatives. These results improve our understanding of the primary constituents of rapeseed and lay the foundation for breeding novel varieties with a high nutritional value.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Nengwen Yin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Si Chen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Shuxian Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Xingyu Chen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Shulin Shen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Fuyou Fu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan S7N02X, Canada
| | - Baojin Zhou
- Deepxomics-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
61
|
Ben-Othman S, Jõudu I, Bhat R. Bioactives From Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020; 25:E510. [PMID: 31991658 PMCID: PMC7037811 DOI: 10.3390/molecules25030510] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Sustainable utilization of agri-food wastes and by-products for producing value-added products (for cosmetic, pharmaceutical or food industrial applications) provides an opportunity for earning additional income for the dependent industrial sector. Besides, effective valorisation of wastes/by-products can efficiently help in reducing environmental stress by decreasing unwarranted pollution. The major focus of this review is to provide comprehensive information on valorisation of agri-food wastes and by-products with focus laid on bioactive compounds and bioactivity. The review covers the bioactives identified from wastes and by-products of plants (fruits, exotic fruits, vegetables and seeds), animals (dairy and meat) and marine (fish, shellfish seaweeds) resources. Further, insights on the present status and future challenges of sustainably utilizing agri-food wastes/by-products for value addition will be highlighted.
Collapse
Affiliation(s)
- Sana Ben-Othman
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
| | - Ivi Jõudu
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
- Chair of Food Science and Technology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Science, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia
| | - Rajeev Bhat
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
| |
Collapse
|
62
|
Yin NW, Wang SX, Jia LD, Zhu MC, Yang J, Zhou BJ, Yin JM, Lu K, Wang R, Li JN, Qu CM. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC-HESI-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11053-11065. [PMID: 31525973 DOI: 10.1021/acs.jafc.9b05046] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oilseed rape (Brassica napus L.) is the second highest yielding oil crop worldwide. In addition to being used as an edible oil and a feed for livestock, rapeseed has high ornamental value. In this study, we identified and characterized the main floral major constituents, including phenolic acids and flavonoids components, in rapeseed accessions with different-colored petals. A total of 144 constituents were identified using ultrahigh-performance liquid chromatography-HESI-mass spectrometry (UPLC-HESI-MS/MS), 57 of which were confirmed and quantified using known standards and mainly contained phenolic acids, flavonoids, and glucosinolates compounds. Most of the epicatechin, quercetin, and isorhamnetin derivates were found in red and pink petals of B. napus, while kaempferol derivates were in yellow and pale white petals. Moreover, petal-specific compounds, including a putative hydroxycinnamic acid derivative, sinapoyl malate, 1-O-sinapoyl-β-d-glucose, feruloyl glucose, naringenin-7-O-glucoside, cyanidin-3-glucoside, cyanidin-3,5-di-O-glucoside, petunidin-3-O-β-glucopyranoside, isorhamnetin-3-O-glucoside, kaempferol-3-O-glucoside-7-O-glucoside, quercetin-3,4'-O-di-β-glucopyranoside, quercetin-3-O-glucoside, and delphinidin-3-O-glucoside, might contribute to a variety of petal colors in B. napus. In addition, bound phenolics were tentatively identified and contained three abundant compounds (p-coumaric acid, ferulic acid, and 8-O-4'-diferulic acid). These results provide insight into the molecular mechanisms underlying petal color and suggest strategies for breeding rapeseed with a specific petal color in the future.
Collapse
|
63
|
Shi M, Hlaing MM, Ying D, Ye J, Sanguansri L, Augustin MA. New food ingredients from broccoli by‐products: physical, chemical and technological properties. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Meng Shi
- Tea Research Institute of Zhejiang University Hangzhou 310058 China
| | | | - DanYang Ying
- CSIRO Agriculture and Food 671 Sneydes Road Werribee VIC 3030 Australia
| | - JianHui Ye
- Tea Research Institute of Zhejiang University Hangzhou 310058 China
| | - Luz Sanguansri
- CSIRO Agriculture and Food 671 Sneydes Road Werribee VIC 3030 Australia
| | - Mary Ann Augustin
- CSIRO Agriculture and Food 671 Sneydes Road Werribee VIC 3030 Australia
| |
Collapse
|
64
|
Castrica M, Rebucci R, Giromini C, Tretola M, Cattaneo D, Baldi A. Total phenolic content and antioxidant capacity of agri-food waste and by-products. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1529544] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- M. Castrica
- Dipartimento di Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, Università degli studi di Milano, Italy
| | - R. Rebucci
- Dipartimento di Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, Università degli studi di Milano, Italy
| | - C. Giromini
- Dipartimento di Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, Università degli studi di Milano, Italy
| | - M. Tretola
- Dipartimento di Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, Università degli studi di Milano, Italy
| | - D. Cattaneo
- Dipartimento di Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, Università degli studi di Milano, Italy
| | - A. Baldi
- Dipartimento di Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, Università degli studi di Milano, Italy
| |
Collapse
|
65
|
González-Hidalgo I, Moreno DA, García-Viguera C, Ros-García JM. Effect of industrial freezing on the physical and nutritional quality traits in broccoli. FOOD SCI TECHNOL INT 2018; 25:56-65. [PMID: 30153746 DOI: 10.1177/1082013218795807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Broccoli was blanched and frozen at industrial scale to ascertain the physical and nutritional changes that take place in industrial processing. Colour, texture, ascorbic and dehydroascorbic acids, glucosinolates, phenolic compounds, antioxidant capacity, mineral nutrients and microstructure were evaluated. Blanching and freezing caused a decrease in lightness and firmness. Losses of phenolic compounds and ascorbic acid + dehydroascorbic acid reached about 57% and 30%, respectively. The antioxidant capacity was similar in fresh and treated broccoli, and the glucosinolates remained constant. These results show that frozen broccoli retains antioxidants compounds, vitamin C and glucosinolates even after industrial processing, meaning that industrially frozen broccoli intended for human consumption can be considered rather similar to the fresh product.
Collapse
Affiliation(s)
- Inés González-Hidalgo
- 1 Department of Food Science & Technology and Human Nutrition, University of Murcia, Murcia, Spain
| | - Diego A Moreno
- 2 Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | | | - José María Ros-García
- 1 Department of Food Science & Technology and Human Nutrition, University of Murcia, Murcia, Spain
| |
Collapse
|
66
|
Sun B, Tian YX, Jiang M, Yuan Q, Chen Q, Zhang Y, Luo Y, Zhang F, Tang HR. Variation in the main health-promoting compounds and antioxidant activity of whole and individual edible parts of baby mustard (Brassica juncea var. gemmifera). RSC Adv 2018; 8:33845-33854. [PMID: 35548826 PMCID: PMC9086739 DOI: 10.1039/c8ra05504a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/21/2018] [Indexed: 11/21/2022] Open
Abstract
The main differences of health-promoting compounds and antioxidant activity of whole and individual edible parts of baby mustard were demonstrated.
Collapse
Affiliation(s)
- Bo Sun
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Yu-Xiao Tian
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Min Jiang
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Qiao Yuan
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Qing Chen
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Yong Zhang
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Ya Luo
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Fen Zhang
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Hao-Ru Tang
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| |
Collapse
|