51
|
de Oliveira LIG, de Oliveira KÁR, de Medeiros ES, Batista AUD, Madruga MS, dos Santos Lima M, de Souza EL, Magnani M. Characterization and efficacy of a composite coating containing chitosan and lemongrass essential oil on postharvest quality of guava. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
52
|
A Review of Polysaccharide-Zinc Oxide Nanocomposites as Safe Coating for Fruits Preservation. COATINGS 2020. [DOI: 10.3390/coatings10100988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Safe coating formulated from biopolymer can be an alternative for better packaging for fruits. Among biopolymers used for safe coating, polysaccharides attracted more attention due to its biocompatibility and edibility. However, polysaccharide-based materials have weaknesses such as low water barrier and mechanical properties which result in lower capability on preserving the coated fruits. Hence, the incorporation of nanoparticles (NPs) such as zinc oxide (ZnO) is expected to increase the ability of polysaccharide-based coating for the enhancement of fruit shelf life. In this review paper, the basic information and the latest updates on the incorporation of ZnO NPs into the polysaccharide-based safe coating for fruit are presented. Various research has investigated polysaccharide-ZnO nanocomposite safe coating to prolong the shelf life of fruits. The polysaccharides used include chitosan, alginate, carrageenan, cellulose, and pectin. Overall, polysaccharide-ZnO nanocomposites can improve the shelf life of fruits by reducing weight loss, maintaining firmness, reducing the ripening process, reducing respiration, reducing the oxidation process, and inhibiting microbial growth. Finally, the challenges and potential of ZnO NPs as an active agent in the safe coating application are also discussed.
Collapse
|
53
|
Moreira BR, Pereira-Júnior MA, Fernandes KF, Batista KA. An ecofriendly edible coating using cashew gum polysaccharide and polyvinyl alcohol. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100722] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
54
|
Huang H, Huang C, Yin C, Khan MR, Zhao H, Xu Y, Huang L, Zheng D, Qi M. Preparation and characterization of β-cyclodextrin-oregano essential oil microcapsule and its effect on storage behavior of purple yam. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4849-4857. [PMID: 32476141 DOI: 10.1002/jsfa.10545] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/06/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Natural plant essential oils have antimicrobial properties; however, essential oils are difficult to maintain in a system because of their volatile nature. First, we prepared microcapsules from β-cyclodextrin and oregano essential oil and characterized their properties. Second, the effect of microcapsules on the preservation of freshly cut purple yam was studied using an edible coating technique. Purple yams immersed in distilled water were used as control, and their characteristics were compared with yams coated with citric acid, citric acid + sodium alginate, and citric acid + sodium alginate + β-cyclodextrin-oregano essential oil microcapsules (CA-SA-MC) and stored at 4 °C for 5 days. RESULTS Microcapsules of oregano essential oil and β-cyclodextrin solution were successfully prepared via the inclusion method, with an optimal encapsulation efficiency of 55.14%. Scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis showed strong bonds between β-cyclodextrin and oregano essential oil. All edible coatings, particularly CA-SA-MC, significantly (P ≤ 0.05) maintained firmness, total soluble solids, ascorbic acid content, and anthocyanin content compared with control treatment. This treatment also prevented browning and extended the shelf life of purple yam. CONCLUSION Oregano essential oil can be successfully encapsulated into cyclodextrin microcapsules. It has a great impact on the shelf life extension of purple yam and could be successfully applied to other fresh produce. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haohe Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Chongxing Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Cheng Yin
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
- School of Mechanical Engineering, Jiangnan University, Wuxi, China
| | - Muhammad Ru Khan
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yangfan Xu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Lijie Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Dantong Zheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Minghui Qi
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
55
|
Kumar C, Kumar R, Singh SK, Goswami AK, Nagaraja A, Paliwal R, Singh R. Development of novel g-SSR markers in guava (Psidium guajava L.) cv. Allahabad Safeda and their application in genetic diversity, population structure and cross species transferability studies. PLoS One 2020; 15:e0237538. [PMID: 32804981 PMCID: PMC7431106 DOI: 10.1371/journal.pone.0237538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Dearth of genomic resources particularly, microsatellite markers in nutritionally and commercially important fruit crop, guava necessitate the development of the novel genomic SSR markers through the library enrichment techniques. Three types of 3' -biotinylated oligonucleotide probes [(CT)14, (GT)12, and (AAC)8] were used to develop microsatellite enriched libraries. A total of 153 transformed colonies were screened of which 111 positive colonies were subjected for Sanger sequencing. The clones having more than five motif repeats were selected for primer designing and a total of 38 novel genomic simple sequence repeats could be identified. The g-SSRs had the motif groups ranging from monomer to pentamer out of which dimer group occurred the most (89.47%). Out of 38 g-SSRs markers developed, 26 were found polymorphic, which showed substantial genetic diversity among the guava genotypes including wild species. The average number of alleles per locus, major allele frequency, gene diversity, expected heterozygosity and polymorphic information content of 26 SSRs were 3.46, 0.56, 0.53, 0.29 and 0.46, respectively. The rate of cross-species transferability of the developed g-SSR loci varied from 38.46 to 80.77% among the studied wild Psidium species. Generation of N-J tree based on 26 SSRs grouped the 40 guava genotypes into six clades with two out-groups, the wild guava species showed genetic distinctness from cultivated genotypes. Furthermore, population structure analysis grouped the guava genotypes into three genetic groups, which were partly supported by PCoA and N-J tree. Further, AMOVA and PCoA deciphered high genetic diversity among the present set of guava genotypes including wild species. Thus, the developed novel g-SSRs were found efficient and informative for diversity and population structure analyses of the guava genotypes. These developed novel g-SSR loci would add to the new genomic resource in guava, which may be utilized in genomic-assisted guava breeding.
Collapse
Affiliation(s)
- Chavlesh Kumar
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ramesh Kumar
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sanjay Kumar Singh
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amit Kumar Goswami
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - A. Nagaraja
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ritu Paliwal
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
56
|
Herman RA, Wang J, Amuzu P, Shittu S, Wu F, Wang J. Evaluation of inhibitory activities of two medicinal plant extracts
Parkia biglobosa
and
Lonicera japonica
against spoilage microorganisms isolated from mulberry fruit. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Richard A. Herman
- School of BiotechnologyJiangsu University of Science and Technology Zhenjiang PR China
| | - Jin‐Zheng Wang
- School of BiotechnologyJiangsu University of Science and Technology Zhenjiang PR China
| | - Prosper Amuzu
- School of BiotechnologyJiangsu University of Science and Technology Zhenjiang PR China
| | - Saidi Shittu
- School of BiotechnologyJiangsu University of Science and Technology Zhenjiang PR China
| | - Fu‐An Wu
- School of BiotechnologyJiangsu University of Science and Technology Zhenjiang PR China
- Sericultural Research InstituteChinese Academy of Agricultural Sciences Zhenjiang PR China
- Key Laboratory of Silkworm and Mulberry Genetic ImprovementMinistry of AgricultureSericultural Research Institute Zhenjiang PR China
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology Zhenjiang PR China
| | - Jun Wang
- School of BiotechnologyJiangsu University of Science and Technology Zhenjiang PR China
- Sericultural Research InstituteChinese Academy of Agricultural Sciences Zhenjiang PR China
- Key Laboratory of Silkworm and Mulberry Genetic ImprovementMinistry of AgricultureSericultural Research Institute Zhenjiang PR China
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology Zhenjiang PR China
| |
Collapse
|
57
|
Zulfiqar F, Casadesús A, Brockman H, Munné-Bosch S. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110194. [PMID: 32534612 DOI: 10.1016/j.plantsci.2019.110194] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 05/10/2023]
Abstract
The horticulture sector is facing various challenges in the near future. Aside from maintaining or even improving yields, sustainable horticulture production is crucial to achieve food security. Reducing the reliance on agro-chemicals and/or increasing the efficiency of use under a changing climate is crucial. Natural biostimulants can play an important role in this regard, increasing production at a relatively low cost sustainably. Natural biostimulant feedstocks include leaf, root or seed extracts, either individually or in combination with others. Their positive effect on horticultural production is mostly due to plant growth-enhancing bioactive compounds such as phytohormones, amino acids, and nutrients. Here we review recent progress made in research and applications on plant-derived extracts with an emphasis on the use of these renewable biochemicals as biostimulants in sustainable horticulture. Moringa leaf extracts in particular have been shown to improve seed germination, plant growth and yield, nutrient use efficiency, crop and product quality traits (pre- and post-harvest), as well as tolerance to abiotic stresses. Although horticulture production relies on synthetic fertilisers to maintain and improve production, the use of plant-derived biostimulants such as moringa leaf extracts may be an option to reduce quantities needed and thus contribute in achieving global food security sustainably.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture Faisalabad, 38000, Pakistan
| | - Andrea Casadesús
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Henry Brockman
- Department of Primary Industries and Regional Development Western Australia, 444 Albany Highway, Albany, 6330, Australia
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain; Research Institute on Nutrition and Food Security (INSA), University of Barcelona, Spain.
| |
Collapse
|
58
|
Salehi F. Physicochemical characteristics and rheological behaviour of some fruit juices and their concentrates. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00495-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
59
|
Kiarsi Z, Hojjati M, Behbahani BA, Noshad M. In vitro antimicrobial effects of
Myristica fragrans
essential oil on foodborne pathogens and its influence on beef quality during refrigerated storage. J Food Saf 2020. [DOI: 10.1111/jfs.12782] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zahra Kiarsi
- Department of Food Science and Technology, Faculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of Khuzestan Mollasani Iran
| | - Mohammad Hojjati
- Department of Food Science and Technology, Faculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of Khuzestan Mollasani Iran
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and Technology, Faculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of Khuzestan Mollasani Iran
| | - Mohammad Noshad
- Department of Food Science and Technology, Faculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of Khuzestan Mollasani Iran
| |
Collapse
|
60
|
Effect of gum arabic edible coating incorporated with African baobab pulp extract on postharvest quality of cold stored blueberries. Food Sci Biotechnol 2020; 29:217-226. [PMID: 32064130 DOI: 10.1007/s10068-019-00659-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022] Open
Abstract
The marketability of blueberries over long distances has been limited because of their highly perishability. To prolong the postharvest shelf life and conserve quality properties of blueberry, various alternatives have been evaluated. We studied the influence of gum arabic (GA) alone or GA enhanced with African baobab (AB) fruit extract on blueberry during cold storage (4 °C) for 21 days. Physico-chemical properties (e.g. pH, color, firmness, and weight loss), microbial decay, antioxidant properties, polyphenol oxidase (PPO) and peroxidase (POD) activity were investigated. The fruit treated with GA combined AB indicated a significant delay in microbial decay, firmness loss, weight loss, and color change. The treatments on blueberries resulted in better preservation of total phenols and total anthocyanins delayed the increase in total soluble solids as compared to the control. The coatings lowered the activities of PPO and POD enzymes and delayed microbial decay in coated blueberry during 21 days of storage.
Collapse
|
61
|
Effect of Peppermint Oil on the Storage Quality of White Button Mushrooms (Agaricus bisporus). FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-019-02385-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
62
|
Majewska E, Kozłowska M, Gruczyńska-Sękowska E, Kowalska D, Tarnowska K. Lemongrass (Cymbopogon citratus) Essential Oil: Extraction, Composition, Bioactivity and Uses for Food Preservation – a Review. POL J FOOD NUTR SCI 2019. [DOI: 10.31883/pjfns/113152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
63
|
Tahir HE, Xiaobo Z, Mahunu GK, Arslan M, Abdalhai M, Zhihua L. Recent developments in gum edible coating applications for fruits and vegetables preservation: A review. Carbohydr Polym 2019; 224:115141. [DOI: 10.1016/j.carbpol.2019.115141] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 11/28/2022]
|
64
|
Alak G, Guler K, Ucar A, Parlak V, Kocaman EM, Yanık T, Atamanalp M. Quinoa as polymer in edible films with essential oil: Effects on rainbow trout fillets shelf life. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Gonca Alak
- Department of Aquaculture Faculty of Fisheries Atatürk University Erzurum Turkey
| | - Kubra Guler
- Graduate School of Natural and Applied Sciences Erzurum Turkey
| | - Arzu Ucar
- Department of Aquaculture Faculty of Fisheries Atatürk University Erzurum Turkey
| | - Veysel Parlak
- Department of Aquaculture Faculty of Fisheries Atatürk University Erzurum Turkey
| | - Esat Mahmut Kocaman
- Department of Aquaculture Faculty of Fisheries Atatürk University Erzurum Turkey
| | - Telat Yanık
- Department of Aquaculture Faculty of Fisheries Atatürk University Erzurum Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture Faculty of Fisheries Atatürk University Erzurum Turkey
| |
Collapse
|
65
|
Improved Postharvest Quality of Cold Stored Blueberry by Edible Coating Based on Composite Gum Arabic/Roselle Extract. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02312-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
66
|
Mucilage of spineless cactus in the composition of an edible coating for minimally processed yam (Dioscorea spp.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00120-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
67
|
Kong J, Zhang Y, Ju J, Xie Y, Guo Y, Cheng Y, Qian H, Quek SY, Yao W. Antifungal effects of thymol and salicylic acid on cell membrane and mitochondria of Rhizopus stolonifer and their application in postharvest preservation of tomatoes. Food Chem 2019; 285:380-388. [PMID: 30797360 DOI: 10.1016/j.foodchem.2019.01.099] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/10/2018] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
Abstract
This study investigated effects of the simultaneous application of thymol and salicylic acid (SIMTSA) on the target sites of Rhizopus stolonifer, as well as the defenceenzymes of postharvest tomato, when applied as edible coating. SIMTSA induced the changes of ultrastructure and membrane integrity of R. stolonifer. When the concentrations of the fungistat increased, cells stained with propidium iodide and leakage of 260/280 nm-absorbing materials increased while ergosterol synthesis decreased, suggesting damage of cell membrane. Furthermore, SIMTSA treatment significantly reduced the citric acid content and the activities of enzymes related to the tricarboxylic acid cycle, and increased the mitochondrial membrane potential and the reactive oxygen species, indicating damage of mitochondrial-related functions. Moreover, SIMTSA edible coating increased the defence enzyme activities in tomato. Based on the results, SIMTSA can be used as a potential preservation method for tomato as it showed a targeted effect on the cell membrane and mitochondria of R. stolonifer.
Collapse
Affiliation(s)
- Jie Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Ying Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Jian Ju
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Siew Young Quek
- Food Science Programme, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; Riddet Institute, New Zealand Centre of Research Excellence in Food Research, Palmerston North 4474, New Zealand
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| |
Collapse
|
68
|
Tinello F, Lante A. Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.10.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
69
|
Gao Y, Kan C, Chen M, Chen C, Chen Y, Fu Y, Wan C, Chen J. Effects of Chitosan-Based Coatings Enriched with Cinnamaldehyde on Mandarin Fruit cv. Ponkan during Room-Temperature Storage. COATINGS 2018; 8:372. [DOI: 10.3390/coatings8100372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The current work aimed to evaluate the efficacy of four coating formulations—chitosan coating (CH), 0.5% cinnamaldehyde + chitosan (0.5% CI–CH), 1.0% cinnamaldehyde + chitosan (1.0% CI–CH), and 1.5% cinnamaldehyde + chitosan (1.5% CI–CH)—on fresh mandarin fruit cv. Ponkan quality maintenance (weight loss, decay rate, total soluble solids, titratable acidity, vitamin C, color index, malondialdehyde, and antioxidant activity) over 100 days of storage at 20 °C. Compared to the control, chitosan treatment effectively reduced the decay and weight loss rates of mandarin fruit cv. Ponkan during storage at room temperature, delayed the decline of nutritional quality in fruits, increased the antioxidant capacity, and inhibited the accumulation of malondialdehyde (MDA). In comparison to chitosan coating, 1.5% CI–CH did not improve the fruit storage effect, but inhibited the normal color change of fruits and increased the accumulation of MDA. Both 0.5% CI–CH and 1.0% CI–CH effectively reduced the rate of fruit decay, improved the quality of fruits after harvest, and delayed fruit aging. Our study suggests that 0.5% CI–CH and 1.0% CI–CH might be good formulations for maintaining the quality of mandarin fruit cv. Ponkan during room-temperature storage.
Collapse
Affiliation(s)
- Yang Gao
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chaonan Kan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ming Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuhuan Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yongqi Fu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Pingxiang University, Pingxiang 337055, China
| |
Collapse
|
70
|
Senturk Parreidt T, Müller K, Schmid M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods 2018; 7:E170. [PMID: 30336642 PMCID: PMC6211027 DOI: 10.3390/foods7100170] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/20/2018] [Accepted: 10/14/2018] [Indexed: 01/08/2023] Open
Abstract
Alginate is a naturally occurring polysaccharide used in the bio industry. It is mainly derived from brown algae species. Alginate-based edible coatings and films attract interest for improving/maintaining quality and extending the shelf-life of fruit, vegetable, meat, poultry, seafood, and cheese by reducing dehydration (as sacrificial moisture agent), controlling respiration, enhancing product appearance, improving mechanical properties, etc. This paper reviews the most recent essential information about alginate-based edible coatings. The categorization of alginate-based coatings/film in food packaging concept is formed gradually with the explanation of the most important titles. Emphasis will be placed on active ingredients incorporated into alginate-based formulations, edible coating/film application methods, research and development studies of coated food products and mass transfer and barrier characteristics of the alginate-based coatings/films. Future trends are also reviewed to identify research gaps and recommend new research areas. The summarized information presented in this article will enable researchers to thoroughly understand the fundamentals of the coating process and to develop alginate-based edible films and coatings more readily.
Collapse
Affiliation(s)
- Tugce Senturk Parreidt
- Chair of Food Packaging Technology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Steig 22, 85354 Freising, Germany.
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany.
| | - Kajetan Müller
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany.
- Faculty of Mechanical Engineering, University of Applied Science Kempten, Bahnhofstraße 61, 87435 Kempten, Germany.
| | - Markus Schmid
- Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany.
| |
Collapse
|
71
|
Post-harvest shelf-life of banana and guava: Mechanisms of common degradation problems and emerging counteracting strategies. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
72
|
Gao Y, Kan C, Wan C, Chen C, Chen M, Chen J. Quality and biochemical changes of navel orange fruits during storage as affected by cinnamaldehyde -chitosan coating. SCIENTIA HORTICULTURAE 2018; 239:80-86. [DOI: 10.1016/j.scienta.2018.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
73
|
Murmu SB, Mishra HN. Selection of the best active modified atmosphere packaging with ethylene and moisture scavengers to maintain quality of guava during low-temperature storage. Food Chem 2018; 253:55-62. [PMID: 29502844 DOI: 10.1016/j.foodchem.2018.01.134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 01/04/2018] [Accepted: 01/21/2018] [Indexed: 10/17/2022]
Abstract
In modified atmosphere packaging of guava, moisture scavenger (MS) sachet containing 30-50 g of coarse silica gel and ethylene scavenger (ES) sachet containing 0-4 g of potassium permanganate was added as per central composite rotatable design. The headspace O2 and CO2 of the packages were studied at 4, 8 and 12 °C for 30 days and thereafter the guava were left for two days to ripen at 30 °C. After that the chilling injuries, percentage acceptable guava, peel color and pulp texture was analyzed. After two days ripening at 30 °C the samples with 3 g ES and 46 g MS registered higher L∗, lower a∗ value & firmness (16.65 N), lowest chilling injury score. About 95% of guava was found acceptable in this treatment with 1.89-2.79% reducing sugar, 0.95-1.1% titrable acidity, 59% and 46.61% retention of total phenols and ascorbic acid respectively, resulting 32 days shelf-life of guava.
Collapse
Affiliation(s)
- Sanchita Biswas Murmu
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
74
|
Ncama K, Magwaza LS, Mditshwa A, Tesfay SZ. Plant-based edible coatings for managing postharvest quality of fresh horticultural produce: A review. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|