51
|
Nilghaz A, Mousavi SM, Li M, Tian J, Cao R, Wang X. Paper-based microfluidics for food safety and quality analysis. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
52
|
Guinati BGS, Sousa LR, Oliveira KA, Coltro WKT. Simultaneous analysis of multiple adulterants in milk using microfluidic paper-based analytical devices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5383-5390. [PMID: 34734929 DOI: 10.1039/d1ay01339d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study reports the simultaneous colorimetric detection of urea, H2O2, and pH in milk samples using microfluidic paper-based analytical devices (μPADs) fabricated through a craft cutter printer. Paper-based devices were designed to contain three detection zones interconnected to a sampling zone by microfluidic channels. Colorimetric analysis was performed using images digitalized through an office scanner. The volumes of chromogenic and sample solutions were optimized, and the best colorimetric performance was achieved by adding 0.5 and 10 μL into detection and sampling zones, respectively. Simultaneous assays were then carried out, and the recorded responses revealed a linear behavior in the concentration ranges from 0-30.0 mmol L-1, 0-10.0 mmol L-1 and 6.0-9.0 for urea, H2O2 and pH, respectively. The limit of detection values obtained for urea and H2O2 were 2.4 mmol L-1 and 0.1 mmol L-1, respectively. For pH measurements, colorimetric assay allowed the monitoring of solution pH with a resolution of 0.25 units. The use of μPADs to detect target adulterants exhibited suitable reproducibility (RSD ≤ 6.0%), accuracy (91-102%) and no cross-reaction occurrence. When compared to reference techniques, colorimetric assays did not reveal a significant difference at a confidence level of 95%. As a proof-of-concept, the feasibility of the proposed approach was successfully demonstrated through the analysis of potential adulterants in sixteen milk samples, which were tested without any pretreatment requirement. Based on the achievements, μPADs in conjunction with colorimetric measurements emerge as a powerful tool for rapid screening of potential adulterants in milk.
Collapse
Affiliation(s)
- Bárbara G S Guinati
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Lucas R Sousa
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Karoliny A Oliveira
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil
| |
Collapse
|
53
|
Peng F, Li B, Sun S, Mi F, Wang Y, Hu C, Geng P, Pang L, Li J, Guan M. A novel fluorescence internal filtration immunoassay for the detection of clenbuterol. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03886-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
54
|
Wang E, Guo Z, Tang R, Lo YH. Using airflow-driven, evaporative gradients to improve sensitivity and fluid control in colorimetric paper-based assays. LAB ON A CHIP 2021; 21:4249-4261. [PMID: 34608465 DOI: 10.1039/d1lc00542a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) are foundational devices for point-of-care testing, yet suffer from limitations in regards to their sensitivity and capability in handling complex assays. Here, we demonstrate an airflow-based, evaporative method that is capable of manipulating fluid flows within paper membranes to offer new functionalities for multistep delivery of reagents and improve the sensitivity of μPADs by 100-1000 times. This method applies an air-jet to a pre-wetted membrane, generating an evaporative gradient such that any solutes become enriched underneath the air-jet spot. By controlling the lateral position of this spot, the solutes in the paper strip are enriched and follow the air jet trajectory, driving the reactions and enhancing visualization for colorimetric readout in multistep assays. The technique has been successfully applied to drive the sequential delivery in multistep immunoassays as well as improve sensitivity for colorimetric detection assays for nucleic acids and proteins via loop-mediated isothermal amplification (LAMP) and ELISA. For colorimetric LAMP detection of the COVID-19 genome, enrichment of the solution on paper could enhance the contrast of the dye in order to more clearly distinguish between the positive and negative results to achieve a sensitivity of 3 copies of SARS-Cov-2 RNAs. For ELISA, enrichment of the oxidized TMB substrate yielded a sensitivity increase of two-to-three orders of magnitude when compared to non-enriched samples - having a limit of detection of around 200 fM for IgG. Therefore, this enrichment method represents a simple process that can be easily integrated into existing detection assays for controlling fluid flows and improving detection of biomarkers on paper.
Collapse
Affiliation(s)
- Edward Wang
- Department of Aerospace and Mechanical Engineering, Materials Science and Engineering Program, UC-San Diego, San Diego, USA.
| | - Zhilin Guo
- Department of Aerospace and Mechanical Engineering, Materials Science and Engineering Program, UC-San Diego, San Diego, USA.
| | - Rui Tang
- Department of Electrical and Computer Engineering, UC-San Diego, San Diego, USA
| | - Yu-Hwa Lo
- Department of Aerospace and Mechanical Engineering, Materials Science and Engineering Program, UC-San Diego, San Diego, USA.
- Department of Electrical and Computer Engineering, UC-San Diego, San Diego, USA
| |
Collapse
|
55
|
Lu Q, Xu X, Song S, Wu A, Liu L, Kuang H, Xu C. Development of an Immunochromatographic Strip for the Rapid and Ultrasensitive Detection of Gamithromycin. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
56
|
Qin X, Liu J, Zhang Z, Li J, Yuan L, Zhang Z, Chen L. Microfluidic paper-based chips in rapid detection: Current status, challenges, and perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116371] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
57
|
Ferrari AGM, Crapnell RD, Banks CE. Electroanalytical Overview: Electrochemical Sensing Platforms for Food and Drink Safety. BIOSENSORS 2021; 11:291. [PMID: 34436093 PMCID: PMC8392528 DOI: 10.3390/bios11080291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Robust, reliable, and affordable analytical techniques are essential for screening and monitoring food and water safety from contaminants, pathogens, and allergens that might be harmful upon consumption. Recent advances in decentralised, miniaturised, and rapid tests for health and environmental monitoring can provide an alternative solution to the classic laboratory-based analytical techniques currently utilised. Electrochemical biosensors offer a promising option as portable sensing platforms to expedite the transition from laboratory benchtop to on-site analysis. A plethora of electroanalytical sensor platforms have been produced for the detection of small molecules, proteins, and microorganisms vital to ensuring food and drink safety. These utilise various recognition systems, from direct electrochemical redox processes to biological recognition elements such as antibodies, enzymes, and aptamers; however, further exploration needs to be carried out, with many systems requiring validation against standard benchtop laboratory-based techniques to offer increased confidence in the sensing platforms. This short review demonstrates that electroanalytical biosensors already offer a sensitive, fast, and low-cost sensor platform for food and drink safety monitoring. With continued research into the development of these sensors, increased confidence in the safety of food and drink products for manufacturers, policy makers, and end users will result.
Collapse
Affiliation(s)
| | | | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.G.-M.F.); (R.D.C.)
| |
Collapse
|
58
|
Su L, Hu H, Tian Y, Jia C, Wang L, Zhang H, Wang J, Zhang D. Highly Sensitive Colorimetric/Surface-Enhanced Raman Spectroscopy Immunoassay Relying on a Metallic Core-Shell Au/Au Nanostar with Clenbuterol as a Target Analyte. Anal Chem 2021; 93:8362-8369. [PMID: 34077199 DOI: 10.1021/acs.analchem.1c01487] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lateral flow immunoassay (LFIA) has emerged as an effective technique in the field of food safety and environmental monitoring. However, sensitive and quantitative detection is still challenging for LFIAs in complex environments. In this work, a dual-model colorimetric/SERS lateral flow immunoassay for ultrasensitive determination of clenbuterol was constructed based on a metallic core-shell Au/Au nanostar acting as a multifunction tag. Raman reporter molecules are located between the core (AuNP) and shell (Au nanostar) to form a sandwich structure, which contributes to eliminate the environmental interference and improve the detection stability. In addition, the Au/Au nanostar provides a much higher Raman enhancement due to the presence of sharp tips and larger surface roughness in comparison with gold nanoparticles (AuNPs). Thus, on the basis of the antibody-antigen interaction, the dual-model immunoassay can produce strong colorimetric and surface-enhanced Raman spectroscopy (SERS) signals for highly sensitive detection of the target analyte, clenbuterol. Under optimal conditions, clenbuterol could be detected by the colorimetric model with a visual detection limit of 5 ng/mL. Meanwhile, the SERS signal of the Au/Au nanostar was accumulated on the test line for the SERS model detection with a quantitative detection limit as low as 0.05 ng/mL, which is at least 200-fold lower than that of the traditional AuNPs-based immunoassay. Furthermore, recovery rates of the proposed method in food samples were 86-110%. This dual-model immunoassay provides an effective tool for antibiotic residues analysis and demonstrates a broad potential for future applications in food safety monitoring.
Collapse
Affiliation(s)
- Lihong Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi, 712100 China
| | - Huilan Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi, 712100 China
| | - Yanli Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi, 712100 China
| | - Conghui Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi, 712100 China
| | - Lulu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi, 712100 China
| | - Han Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi, 712100 China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi, 712100 China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi, 712100 China
| |
Collapse
|
59
|
Rong Y, Hassan MM, Ouyang Q, Chen Q. Lanthanide ion (Ln 3+ )-based upconversion sensor for quantification of food contaminants: A review. Compr Rev Food Sci Food Saf 2021; 20:3531-3578. [PMID: 34076359 DOI: 10.1111/1541-4337.12765] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022]
Abstract
The food safety issue has gradually become the focus of attention in modern society. The presence of food contaminants poses a threat to human health and there are a number of interesting researches on the detection of food contaminants. Upconversion nanoparticles (UCNPs) are superior to other fluorescence materials, considering the benefits of large anti-Stokes shifts, high chemical stability, non-autofluorescence, good light penetration ability, and low toxicity. These properties render UCNPs promising candidates as luminescent labels in biodetection, which provides opportunities as a sensitive, accurate, and rapid detection method. This paper intended to review the research progress of food contaminants detection by UCNPs-based sensors. We have proposed the key criteria for UCNPs in the detection of food contaminants. Additionally, it highlighted the construction process of the UCNPs-based sensors, which includes the synthesis and modification of UCNPs, selection of the recognition elements, and consideration of the detection principle. Moreover, six kinds of food contaminants detected by UCNPs technology in the past 5 years have been summarized and discussed fairly. Last but not least, it is outlined that UCNPs have great potential to be applied in food safety detection and threw new insight into the challenges ahead.
Collapse
Affiliation(s)
- Yawen Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
60
|
Ng HY, Lee WC, Kung CT, Li LC, Lee CT, Fu LM. Recent Advances in Microfluidic Devices for Contamination Detection and Quality Inspection of Milk. MICROMACHINES 2021; 12:558. [PMID: 34068982 PMCID: PMC8156775 DOI: 10.3390/mi12050558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Milk is a necessity for human life. However, it is susceptible to contamination and adulteration. Microfluidic analysis devices have attracted significant attention for the high-throughput quality inspection and contaminant analysis of milk samples in recent years. This review describes the major proposals presented in the literature for the pretreatment, contaminant detection, and quality inspection of milk samples using microfluidic lab-on-a-chip and lab-on-paper platforms in the past five years. The review focuses on the sample separation, sample extraction, and sample preconcentration/amplification steps of the pretreatment process and the determination of aflatoxins, antibiotics, drugs, melamine, and foodborne pathogens in the detection process. Recent proposals for the general quality inspection of milk samples, including the viscosity and presence of adulteration, are also discussed. The review concludes with a brief perspective on the challenges facing the future development of microfluidic devices for the analysis of milk samples in the coming years.
Collapse
Affiliation(s)
- Hwee-Yeong Ng
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Wen-Chin Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan;
| | - Lung-Chih Li
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Chien-Te Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
61
|
On-site microfluidic paper- based titration device for rapid semi-quantitative vitamin C content in beverages. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
62
|
Lu H, Li M, Nilghaz A, Li L, Chen G, Jiang Y, Tian J. Paper-based analytical device for high-throughput monitoring tetracycline residue in milk. Food Chem 2021; 354:129548. [PMID: 33761333 DOI: 10.1016/j.foodchem.2021.129548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/29/2023]
Abstract
A low-cost and portable paper-based analytical device has been developed for high throughput and on-site monitoring TC residue in milk through visualized colorimetric reaction. The filtration and concentration effect induced by the porous nature of paper contribute to strengthen the color intensity, leading to quantitative and sensitive detection of tetracycline reaching 1 ppm detection limit, with the linear range of 1-100 ppm both in water and milk samples. The applicability was demonstrated by detection of TC in 18 different types of real milk samples with good recovery ranging from 88% to 113%. Furthermore, the dynamic degradation behavior of tetracycline was monitored through the device. To the best of our knowledge, this is the first report of colorimetric detection of tetracycline in milk using the paper-based device. This simple, fast, cost-effective (~$0.50 per device) and equipment-free paper-based platform provides a promising tool for future application in food and environmental safety.
Collapse
Affiliation(s)
- Huimin Lu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Miaosi Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China; Guangzhou New Chemical Material Technology Ltd., Guangzhou 510640, China.
| | - Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, VIC 3216, Australia
| | - Lizi Li
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guangxue Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanbin Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Junfei Tian
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
63
|
Nadar SS, Patil PD, Tiwari MS, Ahirrao DJ. Enzyme embedded microfluidic paper-based analytic device (μPAD): a comprehensive review. Crit Rev Biotechnol 2021; 41:1046-1080. [PMID: 33730940 DOI: 10.1080/07388551.2021.1898327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Low-cost paper-based analytical devices are the latest generation of portable lab-on-chip designs that offers an innovative platform for the on/off-site analysis (biosensing) of target analytes, especially in rural and remote areas. Recently, microfluidic paper-based analytical devices (μPADs) have attained significant recognition owing to their exciting fundamental features such as: ease of fabrication, rapid operation, and precise interpretations. The incorporation of enzymes with paper-based analytical devices significantly improves analytical performance while exhibiting excellent chemical and storage stability. In addition to that, these devices are highly compact, portable, easy-to-use, and do not require any additional sophisticated equipment for the detection and quantification of target analytes. This review provides a holistic insight into design, fabrication, and enzyme immobilization strategies for the development of enzyme-μPADs, which enables them to be widely implemented for in-field analysis. It also highlights the recent application of enzyme-μPADs in the area of: biomedical, food safety, and environmental monitoring while exploring the mechanisms of detection involved. Further, in order to improve the accuracy of analysis, researchers have designed a smartphone-based scanning tool for multi-variant point-of-care devices, which is summarized in the latter part of the review. Finally, the future perspectives and outlook of major challenges associated with enzyme-μPADs are discussed with their possible solutions. The development of enzyme integrated μPADs will open a new avenue as an exceptional analytical tool to explore various applications.HIGHLIGHTSEnzyme embedded paper-based analytical devices are a revolution in the field of biosensing.The design, fabrication, and enzyme immobilization on μPADs have been comprehensively discussed.The application of enzyme-μPADs food safety, environmental monitoring, and clinical diagnostic have been reviewed.Smartphones can be used as an on-site, user-friendly, and compact next-gen scanning tool for biosensing.
Collapse
Affiliation(s)
- Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Pravin D Patil
- Department of Basic Science and Humanities, Mukesh Patel School of Technology Management and Engineering, SVKM's NMIMS University, Mumbai, India
| | - Manishkumar S Tiwari
- Department of Chemical Engineering, Mukesh Patel School of Technology Management and Engineering, SVKM's NMIMS University, Mumbai, India
| | - Dinesh J Ahirrao
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
64
|
Wang Z, Zhou Q, Guo Y, Hu H, Zheng Z, Li S, Wang Y, Ma Y. Rapid Detection of Ractopamine and Salbutamol in Swine Urine by Immunochromatography Based on Selenium Nanoparticles. Int J Nanomedicine 2021; 16:2059-2070. [PMID: 33727813 PMCID: PMC7955707 DOI: 10.2147/ijn.s292648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/18/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The purpose of this study was to establish a lateral flow immunoassay using selenium nanoparticles (Se-NPs) as a probe to detect ractopamine (RAC) and salbutamol (SAL) in swine urine. Methods SDS and PEG were used as templates to prepare Se-NPs; anti-RAC monoclonal antibodies or anti-SAL monoclonal antibodies were labelled with Se-NPs; and rapid detection kits were prepared. The sensitivity, specificity, and stability were measured, and actual samples were analysed. Results The Se-NPs were spherical with a diameter of 40.63 ± 5.91 nm, and were conjugated successfully with an anti-RAC antibody to give a total diameter of 82.33 ± 17.91 nm. The detection limit of a RAC kit in swine urine was 1 ng/mL, and that of a SAL kit was 3 ng/mL. Both procedures could be completed within 5 minutes. No cross-reaction occurred with clenbuterol, bambuterol and phenylethanolamine A. Samples were tested consistently across different batches of kits for swine urine. The results of the kits were identical to those of actual clinical samples analysed by ELISA, and the coincidence rate was 100%. Conclusion The assay kit does not require any special device for reading the results, and the readout is a simple colour change that can be evaluated with the naked eye. It is easy to operate, sensitive, specific, and stable This kit is suitable for the rapid and real-time detection of RAC and SAL residues in swine urine samples. Clinical Trial Registration Swine urines samples were used under approval from the Experimental Animal Ethics committee of the Joint National Laboratory for Antibody Drug Engineering, Henan University.
Collapse
Affiliation(s)
- Zhizeng Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, People's Republic of China
| | - Qianqwen Zhou
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, People's Republic of China
| | - Yafei Guo
- School of Laboratory, Sanquan college of Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China
| | - Hangzhan Hu
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zhi Zheng
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, People's Republic of China
| | - Shulian Li
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, People's Republic of China
| | - Yaohui Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, People's Republic of China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, People's Republic of China
| |
Collapse
|
65
|
A disc-chip based high-throughput acute toxicity detection system. Talanta 2021; 224:121867. [PMID: 33379077 DOI: 10.1016/j.talanta.2020.121867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
Acute toxicity assay presents vital significance in modern environmental monitoring, including online detection and in-situ assay for emergency events. Although photobacteria related detection methods were established and verified in the past decades with combination of photomultiplier tube (PMT), the price and size of PMT sensor hampered application of rapid acute toxicity assay and detection system miniaturization, especially in the resource-limited occasions. Wide application of smartphones with great low-light performance cameras could be used in photobacteria-based toxicity assay instead of the PMT methods. Herein a box-type portable detection system had been successfully established, including a disc-chip for detection, detection device, and smartphones with a high-performance camera. The system performed well showing stable temperature and rotation control. Results captured by CMOS-based camera presented a linear relationship with PMT-based detection method. An image progress algorithm was also established and tested by series diluted zinc sulfate solution as a reference substance. The system also performed well for toxicity analysis for real Atmospheric particle matter sample. The system could be used in some environmental monitoring scenarios as an alternative solution.
Collapse
|
66
|
You SM, Jeong KB, Luo K, Park JS, Park JW, Kim YR. Paper-based colorimetric detection of pathogenic bacteria in food through magnetic separation and enzyme-mediated signal amplification on paper disc. Anal Chim Acta 2021; 1151:338252. [PMID: 33608074 DOI: 10.1016/j.aca.2021.338252] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 01/09/2023]
Abstract
Herein, we report a colorimetric sensing system for the detection of highly virulent bacteria, Escherichiacoli O157:H7, in sausage by utilizing magnetic separation and enzyme-mediated signal amplification on paper disc. For magnetic separation, Poly-l-lysine coated starch magnetic particles (PLL@SMPs) were synthesized and utilized for the separation and concentration of the bacteria in sample suspension. Horseradish peroxidase-conjugated antibody (HRP-Antibody) and 3,3',5,5'- tetramethylbenzidine (TMB) were employed for the specific signal amplification in the presence of target bacteria. The synthesized PLL@SMPs showed an excellent capture efficiency (>90%) for the pathogenic bacteria in large volume sample suspension. The intrinsic problems associated with the non-specific binding of sensing components that lead to the high background signal and low sensitivity in colorimetric detection was successfully resolved by employing hyaluronic acid as a blocking agent. The effective separation and concentration of target bacteria by PLL@SMPs and target-specific signal amplification with exceptionally high signal to noise ratio enabled the detection of target bacteria with a detection limit in the single digit regime. The sensing system proposed in this study was successfully used for the detection of the target pathogenic bacteria, E. coli O157:H7, in sausage sample with the limit of detection (LOD) as low as 30.8 CFU/mL with 95% probability. The simple nature of paper-based detection system with a great sensitivity and specificity would provide an effective means of evaluating the safety of food and environmental samples.
Collapse
Affiliation(s)
- Sang-Mook You
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Ki-Baek Jeong
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Ke Luo
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Jin-Sung Park
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Ji-Won Park
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Young-Rok Kim
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
67
|
A whole area scanning-enabled direct-counting strategy for studying blocking efficiency in mitigating protein-solid surface binding. Anal Bioanal Chem 2021; 413:1493-1502. [PMID: 33469711 DOI: 10.1007/s00216-020-03120-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
The study of protein-solid surface binding as well as blocking efficiency of blocking agents plays an important role in the development of high-performance immunoassays. Although conventional colorimetric based assays are widely employed to monitor protein non-specific binding on the surface of microplate wells and evaluate the performance of blocking agents, there is still a great need to develop new methods to achieve the same goal from a new perspective. In this study, an innovative whole area scanning (WAS)-enabled direct-counting strategy was developed and validated through studying the blocking efficiency of different blocking agents on the non-specific binding of streptavidin-alkaline phosphatase conjugate (Strep-ALP, a model protein) to the surface of 96-well microplates. After non-specific binding of Strep-ALP in wells with or without blocking agents' treatment and loading of ELF™ 97 phosphate (ELFP), ALP in Strep-ALP conjugates converts ELFP to water-insoluble ELF™ 97 alcohol (ELFA), which precipitates locally, self-assembles into large needle structures, and glows green fluorescence upon excitation. After quenching the reaction, WAS of the whole wells allows us to directly count the number of individual fluorescent precipitates, which can be used to calculate and compare the blocking efficiency of three commonly used blocking agents (BSA, casein, and dry milk) based on mitigating the non-specific binding of Strep-ALP. WAS-enabled counting of individual needle-type precipitates opens a new avenue to investigate protein-solid surface binding as well as the efficiency of blocking agents with high sensitivity.
Collapse
|
68
|
Lin L, Song S, Wu X, Liu L, Kuang H, Xiao J, Xu C. Determination of robenidine in shrimp and chicken samples using the indirect competitive enzyme-linked immunosorbent assay and immunochromatographic strip assay. Analyst 2021; 146:721-729. [DOI: 10.1039/d0an01783c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and an immunochromatographic strip assay were developed for the rapid screening of robenidine hydrochloride (ROBH) in samples.
Collapse
Affiliation(s)
- Lu Lin
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Jing Xiao
- NHC Key Laboratory of Food Safety Risk Assessment
- China National Center for Food Safety Risk Assessment
- Beijing
- People's Republic of China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| |
Collapse
|
69
|
Zhang Q, Li J, Su Y, Pan X, Gai H. Ball-lens assisted sensitivity improvement of fluorescence immunoassay in microchannels. RSC Adv 2021; 11:27541-27546. [PMID: 35480679 PMCID: PMC9037790 DOI: 10.1039/d1ra04360a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
A contactless and ball-lens assisted sensitivity improvement method was present for the fluorescence or luminescence immunoassay in microchannel.
Collapse
Affiliation(s)
- Qingquan Zhang
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jiajia Li
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yuting Su
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiaoyan Pan
- Department of Laboratory Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hongwei Gai
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
70
|
Dabbagh SR, Becher E, Ghaderinezhad F, Havlucu H, Ozcan O, Ozkan M, Yetisen AK, Tasoglu S. Increasing the packing density of assays in paper-based microfluidic devices. BIOMICROFLUIDICS 2021; 15:011502. [PMID: 33569089 PMCID: PMC7864678 DOI: 10.1063/5.0042816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 05/04/2023]
Abstract
Paper-based devices have a wide range of applications in point-of-care diagnostics, environmental analysis, and food monitoring. Paper-based devices can be deployed to resource-limited countries and remote settings in developed countries. Paper-based point-of-care devices can provide access to diagnostic assays without significant user training to perform the tests accurately and timely. The market penetration of paper-based assays requires decreased device fabrication costs, including larger packing density of assays (i.e., closely packed features) and minimization of assay reagents. In this review, we discuss fabrication methods that allow for increasing packing density and generating closely packed features in paper-based devices. To ensure that the paper-based device is low-cost, advanced fabrication methods have been developed for the mass production of closely packed assays. These emerging methods will enable minimizing the volume of required samples (e.g., liquid biopsies) and reagents in paper-based microfluidic devices.
Collapse
Affiliation(s)
| | - Elaina Becher
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Fariba Ghaderinezhad
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Hayati Havlucu
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
| | - Oguzhan Ozcan
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
| | - Mehmed Ozkan
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey
| | - Ali Kemal Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
71
|
Ko CH, Liu CC, Chen KH, Sheu F, Fu LM, Chen SJ. Microfluidic colorimetric analysis system for sodium benzoate detection in foods. Food Chem 2020; 345:128773. [PMID: 33302108 DOI: 10.1016/j.foodchem.2020.128773] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/09/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
Sodium benzoate (SBA) is a widely-used additive for preventing food spoilage and deterioration and extending the shelf life. However, the concentration of SBA must be controlled under safe regulations to avoid damaging human health. Accordingly, this study proposes a microfluidic colorimetric analysis (MCA) system composing of a wax-printed paper-microchip and a self-made smart analysis equipment for the concentration detection of SBA in common foods and beverages. In the presented method, the distilled SBA sample is mixed with NaOH to obtain a nitro compound and the compound is then dripped onto the reaction area of the paper-microchip, which is embedded with two layers of reagents (namely acetophenone and acetone). The paper-microchip is heated at 120 °C for 20 min to cause a colorimetric reaction and the reaction image is then obtained through a CMOS (complementary metal oxide semiconductor) device and transmitted to a cell-phone over a WiFi connection. Finally, use the self-developed RGB analysis software installed on the cell-phone to obtain the SBA concentration. A calibration curve is constructed using SBA samples with known concentrations ranging from 50 ppm (0.35 mM) to 5000 ppm (35 mM). It is shown that the R + G + B value (Y) of the reaction image and SBA concentration (X) are related via Y = -0.034 X +737.40, with a determination coefficient of R2 = 0.9970. By measuring the SBA concentration of 15 commercially available food and beverage products, the actual feasibility of the current MCA system can be demonstrated. The results show that the difference from the measurement results obtained using the macroscale HPLC method does not exceed 6.0%. Overall, the current system provides a reliable and low-cost technique for quantifying the SBA concentration in food and drink products.
Collapse
Affiliation(s)
- Chien-Hsuan Ko
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chan-Chiung Liu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Kuan-Hong Chen
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Fuu Sheu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan; Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan.
| | - Szu-Jui Chen
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
72
|
Zeng Y, Liang D, Zheng P, Zhang Y, Wang Z, Mari GM, Jiang H. A simple and rapid immunochromatography test based on readily available filter paper modified with chitosan to screen for 13 sulfonamides in milk. J Dairy Sci 2020; 104:126-133. [PMID: 33189293 DOI: 10.3168/jds.2020-18987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022]
Abstract
In this study, we developed a novel, simple, rapid, and low-cost colloidal gold-based immunochromatography method, with filter paper replacing nitrocellulose membrane as the substrate. To obtain adequately immobilized protein, chitosan was used to functionalize the filter paper. After conditions and parameters were optimized, the novel immunochromatography method was applied for detection of sulfonamide residues in milk. Quantitative detection was accomplished using a smartphone and Photoshop software (Adobe Inc., San Jose, CA), allowing us to screen 13 sulfonamides with a limit of detection ranging from 0.42 to 8.64 μg/L and recovery ranging from 88.2 to 116.9% in milk. The proposed novel method performed similarly to the conventional method that uses a nitrocellulose membrane as the transport medium, and it had lower cost and better usability because of the inexpensive and easily available filter paper.
Collapse
Affiliation(s)
- Yuyang Zeng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Demei Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Pimiao Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Yanfang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Zile Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Ghulam Mujtaba Mari
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Haiyang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| |
Collapse
|
73
|
Detection of doxycycline hyclate and oxymetazoline hydrochloride in pharmaceutical preparations via spectrophotometry and microfluidic paper-based analytical device (μPADs). Anal Chim Acta 2020; 1136:196-204. [DOI: 10.1016/j.aca.2020.09.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/31/2022]
|
74
|
Liu Y, Xiao Y, Yu M, Cao Y, Li F, Jia P, Guo D, Sun X, Wang L. Ratiometric Fluorescent Probe Based on Diazotization-Coupling Reaction for Determination of Clenbuterol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11578-11585. [PMID: 32857511 DOI: 10.1021/acs.jafc.0c03832] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In view of the potential harm caused by illegal feeding of clenbuterol (CLB) in the livestock industry, herein, a novel ratiometric fluorescent probe based on graphene quantum dots (GQDs)@[Ru(bpy)3]2+ was elaborately constructed for CLB detection. In this probe, GQDs acted as response signals, and their fluorescence was remarkably quenched by CLB through the diazotization-coupling reaction. As for [Ru(bpy)3]2+ as a reference signal, its fluorescence was hardly affected. The intensity ratio of two fluorophores showed good linearity with CLB concentration in the range of 0.05-40 μM, accompanied by visualization of fluorescence variation from yellow to red. The detection limit was as low as 0.029 μM. Particularly, the probe was successfully used to detect CLB in pork and beef samples with satisfactory recoveries. To our knowledge, this is the first report on a ratiometric fluorescent probe for the detection of CLB, which possesses broad application prospects in food safety risk monitoring.
Collapse
Affiliation(s)
- Yingnan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yaqing Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pei Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
75
|
Zhao M, Li X, Zhang Y, Wang Y, Wang B, Zheng L, Zhang D, Zhuang S. Rapid quantitative detection of chloramphenicol in milk by microfluidic immunoassay. Food Chem 2020; 339:127857. [PMID: 32866699 DOI: 10.1016/j.foodchem.2020.127857] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/22/2020] [Accepted: 08/15/2020] [Indexed: 12/26/2022]
Abstract
Chloramphenicol (CAP) is a toxic substance for human health, and detection of CAP residues in milk is necessary. However, most of the traditional CAP detection methods including high performance liquid chromatography-tandem mass spectrometry (HPLC-MS) and enzyme-linked immunosorbent assay (ELISA) are time-consuming and complicated. Herein, an automated microfluidics system for CAP detection in milk was developed. The residual CAP of multiple milk samples was quantitatively detected via competitive immunoassay in a single microfluidic chip simultaneously and automatically, and the reliability of the method was confirmed by flow cytometry. Completion of the detection by the system required less than 20 min and the cost for the detection of ten samples was about US$2.5. The limit of detection was 0.05 µg L-1, and the recovery rate of CAP in milk ranged from 91.3% to 105.5%. The microfluidic system developed in this study exhibited considerable potential in the point-of-care testing (POCT) of CAP in milk.
Collapse
Affiliation(s)
- Mantong Zhao
- Engineering Research Centre of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaolong Li
- Engineering Research Centre of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yule Zhang
- Engineering Research Centre of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuwen Wang
- Engineering Research Centre of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bo Wang
- Engineering Research Centre of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lulu Zheng
- Engineering Research Centre of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Dawei Zhang
- Engineering Research Centre of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Songlin Zhuang
- Engineering Research Centre of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
76
|
Ghaderinezhad F, Ceylan Koydemir H, Tseng D, Karinca D, Liang K, Ozcan A, Tasoglu S. Sensing of electrolytes in urine using a miniaturized paper-based device. Sci Rep 2020; 10:13620. [PMID: 32788641 PMCID: PMC7423618 DOI: 10.1038/s41598-020-70456-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
Analyzing electrolytes in urine, such as sodium, potassium, calcium, chloride, and nitrite, has significant diagnostic value in detecting various conditions, such as kidney disorder, urinary stone disease, urinary tract infection, and cystic fibrosis. Ideally, by regularly monitoring these ions with the convenience of dipsticks and portable tools, such as cellphones, informed decision making is possible to control the consumption of these ions. Here, we report a paper-based sensor for measuring the concentration of sodium, potassium, calcium, chloride, and nitrite in urine, accurately quantified using a smartphone-enabled platform. By testing the device with both Tris buffer and artificial urine containing a wide range of electrolyte concentrations, we demonstrate that the proposed device can be used for detecting potassium, calcium, chloride, and nitrite within the whole physiological range of concentrations, and for binary quantification of sodium concentration.
Collapse
Affiliation(s)
- Fariba Ghaderinezhad
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Hatice Ceylan Koydemir
- Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA.,Bioengineering, University of California, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Derek Tseng
- Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA.,Bioengineering, University of California, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Doruk Karinca
- Computer Science, University of California, Los Angeles, CA, 90095, USA
| | - Kyle Liang
- Computer Science, University of California, Los Angeles, CA, 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA. .,Bioengineering, University of California, Los Angeles, CA, 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koc University, Sariyer, Istanbul, 34450, Turkey. .,Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul, 34450, Turkey. .,Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul, 34684, Turkey. .,Koc University Research Center for Translational Medicine, Koç University, Sariyer, Istanbul, 34450, Turkey.
| |
Collapse
|
77
|
Wang Q, Deng J, Chen Y, Luo Y, Jiang X. An immunoassay based on lab-on-a-chip for simultaneous and sensitive detection of clenbuterol and ractopamine. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
78
|
Emerging applications of paper-based analytical devices for drug analysis: A review. Anal Chim Acta 2020; 1116:70-90. [DOI: 10.1016/j.aca.2020.03.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023]
|
79
|
Emerging strategies to enhance the sensitivity of competitive ELISA for detection of chemical contaminants in food samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115861] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
80
|
Hosseini S, Azari P, Cardenas-Benitez B, Martínez-Guerra E, Aguirre-Tostado FS, Vázquez-Villegas P, Pingguan-Murphy B, Madou MJ, Martinez-Chapa SO. A LEGO inspired fiber probe analytical platform for early diagnosis of Dengue fever. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110629. [DOI: 10.1016/j.msec.2020.110629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
|
81
|
Cai Y, Niu JC, Liu YQ, Du XL, Wu ZY. Online sample clean-up and enrichment of proteins from salty media with dynamic double gradients on a paper fluidic channel. Anal Chim Acta 2020; 1100:149-155. [DOI: 10.1016/j.aca.2019.11.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
|
82
|
Paper-based point-of-care immunoassays: Recent advances and emerging trends. Biotechnol Adv 2020; 39:107442. [DOI: 10.1016/j.biotechadv.2019.107442] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/04/2019] [Accepted: 08/26/2019] [Indexed: 01/23/2023]
|
83
|
Smartphone-imaged multilayered paper-based analytical device for colorimetric analysis of carcinoembryonic antigen. Anal Bioanal Chem 2020; 412:2517-2528. [PMID: 32067065 DOI: 10.1007/s00216-020-02475-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 01/06/2023]
Abstract
Paper-based immunoassays are effective methods that employ microfluidic paper-based analytical devices (μPADs) for the rapid, simple, and accurate quantification of analytes in point-of-care diagnosis. In this study, we developed a wax-printed multilayered μPAD for the colorimetric detection of carcinoembryonic antigen (CEA), where the device contained a movable and rotatable detection layer to allow the μPAD to switch the state of the sample solutions, i.e., flowing or storing in the sensing zones. A smartphone with a custom-developed program served as an automated colorimetric reader to capture and analyze images from the μPAD, before calculating and displaying the test results. After optimizing the crucial conditions for the assay, the proposed method exhibited a wide linear dynamic range from 0.5 to 70 ng/mL, with a low CEA detection limit of 0.015 ng/mL. The clinical performance of this method was successfully validated using 50 positive and 40 negative human serum samples, thereby demonstrating the high sensitivity of 98.0% and specificity of 97.5% in the detection of CEA. The proposed method is greatly simplified compared with the cumbersome steps required for traditional immunoassays, but without any loss of accuracy and stability, as well as reducing the time needed to detect CEA. Complex and bulky instruments are replaced with a smartphone. The proposed detection platform could potentially be applied in point-of-care testing. Graphical abstract.
Collapse
|
84
|
Trofimchuk E, Nilghaz A, Sun S, Lu X. Determination of norfloxacin residues in foods by exploiting the coffee-ring effect and paper-based microfluidics device coupling with smartphone-based detection. J Food Sci 2020; 85:736-743. [PMID: 32017096 DOI: 10.1111/1750-3841.15039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 11/28/2022]
Abstract
By utilizing the coffee-ring effect and microfluidic paper-based analytical devices (µPADs), this study improved the sensitivity of the determination of norfloxacin in four different food matrices. Micro-PADs in this study were fabricated by designing and embedding wax channels onto cellulose-based filter paper through printing and subjecting the paper to heat to allow the wax to penetrate the paper. Determination of norfloxacin concentration in food samples was achieved by monitoring the colorimetric reaction that occurred between norfloxacin and the added iron (III) nitrate nonahydrate in 5 mM ammonia in each reaction chamber. A transition metal hydroxide was formed through this reaction that resulted in the formation of a solid precipitate to enable the antibiotic to bind to the iron molecule via coordination chemistry. This metal ion-antibiotic complex generated a visible color change. Following the colorimetric reaction, images were taken and subsequently analyzed via ImageJ to determine the relative pixel intensity that was used to infer norfloxacin concentration. The analytical sensitivity of this device was determined to be as low as 50 ppm when analyzing the inner-ring reaction, and as low as 5 ppm when analyzing the outer coffee ring thereby allowing for an alternative cheaper, faster, and more user-friendly method to detect norfloxacin than the conventional methods. PRACTICAL APPLICATION: This novel paper-based microfluidic device can achieve the detection of antibiotic residues in agrifoods in a faster, cheaper, and more user-friendly manner.
Collapse
Affiliation(s)
- Evan Trofimchuk
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The Univ. of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Azadeh Nilghaz
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The Univ. of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Selina Sun
- NTBIO Diagnostics Inc., 18677 52 Avenue, Surrey, British Columbia, V3S 4P6, Canada
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The Univ. of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
85
|
The Twice-Oxidized Graphene Oxide/Gold Nanoparticles Composite SERS Substrate for Sensitive Detection of Clenbuterol Residues in Animal-Origin Food Samples. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01709-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
86
|
Apilux A, Rengpipat S, Suwanjang W, Chailapakul O. Paper-based immunosensor with competitive assay for cortisol detection. J Pharm Biomed Anal 2020; 178:112925. [DOI: 10.1016/j.jpba.2019.112925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
|
87
|
Zhao Y, Zeng D, Yan C, Chen W, Ren J, Jiang Y, Jiang L, Xue F, Ji D, Tang F, Zhou M, Dai J. Rapid and accurate detection of Escherichia coli O157:H7 in beef using microfluidic wax-printed paper-based ELISA. Analyst 2020; 145:3106-3115. [DOI: 10.1039/d0an00224k] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Escherichia coli O157:H7 is a severe foodborne pathogen. Paper-based ELISA can rapidly and accurately detect E.coli O157:H7 in beef. The method has good sensitivity, specificity and repeatability. It is suitable for point-of-care testing and offers new ideas for the detection of other foodborne pathogens.
Collapse
|
88
|
Yao D, Li C, Wen G, Liang A, Jiang Z. A highly sensitive and accurate SERS/RRS dual-spectroscopic immunosensor for clenbuterol based on nitrogen/silver-codoped carbon dots catalytic amplification. Talanta 2019; 209:120529. [PMID: 31892061 DOI: 10.1016/j.talanta.2019.120529] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023]
Abstract
Preparation of multifunctional codoped carbon dots, and their new analytical applications in surface-enhanced Raman scattering (SERS) quantitative analytical method are still challenge. To overcome these problems, the nitrogen/silver-codoped carbon dots (CDN/Ag) with highly catalytic amplification are prepared by microwave method, and characterized by spectrophotometry and electron microscopy. The results show that CDN/Ag can strongly catalyze trisodium citrate-HAuCl4 reaction to generate red nanogold with resonance Rayleigh scattering (RRS) effect and SERS effect using Victoria blue B (VBB) as molecular probes. The CDN/Ag catalytic amplification and specific immunoreaction of clenbuterol (Clen) are coupled with highly sensitive SERS and accurate RRS to fabricate a new dual-spectroscopic strategy with a detection limit of 0.68 pg mL-1 Clen.
Collapse
Affiliation(s)
- Dongmei Yao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China; College of Chemistry and Biology Engineering, Hechi University, Yizhou, 546300, China
| | - Chongning Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
| |
Collapse
|
89
|
A copper oxide-ionic liquid/reduced graphene oxide composite sensor enabled by digital dispensing: Non-enzymatic paper-based microfluidic determination of creatinine in human blood serum. Anal Chim Acta 2019; 1083:110-118. [DOI: 10.1016/j.aca.2019.07.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
|
90
|
One-Step Polylactic Acid Screen-Printing Microfluidic Paper-Based Analytical Device: Application for Simultaneous Detection of Nitrite and Nitrate in Food Samples. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7030044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this work, we report a one-step approach for fabricating screened-printed microfluidic paper-based analytical devices (μPADs) using polylactic acid as a new hydrophobic material. A polylactic acid solution was screen printed onto chromatography papers to create hydrophobic patterns for fluidic channels. The optimal polylactic acid concentration for successful device fabrication is 9% w/v. The μPADs were fabricated within 2 min and provided high reproducibility and stability. The utility of polylactic acid screen-printing was demonstrated for the simultaneous detection of nitrite and nitrate using colorimetric detection. Under optimized experimental conditions, the detection limits and the linear ranges, respectively, were 1.2 mg L−1 and 2–10 mg L−1 for nitrite and 3.6 mg L−1 and 10–50 mg L−1 for nitrate. The detection times for both ions were found to be within 12 min. The developed μPAD was applied for the simultaneous determination of these ions in food samples, and no significant differences in the analytical results were observed compared to those of the reference method. The polylactic acid screen-printing approach presented here provides a simple, rapid, and cost-effective alternative fabrication method for fabricating μPADs.
Collapse
|
91
|
Qi L, Zhang A, Wang Y, Liu L, Wang X. Atom transfer radical polymer-modified paper for improvement in protein fixation in paper-based ELISA. BMC Chem 2019; 13:110. [PMID: 31463479 PMCID: PMC6706939 DOI: 10.1186/s13065-019-0622-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
A newly modified paper-based enzyme-linked immunosorbent assay (P-ELISA) was established by immobilizing more proteins on the paper surface through an atom transfer radical polymerization (ATRP) reaction. In addition, introducing graphene oxide (GO) sheets, Au nanoparticles (AuNps) and two primary antibodies (Ab1s) led to signal amplification and cost reduction.
Collapse
Affiliation(s)
- Lu Qi
- 1Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Aihong Zhang
- Institute of Chemical Defense, Beijing, 102205 China
| | - Yu Wang
- 1Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Long Liu
- 1Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Xinghe Wang
- 1Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| |
Collapse
|
92
|
Han X, Cao M, Wu M, Wang YJ, Yu C, Zhang C, Yu H, Wei JF, Li L, Huang W. A paper-based chemiluminescence immunoassay device for rapid and high-throughput detection of allergen-specific IgE. Analyst 2019; 144:2584-2593. [PMID: 30830127 DOI: 10.1039/c8an02020e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fast and precise detection of potential allergen-specific immunoglobulin E (sIgE) is imperative for the diagnosis and appropriate treatment of allergic diseases. In this study, we have successfully fabricated a novel paper-based immunoassay device for the detection of sIgE in allergic diseases. We used Can f 1, one of the main dog allergens, as a model allergen to detect sIgE in human sera. To achieve excellent performance, the experimental parameters were optimized. Further, we extended this device for potential applications in the clinical diagnosis of allergic diseases: worthwhile clinical performance in the detection of allergens was achieved as compared to that achieved by commercial enzyme-linked immunosorbent assay (ELISA) kit. Therefore, it was proven that this strategy has the advantages of high-throughput, rapid, sensitive, and highly accurate detection of trace amounts of sIgEs. Furthermore, by simply changing the antigen and antibody, this device could be used for the high-throughput detection of other allergens, so as to achieve multiallergen detection and appropriate desensitization therapy, thereby making it promising in the determination of allergic diseases in clinics.
Collapse
Affiliation(s)
- Xisi Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Lim H, Jafry AT, Lee J. Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices. Molecules 2019; 24:E2869. [PMID: 31394856 PMCID: PMC6721703 DOI: 10.3390/molecules24162869] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 11/20/2022] Open
Abstract
Paper-based microfluidic devices have advanced significantly in recent years as they are affordable, automated with capillary action, portable, and biodegradable diagnostic platforms for a variety of health, environmental, and food quality applications. In terms of commercialization, however, paper-based microfluidics still have to overcome significant challenges to become an authentic point-of-care testing format with the advanced capabilities of analyte purification, multiplex analysis, quantification, and detection with high sensitivity and selectivity. Moreover, fluid flow manipulation for multistep integration, which involves valving and flow velocity control, is also a critical parameter to achieve high-performance devices. Considering these limitations, the aim of this review is to (i) comprehensively analyze the fabrication techniques of microfluidic paper-based analytical devices, (ii) provide a theoretical background and various methods for fluid flow manipulation, and iii) highlight the recent detection techniques developed for various applications, including their advantages and disadvantages.
Collapse
Affiliation(s)
- Hosub Lim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Ali Turab Jafry
- Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan.
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| |
Collapse
|
94
|
Yu X, Lee JK, Liu H, Yang H. Synthesis of magnetic nanoparticles to detect Sudan dye adulteration in chilli powders. Food Chem 2019; 299:125144. [PMID: 31323440 DOI: 10.1016/j.foodchem.2019.125144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/22/2022]
Abstract
Magnetic nanoparticles were synthesised to extract Sudan dyes from chilli powders. The adsorbents used were magnetic ferroferric oxide nanoparticles coated with polystyrene. The extraction procedures for Sudan dyes comprised liquid-solid extraction and magnetic solid phase extraction. The conditions were optimised to achieve efficient magnetic solid phase extraction, including extraction and desorption time, type and volume of the desorption solvent, and the mass of the adsorbents. Repeatability tests showed satisfactory recovery rates of 80.2-115.8%, with a relative standard deviation <3.8%. The results suggested that the proposed extraction method was effective and efficient to extract Sudan dyes from chilli powders. The extraction process was simpler compared with traditional approaches because the adsorbents can be rapidly removed from the sample matrix using a permanent magnet. The use of recyclable adsorbents decreased the cost greatly. Chilli powder samples collected from local markets in Singapore were tested using the proposed method under optimum conditions.
Collapse
Affiliation(s)
- Xi Yu
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Jun Kang Lee
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, PR China
| | - Hongshun Yang
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
95
|
Zhang Z, Ma X, Jia M, Li B, Rong J, Yang X. Deposition of CdTe quantum dots on microfluidic paper chips for rapid fluorescence detection of pesticide 2,4-D. Analyst 2019; 144:1282-1291. [PMID: 30548046 DOI: 10.1039/c8an02051e] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rapid detection of pesticides in fruits is an ongoing challenge. The objective of the present study was to develop novel fluorescent microfluidic paper chips for specific recognition and sensitive detection of the pesticide 2,4-D through the electron-transfer-induced fluorescence quenching mechanism. CdTe quantum dots (QDs) were deposited onto cellulose paper (base material) to yield imprinted paper chips (paper@QDs@MIPs). This method allows the transferability of the molecularly imprinted fluorescence sensor from the liquid phase to the solid phase (paper base) for rapid and portable analysis. The resultant imprinted paper chips were effectively characterized, and they exhibited ideal ordered spatial network structure, chemical stability, and fluorescence property. The paper@QDs@MIPs showed that 2,4-D binding significantly reduced the fluorescence intensity within less than 18 min, and it achieved satisfactory linearity in the range of 0.83-100 μM and high detectability of 90 nM. The recognition specificity for 2,4-D relative to its analogues was shown, and the imprinting factor was 2.13. In addition, the recoveries of the spiked bean sprouts at three concentration levels ranged within 94.2-107.0%, with a relative standard deviation of less than 5.9%. Collectively, the device provided an effective platform for rapid recognition, convenience, and detection of trace food pollutants in complex matrices, thereby ensuring food safety and further promoting surface imprinting studies.
Collapse
Affiliation(s)
- Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | | | | | | | | | | |
Collapse
|
96
|
A fluorometric clenbuterol immunoassay using sulfur and nitrogen doped carbon quantum dots. Mikrochim Acta 2019; 186:323. [PMID: 31049706 DOI: 10.1007/s00604-019-3431-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
A fluorometric clenbuterol immunoassay is described that uses S- and N-co-doped carbon quantum dots as the fluorescent probe. Strongly fluorescent S/N-doped carbon quantum dots (S/N-CDs) were synthesized by hydrothermal method using fructose as the carbon precursor and L-cysteine as S/N sources. The S/N-CDs were characterized by transmission electron microscopy, energy dispersive spectroscopy and Fourier transform infrared spectroscopy (FTIR). Under 350 nm photoexcitation, they display strong purple fluorescence with an emission peak at 405 nm. In pH 4.0 solution, the amino groups (confirmed by FTIR) on the carbon quantum dots were coupled to clenbuterol antibody (Ab) by amine-amine coupling reaction to quench the fluorescence. If clenbuterol (Clen) is added, it binds to the Ab to generate a stable Ab-Clen immunocomplex and free S/N-CD. This causes the fluorescence of nanoprobe to be restored. The fluorescence of the system increases linearly in the 0.07-1.7 ng·mL-1 Clen concentration range. The probe of type S/N4-CD displays the best sensitivity. The detection limit is 23 pg·mL-1. Graphical abstract Schematic presentation of clenbuterol fluorometric immunoassay using sulfur and nitrogen doped carbon quantum dots.
Collapse
|
97
|
Weng X, Kang Y, Guo Q, Peng B, Jiang H. Recent advances in thread-based microfluidics for diagnostic applications. Biosens Bioelectron 2019; 132:171-185. [PMID: 30875629 PMCID: PMC7127036 DOI: 10.1016/j.bios.2019.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
Abstract
Over the past decades, researchers have been seeking attractive substrate materials to keep microfluidics improving to outbalance the drawbacks and issues. Cellulose substrates, including thread, paper and hydrogels are alternatives due to their distinct structural and mechanical properties for a number of applications. Thread have gained considerable attention and become promising powerful tool due to its advantages over paper-based systems thus finds numerous applications in the development of diagnostic systems, smart bandages and tissue engineering. To the best of our knowledge, no comprehensive review articles on the topic of thread-based microfluidics have been published and it is of significance for many scientific communities working on Microfluidics, Biosensors and Lab-on-Chip. This review gives an overview of the advances of thread-based microfluidic diagnostic devices in a variety of applications. It begins with an overall introduction of the fabrication followed by an in-depth review on the detection techniques in such devices and various applications with respect to effort and performance to date. A few perspective directions of thread-based microfluidics in its development are also discussed. Thread-based microfluidics are still at an early development stage and further improvements in terms of fabrication, analytical strategies, and function to become low-cost, low-volume and easy-to-use point-of-care (POC) diagnostic devices that can be adapted or commercialized for real world applications.
Collapse
Affiliation(s)
- Xuan Weng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Qian Guo
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Bei Peng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Hai Jiang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China.
| |
Collapse
|
98
|
Feng Y, Lee Y. Microfluidic assembly of food-grade delivery systems: Toward functional delivery structure design. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
99
|
Wax-Printed Fluidic Time Delays for Automating Multi-Step Assays in Paper-Based Microfluidic Devices (MicroPADs). INVENTIONS 2019. [DOI: 10.3390/inventions4010020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microfluidic paper-based analytical devices (microPADs) have emerged as a promising platform for point-of-care diagnostic devices. While the inherent wicking properties of microPADs allow for fluid flow without supporting equipment, this also presents a major challenge in achieving robust fluid control, which becomes especially important when performing complex multi-step assays. Herein, we describe an ideal method of fluid control mediated by wax-printed fluidic time delays. This method relies on a simple fabrication technique, does not utilize chemicals/reagents that could affect downstream assays, is readily scalable, and has a wide temporal range of tunable fluid control. The delays are wax printed on both the top and bottom of pre-fabricated microPAD channels, without subsequent heating, to create hemi-/fully-enclosed channels. With these wax printed delays, we were able to tune the time it took aqueous solutions to wick across a 25 mm-long channel between 3.6 min and 13.4 min. We then employed these fluid delays in the sequential delivery of four dyes to a test zone. Additionally, we demonstrated the automation of two simple enzymatic assays with this fluid control modality. This method of fluid control may allow future researchers to automate more complex assays, thereby further advancing microPADs toward real-world applications.
Collapse
|
100
|
Choi JR, Yong KW, Choi JY, Cowie AC. Emerging Point-of-care Technologies for Food Safety Analysis. SENSORS (BASEL, SWITZERLAND) 2019; 19:817. [PMID: 30781554 PMCID: PMC6412947 DOI: 10.3390/s19040817] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 02/08/2023]
Abstract
Food safety issues have recently attracted public concern. The deleterious effects of compromised food safety on health have rendered food safety analysis an approach of paramount importance. While conventional techniques such as high-performance liquid chromatography and mass spectrometry have traditionally been utilized for the detection of food contaminants, they are relatively expensive, time-consuming and labor intensive, impeding their use for point-of-care (POC) applications. In addition, accessibility of these tests is limited in developing countries where food-related illnesses are prevalent. There is, therefore, an urgent need to develop simple and robust diagnostic POC devices. POC devices, including paper- and chip-based devices, are typically rapid, cost-effective and user-friendly, offering a tremendous potential for rapid food safety analysis at POC settings. Herein, we discuss the most recent advances in the development of emerging POC devices for food safety analysis. We first provide an overview of common food safety issues and the existing techniques for detecting food contaminants such as foodborne pathogens, chemicals, allergens, and toxins. The importance of rapid food safety analysis along with the beneficial use of miniaturized POC devices are subsequently reviewed. Finally, the existing challenges and future perspectives of developing the miniaturized POC devices for food safety monitoring are briefly discussed.
Collapse
Affiliation(s)
- Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, 2054⁻6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Kar Wey Yong
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Jean Yu Choi
- Faculty of Medicine, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| | - Alistair C Cowie
- Faculty of Medicine, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|