51
|
Xing L, Wang Z, Hao Y, Zhang W. Marine Products As a Promising Resource of Bioactive Peptides: Update of Extraction Strategies and Their Physiological Regulatory Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3081-3095. [PMID: 35235313 DOI: 10.1021/acs.jafc.1c07868] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine products are a rich source of nutritional components and play important roles in promoting human health. Fish, mollusks, shellfish, as well as seaweeds are the major components of marine products with high-quality proteins. During the last several decades, bioactive peptides from marine products have gained much attention due to their diverse biological properties including antioxidant, antihypertensive, antimicrobial, antidiabetic, immunoregulation, and antifatigue. The structural characteristics of marine bioactive peptides largely determine the differences in signaling pathways that can be involved, which is also an internal mechanism to exert various physiological regulatory activities. In addition, the marine bioactive peptides may be used as ingredients in food or nutritional supplements with the function of treating or alleviating chronic diseases. This review presents an update of marine bioactive peptides with the highlights on the novel producing technologies, the physiological effects, as well as their regulation mechanisms. Challenges and problems are also discussed in this review to provide some potential directions for future research.
Collapse
Affiliation(s)
- Lujuan Xing
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zixu Wang
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yuejing Hao
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
52
|
Olena Z, Yang Y, TingTing Y, XiaoTao Y, HaiLian R, Xun X, Dong X, CuiLing W, HaiLun H. Simultaneous preparation of antioxidant peptides and lipids from microalgae by pretreatment with bacterial proteases. BIORESOURCE TECHNOLOGY 2022; 348:126759. [PMID: 35077814 DOI: 10.1016/j.biortech.2022.126759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Chlorella can produce large amounts of lipids and therefore has great potential for biodiesel production. In this study, Chlorella protothecoides was hydrolyzed by several kinds of extracellular bacterial proteases produced by Pseudoalteromonas sp. ZB23-2, B27-3 and JS4-1 before lipid extraction. Hydrolysates with high antioxidant activity were obtained. The scavenging activities of 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydrogen peroxide, and hydroxyl free radicals reached 33.47 ± 0.68%, 46.81 ± 2.38%, and 7.35 ± 0.37 µmol·TE/µmol, respectively. Likewise, proteolysis reduced biomass, which resulted in a reduction in lipid leaching reagents by 35.34-45.49%. Compared to the commonly used Kates and Paradis method (171.77 ± 2.50 mg/g), the modified ethanol lipid extraction combined with JS4-1 enzyme pretreatment (291.06 ± 1.70 mg/g) and acetone-ethanol lipid extraction combined with B27-3 protease pretreatment (277.20 ± 3.30 mg/g) resulted in a larger and more diverse lipid extraction. Protease pretreatment combined with less toxic solvents for lipid extraction improved microalgal biorefinery and reduced environmental pollution.
Collapse
Affiliation(s)
- Zhur Olena
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Yan Yang
- Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yin TingTing
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Yan XiaoTao
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Rao HaiLian
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Xiao Xun
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Xiao Dong
- State Key Laboratory of Coal Resources and Safe Mining, University of Mining and Technology, Xuzhou 221116, China
| | - Wu CuiLing
- Department of Biochemistry, Changzhi Medical College, Changzhi 046000, China
| | - He HaiLun
- School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
53
|
Wang YM, Li XY, Wang J, He Y, Chi CF, Wang B. Antioxidant peptides from protein hydrolysate of skipjack tuna milt: Purification, identification, and cytoprotection on H2O2 damaged human umbilical vein endothelial cells. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
54
|
Wang J, Wang YM, Li LY, Chi CF, Wang B. Twelve Antioxidant Peptides From Protein Hydrolysate of Skipjack Tuna (Katsuwonus pelamis) Roe Prepared by Flavourzyme: Purification, Sequence Identification, and Activity Evaluation. Front Nutr 2022; 8:813780. [PMID: 35127795 PMCID: PMC8814634 DOI: 10.3389/fnut.2021.813780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 01/12/2023] Open
Abstract
For using aquatic by-products to manufacture high-value products, Skipjack tuna (Katsuwonus pelamis) roes were degreased, pretreated with microwave, and hydrolyzed using five proteases. The protein hydrolysate (TRPH) generated using Flavourzyme displayed the strongest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Twelve antioxidative peptides were prepared from TRPH by ultrafiltration and chromatography methods and determined to be SGE, VDTR, AEM, QDHKA, TVM, QEAE, YEA, VEP, AEHNH, QEP, QAEP, and YVM with molecular weights of 291.24, 489.50, 349.41, 597.59, 349.44, 475.42, 381.36, 343.37, 606.58, 372.35, 443.42, and 411.49 Da, respectively. AEM, QDHKA, YEA, AEHNH, and YVM presented the strongest scavenging activity on DPPH radical (EC50 values of 0.250±0.035, 0.279±0.017, 0.233±0.012, 0.334±0.011, and 0.288±0.015 mg/ml, respectively), hydroxyl radical (EC50 values of 0.456±0.015, 0.536±0.021, 0.476 ± 0.051, 0.369 ± 0.052, and 0.413 ± 0.019 mg/ml, respectively), and superoxide anion free radical (EC50 values of 0.348 ± 0.018, 0.281 ± 0.013, 0.305 ± 0.022, 0.198 ± 0.011, and 0.425 ± 0.021 mg/ml, respectively). Moreover, AEM, QDHKA, YEA, AEHNH, and YVM presented high lipid peroxidation inhibition ability, Ferric-reducing power, and significant protective function on H2O2-induced Chang liver cells. Therefore, AEM, QDHKA, YEA, AEHNH, and YVM could be natural antioxidant ingredients used in pharmaceutical and functional products.
Collapse
Affiliation(s)
- Jiao Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Long-Yan Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Chang-Feng Chi
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- Bin Wang
| |
Collapse
|
55
|
Zu XY, Zhao YJ, Fu SM, Liao T, Li HL, Xiong GQ. Physicochemical Properties and Biological Activities of Silver Carp Scale Peptide and Its Nanofiltration Fractions. Front Nutr 2022; 8:812443. [PMID: 35059429 PMCID: PMC8765580 DOI: 10.3389/fnut.2021.812443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
To explore the physicochemical properties and biological functions of silver carp scale peptide (SCSP), its molecular-weight fractions SCSP-I, II, and III obtained by nanofiltration were assessed for their solubility, emulsibility, free radical scavenging ability, effect on the proliferation of mouse B16 cells. The results showed that the solubility of each fraction of SCSP was higher than 90%, SCSP-II and III were higher than 95%. The antioxidant powers on ⦁OH,O 2 - ⦁ and Fe3+ were ranked as SCSP-III > SCSP-II > SCSP-I > SCSP. All fractions of SCSP had no toxic or side effects in mouse B16 melanoma cells experiments in vitro. At a concentration of 0.01 mg/mL, the tyrosinase activity of B16 cells in the SCSP-II fraction was significantly lower than that of the α-arbutin (P < 0.05), at 65.37%. The molecular weight distribution of SCSP was 399-1404 Dalton and 13 peptide sequences were detected. Among them, SCSP-II contained many hydrophobic amino acids, and SCSP-III stood out for combining arginine with hydrophobic amino acids. This may be the reason why the low molecular-weight SCSPs show the strong antioxidant activity and strong tyrosinase inhibition. The work provides a data base for the development of SCSP and increases the possibility of its application.
Collapse
Affiliation(s)
- Xiao-yan Zu
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Ya-jing Zhao
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Petrochemical, Lanzhou University of Technology, Lanzhou, China
| | - Shi-ming Fu
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Tao Liao
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hai-lan Li
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guang-quan Xiong
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
56
|
Zhang X, Dai Z, Zhang Y, Dong Y, Hu X. Structural characteristics and stability of salmon skin protein hydrolysates obtained with different proteases. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
57
|
Badoei-Dalfard A, Monemi F, Hassanshahian M. One-pot synthesis and biochemical characterization of a magnetic collagenase nanoflower and evaluation of its biotechnological applications. Colloids Surf B Biointerfaces 2021; 211:112302. [PMID: 34954517 DOI: 10.1016/j.colsurfb.2021.112302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Recently, hierarchical magnetic enzyme nanoflowers have been found extensive attention for efficient enzyme immobilization due to high surface area, low mass transfer limitations, active site accessibility, promotion of the enzymatic performance, and facile reusing. Herein, we report the purification of the Bacillus collagenase and then synthesis of magnetic cross-linked collagenase-metal hybrid nanoflowers (mcCNFs). The catalytic efficiency (kcat/Km) value of the immobilized collagenase was 2.2 times more than that of the free collagenase. The collagenase activity of mcCNFs enhanced about 2.9 and 4.6 at 85 and 90 °C, respectively, compared to free collagenase. Thermal stability of mcCNFs increased about 31% and 24% after 3 h of incubation at 50 and 60 °C, respectively. After 10 cycles of reusing, the mCNFs collagenase showed 83% of its initial activity. Results showed that the mcCNFs revealed 1.4 times more activity than the free collagenase in 0.16% protein waste. Furthermore, the hydrolysis value of chicken pie protein wastes by the immobilized enzyme obtained 4 times more than the free collagenase after 240 min incubation at 40 °C. Finally, our results showed that the construction of mcCNFs is an efficient method to increase the enzymatic performance and has excessive potential for the hydrolysis of protein wastes in the food industry.
Collapse
Affiliation(s)
- Arastoo Badoei-Dalfard
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Farzaneh Monemi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Hassanshahian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
58
|
Zhang W, Jia N, Zhu Z, Wang Y, Wang J, Xue C. Changes of antioxidative activities and peptidomic patterns of Auxenochlorella pyrenoidosa protein hydrolysates: Effects of enzymatic hydrolysis and decoloration processes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
59
|
Wan MC, Qin W, Lei C, Li QH, Meng M, Fang M, Song W, Chen JH, Tay F, Niu LN. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact Mater 2021; 6:4255-4285. [PMID: 33997505 PMCID: PMC8102716 DOI: 10.1016/j.bioactmat.2021.04.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/08/2023] Open
Abstract
Marine resources have tremendous potential for developing high-value biomaterials. The last decade has seen an increasing number of biomaterials that originate from marine organisms. This field is rapidly evolving. Marine biomaterials experience several periods of discovery and development ranging from coralline bone graft to polysaccharide-based biomaterials. The latter are represented by chitin and chitosan, marine-derived collagen, and composites of different organisms of marine origin. The diversity of marine natural products, their properties and applications are discussed thoroughly in the present review. These materials are easily available and possess excellent biocompatibility, biodegradability and potent bioactive characteristics. Important applications of marine biomaterials include medical applications, antimicrobial agents, drug delivery agents, anticoagulants, rehabilitation of diseases such as cardiovascular diseases, bone diseases and diabetes, as well as comestible, cosmetic and industrial applications.
Collapse
Affiliation(s)
- Mei-chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qi-hong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of the PLA), Dongda Street, Beijing, 100071, PR China
| | - Meng Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ming Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Franklin Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, PR China
| |
Collapse
|
60
|
Recent developments in valorisation of bioactive ingredients in discard/seafood processing by-products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
61
|
Karami Z, Tamri H, Badoei-dalfard A. Immobilization of Protease KHB3 onto Magnetic Metal–Organic Frameworks and Investigation of Its Biotechnological Applications. Catal Letters 2021. [DOI: 10.1007/s10562-021-03808-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
62
|
Novikov VY, Shumskaya NV, Mukhin VA, Zolotarev KV, Mikhailov AN, Nakhod VI, Mikhailova MV. Chemical Characterization of Atlantic Cod ( Gadus morhua) Collagen Hydrolyzed Using Enzyme Preparation Derived from Red King Crab ( Paralithodes camtschaticus) and Its Potential as a Core Component of Bacterial Culture Medium. Mar Drugs 2021; 19:472. [PMID: 34436311 PMCID: PMC8399610 DOI: 10.3390/md19080472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 11/26/2022] Open
Abstract
The Atlantic cod (Gadus morhua) and red king crab (Paralithodes camtschaticus) processing wastes are massive and unutilized in the Murmansk region of Russia. The samples of skin-containing waste of Atlantic cod fillets production were hydrolyzed using enzyme preparations derived from red king crab hepatopancreases, porcine pancreases, and Bacillus subtilis bacteria. The activity of enzymes from crab hepatopancreases was significantly higher than the activity of enzymes derived from other sources. The optimal conditions of the hydrolysis process have been figured out. The samples of cod processing waste hydrolysate were analyzed for amino acid composition and molecular weight distribution. The samples of hydrolysate were used as core components for bacterial culture medium samples. The efficiency of the medium samples was tested for Escherichia coli growth rate; the most efficient sample had an efficiency of 95.3% of that of a commercially available medium based on fish meal. Substitution of medium components with those derived from industrial by-products is one of the ways to decrease a cost of a culture medium in biopharmaceutical drug production.
Collapse
Affiliation(s)
- Vitaliy Yu. Novikov
- Polar Branch, Russian Federal Research Institute of Fisheries and Oceanography, 6 Akademik Knipovich Street, 183038 Murmansk, Russia; (V.Y.N.); (N.V.S.); (V.A.M.)
| | - Nadezhda V. Shumskaya
- Polar Branch, Russian Federal Research Institute of Fisheries and Oceanography, 6 Akademik Knipovich Street, 183038 Murmansk, Russia; (V.Y.N.); (N.V.S.); (V.A.M.)
| | - Vyacheslav A. Mukhin
- Polar Branch, Russian Federal Research Institute of Fisheries and Oceanography, 6 Akademik Knipovich Street, 183038 Murmansk, Russia; (V.Y.N.); (N.V.S.); (V.A.M.)
| | - Konstantin V. Zolotarev
- Laboratory of Environmental Biotechnology, Institute of Biomedical Chemistry, 10 Pogodiskaya Street, 119121 Moscow, Russia; (A.N.M.); (V.I.N.); (M.V.M.)
| | - Anton N. Mikhailov
- Laboratory of Environmental Biotechnology, Institute of Biomedical Chemistry, 10 Pogodiskaya Street, 119121 Moscow, Russia; (A.N.M.); (V.I.N.); (M.V.M.)
| | - Valeriya I. Nakhod
- Laboratory of Environmental Biotechnology, Institute of Biomedical Chemistry, 10 Pogodiskaya Street, 119121 Moscow, Russia; (A.N.M.); (V.I.N.); (M.V.M.)
| | - Marina V. Mikhailova
- Laboratory of Environmental Biotechnology, Institute of Biomedical Chemistry, 10 Pogodiskaya Street, 119121 Moscow, Russia; (A.N.M.); (V.I.N.); (M.V.M.)
| |
Collapse
|
63
|
Cytoprotective Effects of Fish Protein Hydrolysates against H 2O 2-Induced Oxidative Stress and Mycotoxins in Caco-2/TC7 Cells. Antioxidants (Basel) 2021; 10:antiox10060975. [PMID: 34207334 PMCID: PMC8234493 DOI: 10.3390/antiox10060975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
Many studies report the potent antioxidant capacity for fish protein hydrolysates, including radical scavenging activity and inhibition ability on lipid peroxidation (LPO). In this study, the in vitro cytotoxicity of protein hydrolysates from different salmon, mackerel, and herring side streams fractions was evaluated in the concentration range from 1 to 1:32 dilution, using cloned human colon adenocarcinoma cells TC7 (Caco-2/TC7) by MTT and PT assays. The protein hydrolysates' antioxidant capacity and oxidative stress effects were evaluated by LPO and reactive oxygen species (ROS) generation, respectively. The antioxidant capacity for pure and bioavailable hydrolysate fraction was also evaluated and compared. Additionally, mycotoxin levels were determined in the fish protein hydrolysates, and their cytoprotective effect against T-2 toxin was evaluated. Both hydrolysates and their bioavailable fraction induced similar cell viability rates. The highest cytoprotective effect was obtained for the salmon viscera protein hydrolysate (HSV), which increased the cell viability by 51.2%. ROS accumulation induced by H2O2 and LPO was suppressed by all pure hydrolysates. The cytoprotective effect of hydrolysates was observed against T-2. Moreover, the different fish fraction protein hydrolysates contain variable nutrients and unique bioactive peptide composition showing variable bioactivity, which could be a useful tool in developing dietary supplements with different target functional properties.
Collapse
|
64
|
Zhang SY, Zhao GX, Suo SK, Wang YM, Chi CF, Wang B. Purification, Identification, Activity Evaluation, and Stability of Antioxidant Peptides from Alcalase Hydrolysate of Antarctic Krill ( Euphausia superba) Proteins. Mar Drugs 2021; 19:md19060347. [PMID: 34204535 PMCID: PMC8235214 DOI: 10.3390/md19060347] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
For utilizing the largest source of marine proteins, Antarctic krill (Euphausia superba) proteins were defatted and hydrolyzed separately using pepsin, alcalase, papain, trypsin, and netrase, and alcalase hydrolysate (EPAH) showed the highest DPPH radical (DPPH·) and hydroxyl radical (HO·) scavenging activity among five hydrolysates. Using ultrafiltration and chromatography methods, fifteen antioxidant peptides were purified from EPAH and identified as Asn-Gln-Met (NQM), Trp-Phe-Pro-Met (WFPM), Gln-Asn-Pro-Thr (QNPT), Tyr-Met-Asn-Phe (YMNF), Ser-Gly-Pro-Ala (SGPA), Ser-Leu-Pro-Tyr (SLPY), Gln-Tyr-Pro-Pro-Met-Gln-Tyr (QYPPMQY), Glu-Tyr-Glu-Ala (EYEA), Asn-Trp-Asp-Asp-Met-Arg-Ile-Val-Ala-Val (NWDDMRIVAV), Trp-Asp-Asp-Met-Glu-Arg-Leu-Val-Met-Ile (WDDMERLVMI), Asn-Trp-Asp-Asp-Met-Glu-Pro-Ser-Phe (NWD-DMEPSF), Asn-Gly-Pro-Asp-Pro-Arg-Pro-Ser-Gln-Gln (NGPDPRPSQQ), Ala-Phe-Leu-Trp-Asn (AFLWA), Asn-Val-Pro-Asp-Met (NVPDM), and Thr-Phe-Pro-Ile-Tyr-Asp-Tyr-Pro-Gln (TFPIYDPQ), respectively, using a protein sequencer and ESI/MS. Among fifteen antioxidant peptides, SLPY, QYPPMQY and EYEA showed the highest scavenging activities on DPPH· (EC50 values of 1.18 ± 0.036, 1.547 ± 0.150, and 1.372 ± 0.274 mg/mL, respectively), HO· (EC50 values of 0.826 ± 0.027, 1.022 ± 0.058, and 0.946 ± 0.011 mg/mL, respectively), and superoxide anion radical (EC50 values of 0.789 ± 0.079, 0.913 ± 0.007, and 0.793 ± 0.056 mg/mL, respectively). Moreover, SLPY, QYPPMQY and EYEA showed strong reducing power, protective capability against H2O2-damaged plasmid DNA, and lipid peroxidation inhibition ability. Furthermore, SLPY, QYPPMQY, and EYEA had high stability under temperatures lower than 80 °C, pH values ranged from 6-8, and simulated GI digestion for 180 min. The results showed that fifteen antioxidant peptides from alcalase hydrolysate of Antarctic krill proteins, especially SLPY, QYPPMQY and EYEA, might serve as effective antioxidant agents applied in food and health products.
Collapse
Affiliation(s)
- Shuang-Yi Zhang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.Z.); (G.-X.Z.); (S.-K.S.); (Y.-M.W.)
| | - Guo-Xu Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.Z.); (G.-X.Z.); (S.-K.S.); (Y.-M.W.)
| | - Shi-Kun Suo
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.Z.); (G.-X.Z.); (S.-K.S.); (Y.-M.W.)
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.Z.); (G.-X.Z.); (S.-K.S.); (Y.-M.W.)
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: (C.-F.C.); (B.W.); Tel./Fax: +86-580-255-4818 (C.-F.C.); +86-580-255-4781 (B.W.)
| | - Bin Wang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: (C.-F.C.); (B.W.); Tel./Fax: +86-580-255-4818 (C.-F.C.); +86-580-255-4781 (B.W.)
| |
Collapse
|
65
|
Yesiltas B, Gregersen S, Lægsgaard L, Brinch ML, Olsen TH, Marcatili P, Overgaard MT, Hansen EB, Jacobsen C, García-Moreno PJ. Emulsifier peptides derived from seaweed, methanotrophic bacteria, and potato proteins identified by quantitative proteomics and bioinformatics. Food Chem 2021; 362:130217. [PMID: 34098440 DOI: 10.1016/j.foodchem.2021.130217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Global focus on sustainability has accelerated research into alternative non-animal sources of food protein and functional food ingredients. Amphiphilic peptides represent a class of promising biomolecules to replace chemical emulsifiers in food emulsions. In contrast to traditional trial-and-error enzymatic hydrolysis, this study utilizes a bottom-up approach combining quantitative proteomics, bioinformatics prediction, and functional validation to identify novel emulsifier peptides from seaweed, methanotrophic bacteria, and potatoes. In vitro functional validation reveal that all protein sources contained embedded novel emulsifier peptides comparable to or better than sodium caseinate (CAS). Thus, peptides efficiently reduced oil-water interfacial tension and generated physically stable emulsions with higher net zeta potential and smaller droplet sizes than CAS. In silico structure modelling provided further insight on peptide structure and the link to emulsifying potential. This study clearly demonstrates the potential and broad applicability of the bottom-up approach for identification of abundant and potent emulsifier peptides.
Collapse
Affiliation(s)
- Betül Yesiltas
- National Food Institute, Technical University of Denmark, Denmark.
| | - Simon Gregersen
- Department of Chemistry and Bioscience, Aalborg University, Denmark.
| | - Linea Lægsgaard
- National Food Institute, Technical University of Denmark, Denmark
| | - Maja L Brinch
- National Food Institute, Technical University of Denmark, Denmark
| | - Tobias H Olsen
- Department of Bio and Health Informatics, Technical University of Denmark, Denmark
| | - Paolo Marcatili
- Department of Bio and Health Informatics, Technical University of Denmark, Denmark
| | | | - Egon B Hansen
- National Food Institute, Technical University of Denmark, Denmark
| | | | - Pedro J García-Moreno
- National Food Institute, Technical University of Denmark, Denmark; Department of Chemical Engineering, University of Granada, Spain.
| |
Collapse
|
66
|
Mukhia S, Kumar A, Kumar R. Generation of antioxidant peptides from soy protein isolate through psychrotrophic Chryseobacterium sp. derived alkaline broad temperature active protease. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
67
|
Purification and Identification of Novel Antioxidant Peptides from Enzymatically Hydrolysed Samia ricini Pupae. Molecules 2021; 26:molecules26092588. [PMID: 33946694 PMCID: PMC8124966 DOI: 10.3390/molecules26092588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
The emergence of excessive free radicals leads to the destruction of various systems within the body. These free radicals also affect nutritional values, color, taste, and emit an odor akin to rancid food. Most food industries use synthetic antioxidants, such as BHT (butylated hydroxytoluene) or BHA (butylated hydroxy anisole). However, high doses of these can be harmful to our health. Therefore, an antioxidant compounds, such as bioactive peptides from edible animals or plants, have emerged to be a very promising alternative as they reduce potential side effects. This study focused on the purification and identification of antioxidant peptides from protein hydrolysates of wild silkworm pupae (Samia ricini). Antioxidant peptides were purified from the hydrolysate by ultrafiltration and RP-HPLC. The results showed that protein hydrolysate from S. ricini pupae by trypsin with a molecular weight lower than 3 kDa and highly hydrophobic property, exhibited strong DPPH radical scavenging activity and chelating activity. Further identification of peptides from the fraction with the highest antioxidant activity was carried out using LC-MS/MS. Three novel peptides, i.e., Met-Ley-Ile-Ile-Ile-Met-Arg, Leu-Asn-Lys-Asp-Leu-Met-Arg, and Glu-Asn-Ile-Ile-Leu-Phe-Arg, were identified. The results of this study indicated that the protein hydrolysate from S. ricini pupae possessed potent biological activity, and the novel antioxidant peptides could be utilized to develop health-related antioxidants in food industry.
Collapse
|
68
|
Nguyen BC, Kha TC, Nguyen KHN, Nguyen HMX. Optimization of enzymatic hydrolysis of collagen from yellowfin tuna skin (
Thunnus albacares
) by response surface methodology and properties of hydrolyzed collagen. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Binh Cong Nguyen
- Faculty of Food Science and Technology Nong Lam University Ho Chi Minh City Ho Chi Minh City Vietnam
- Faculty of Fisheries Ho Chi Minh City University of Food Industry Ho Chi Minh City Vietnam
| | - Tuyen Chan Kha
- Faculty of Food Science and Technology Nong Lam University Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Kha Hoang Nam Nguyen
- Faculty of Fisheries Nong Lam University Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Hong Minh Xuan Nguyen
- Faculty of Food Science and Technology Nong Lam University Ho Chi Minh City Ho Chi Minh City Vietnam
| |
Collapse
|
69
|
Gao R, Yu Q, Shen Y, Chu Q, Chen G, Fen S, Yang M, Yuan L, McClements DJ, Sun Q. Production, bioactive properties, and potential applications of fish protein hydrolysates: Developments and challenges. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
70
|
Wang J, Guo M, Wang Q, Dong J, Lu S, Lyu B, Ma X. Antioxidant activities of peptides derived from mutton ham, Xuanwei ham and Jinhua ham. Food Res Int 2021; 142:110195. [PMID: 33773670 DOI: 10.1016/j.foodres.2021.110195] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/17/2021] [Accepted: 01/24/2021] [Indexed: 12/28/2022]
Abstract
The aim of the study was to evaluate antioxidant activity of crude peptides with molecular weight less than 3 KDa extracted from Xuanwei ham, Jinhua ham and mutton ham. UPLC-Q-TOF-MS/MS was used for composition analysis of peptides and homologous protein matching. Further, crude peptide (<3 KDa) was purified using G-15 gel filtration chromatography, and the main antioxidant peptide identified. Analysis showed that mutton ham peptide (MHP) has the highest Fe2+ chelating ability, whereas Jinhua ham peptide (JHP) had the highest ABTS and DPPH free radical scavenging ability (P < 0.05). A total of 346, 203 and 296 peptides were identified in JHP, Xuanwei ham peptides (XHP) and MHP, respectively. Most of the peptides were derived from myosin, accounting for 21.97% in JHP, 18.72% in XHP, and 21.96% in MHP. Myosin, actin, myoglobin, troponin, tropomyosin and pyruvate kinase proteins were the main source of peptide differences in the three types of dry cured ham.
Collapse
Affiliation(s)
- Jingyun Wang
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Meiting Guo
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Qingling Wang
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Juan Dong
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Shiling Lu
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China.
| | - Bing Lyu
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Xuelian Ma
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| |
Collapse
|
71
|
Sonklin C, Alashi AM, Laohakunjit N, Aluko RE. Functional Characterization of Mung Bean Meal Protein-Derived Antioxidant Peptides. Molecules 2021; 26:1515. [PMID: 33802127 PMCID: PMC7999109 DOI: 10.3390/molecules26061515] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
The aim of this work was to characterize the antioxidant properties of some of the peptides present in bromelain mung bean meal protein hydrolysate (MMPH). The MMPH was subjected to two rounds of bioassay-guided reversed-phase HPLC separation followed by peptide identification in the most potent fractions using tandem mass spectrometry. Twelve antioxidant peptides, namely, HC, CGN, LAN, CTN, LAF, CSGD, MMGW, QFAAD, ERF, EYW, FLQL, and QFAW were identified and assayed for antioxidant properties. CTN, HC, CGN, and CSGD were the most potent (p < 0.05) DPPH radical scavengers with EC50 values of 0.30, 0.29, 0.28, and 0.30 mg/mL, respectively, which are lower than the 0.03 mg/mL obtained for reduced glutathione (GSH). CTN, HC, CGN, and CSGD exhibited the most potent (p < 0.05) scavenging activities against hydroxyl and superoxide radicals with EC50 values that are similar to those of GSH. The cysteine-containing peptides also had stronger ferric reducing antioxidant power and metal chelation activity than peptides devoid of cysteine. In contrast, MMGW, ERF, and EYW had poor radical scavenging and metal chelation activities. We conclude that the availability of the sulfhydryl group may have enhanced antioxidant potency while the presence of bulky groups such phenylalanine and tryptophan had an opposite effect.
Collapse
Affiliation(s)
- Chanikan Sonklin
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, 1518 Pracharat 1 Rd., Wongsawang, Bangsue, Bangkok 10800, Thailand;
| | - Adeola M. Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Natta Laohakunjit
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, 49 Tein-talay 25 Rd., Tha-kam, Bangkhuntein, Bangkok 10150, Thailand;
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
72
|
Proteolysis of tilapia skin collagen: Identification and release behavior of ACE-inhibitory peptides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
73
|
Song Y, Fu Y, Huang S, Liao L, Wu Q, Wang Y, Ge F, Fang B. Identification and antioxidant activity of bovine bone collagen-derived novel peptides prepared by recombinant collagenase from Bacillus cereus. Food Chem 2021; 349:129143. [PMID: 33581432 DOI: 10.1016/j.foodchem.2021.129143] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 11/29/2022]
Abstract
Millions of tons of collagen-rich bovine bone are produced as byproducts of the consumption of beef. Hydrolyzing bovine bone collagen (BBC) is an effective measure for both increasing its added value and protecting the environment. In this study, a kind of recombinant bacterial collagenase mining from Bacillus cereus was successfully performed and applied to hydrolyze BBC to collagen-soluble peptides (CPP). Response surface methodology (RSM) was applied to optimize the processing conditions of antioxidant CPP, attaining a distinguished ABTS free radical scavenging activity of 99.21 ± 0.35% while keeping DPPH free radical scavenging activity and reducing power at high levels under the optimal condition. Furthermore, we identified five new antioxidant peptides by LC-MS/MS with typical collagen repeated Gly-Xaa-Yaa sequence units within the CPP. These results suggest that our recombinant collagenase is a powerful tool for degrading collagen and the CPP are promising candidates for antioxidant and related functional food applications.
Collapse
Affiliation(s)
- Yihang Song
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yousi Fu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiyang Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Langxing Liao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Qian Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yali Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fuchun Ge
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, Fujian 361005, China; The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
74
|
Zhong H, Zhang Y, Deng L, Zhao M, Tang J, Zhang H, Feng F, Wang J. Exploring the potential of novel xanthine oxidase inhibitory peptide (ACECD) derived from Skipjack tuna hydrolysates using affinity-ultrafiltration coupled with HPLC-MALDI-TOF/TOF-MS. Food Chem 2021; 347:129068. [PMID: 33486365 DOI: 10.1016/j.foodchem.2021.129068] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/18/2020] [Accepted: 01/06/2021] [Indexed: 01/08/2023]
Abstract
This study aimed to isolate and investigate the potential of the peptide alanine-cysteine-glutamic acid-cysteine-aspartic acid (ACECD), a novel xanthine oxidase inhibitory (XODI) peptide derived from Skipjack tuna hydrolysate (HS). Ultrafiltration membranes were used to obtain HS-based peptides as successive ultrafiltration fractions (of decreasing molecular weight) of UF-1, UF-2, UF-3, and UF-4. Their antioxidant and xanthine oxidase (XOD) inhibitory activities were determined and further characterized by affinity-ultrafiltration coupled with HPLC-MALDI-TOF/TOF-MS and in silico techniques. The results showed that peptides with a molecular weight (MW) cutoff of 600-1000 Da (UF-2) exhibited the highest antioxidant and XODI activities. A novel XODI peptide (ACECD) was identified with an IC50 value of 13.40 mmol/L, which decreased by 21.24% and 51.40% compared to those of UF-2 and HS, respectively. Molecular docking indicated that ACECD inserted into the active center of Mo atoms in XOD, which led to competitive attachment with XOD and caused inhibition. The study findings indicated that the ACECD peptide could be useful as a safe XODI substance to alleviate hyperuricemia.
Collapse
Affiliation(s)
- Hao Zhong
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yipeng Zhang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lingli Deng
- College of Biological Science and Technology, Hubei Minzu University, Enshi 445000, China
| | - Minjie Zhao
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jun Tang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fengqin Feng
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Jing Wang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
75
|
Badoei-dalfard A, Khankari S, Karami Z. One-pot synthesis and biochemical characterization of protease metal organic framework (protease@MOF) and its application on the hydrolysis of fish protein-waste. Colloids Surf B Biointerfaces 2020; 196:111318. [DOI: 10.1016/j.colsurfb.2020.111318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/19/2020] [Accepted: 08/09/2020] [Indexed: 11/26/2022]
|
76
|
Tao L, Tian L, Zhang X, Huang X, Long H, Chang F, Li T, Li S. Effects of γ-polyglutamic acid on the physicochemical properties and microstructure of grass carp (Ctenopharyngodon idellus) surimi during frozen storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109960] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
77
|
Manfredini PG, Cavanhi VAF, Costa JAV, Colla LM. Bioactive peptides and proteases: characteristics, applications and the simultaneous production in solid-state fermentation. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1849151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Paola Gouvêa Manfredini
- Graduation Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | | | | | - Luciane Maria Colla
- Graduation Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Brazil
| |
Collapse
|
78
|
Wang K, Han L, Hong H, Pan J, Liu H, Luo Y. Purification and identification of novel antioxidant peptides from silver carp muscle hydrolysate after simulated gastrointestinal digestion and transepithelial transport. Food Chem 2020; 342:128275. [PMID: 33191015 DOI: 10.1016/j.foodchem.2020.128275] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Unregulated oxidative reactions occur in human body or food system can cause harmful effects both on food quality and human health. This study aimed to develop novel antioxidant peptides from silver carp muscle hydrolysate after simulated gastrointestinal digestion and transepithelial transport. Results showed that alcalase- and papain-induced hydrolysates had higher antioxidant activities before and after in vitro gastrointestinal digestion. Fractions with molecular weight <1 kDa from these two digestive products (named A-GID-1 and P-GID-1) exhibited the greatest antioxidant capacity, which was ascribed to the large proportion of low-molecular peptides and hydrophobic amino acids. After transepithelial transport analysis, a total of ten peptides were identified from the RP-HPLC fractions with the highest antioxidant activity from both P-GID-1 and A-GID-1 permeates. Among them, LVPVAVF exhibited the highest DPPH radical scavenging and reactive oxygen species (ROS) inhibitory activity. Our findings will provide new knowledge for the development of novel natural antioxidants and the high-value utilization of silver carp protein.
Collapse
Key Words
- 1, 1-Diphenyl-2-picrylhydrazine (PubChem CID: 74358)
- 2, 2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (PubChem CID: 16240279)
- 2, 2′-Azobis(2-methylpropionamidine) dihydrochloride (PubChem CID: 76344)
- 2, 4, 6-Trinitrobenzenesulfonic acid (PubChem CID: 11045)
- 2, 4, 6-Tripyridyl-s-triazine (PubChem CID: 77258)
- 6-hydroxy-2, 5, 7, 8tetramethylchroman-2-carboxylic acid (PubChem CID: 40634)
- Anti-oxidant activity
- Ferrozine (PubChem CID: 34127)
- In vitro gastrointestinal digestion
- Peptides sequence
- Silver carp peptides
- Transepithelial transport
Collapse
Affiliation(s)
- Kai Wang
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lihua Han
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hui Hong
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jing Pan
- Yunnan Ocean King Fisheries Co., Ltd., Yunnan Province, China
| | - Huaigao Liu
- Anhui Guotai Biotechnology Co., Ltd., Xuancheng City, Anhui Province, China
| | - Yongkang Luo
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
79
|
Nuñez SM, Guzmán F, Valencia P, Almonacid S, Cárdenas C. Collagen as a source of bioactive peptides: A bioinformatics approach. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
80
|
Zamorano-Apodaca JC, García-Sifuentes CO, Carvajal-Millán E, Vallejo-Galland B, Scheuren-Acevedo SM, Lugo-Sánchez ME. Biological and functional properties of peptide fractions obtained from collagen hydrolysate derived from mixed by-products of different fish species. Food Chem 2020; 331:127350. [DOI: 10.1016/j.foodchem.2020.127350] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
|
81
|
Chen ML, Ning P, Jiao Y, Xu Z, Cheng YH. Extraction of antioxidant peptides from rice dreg protein hydrolysate via an angling method. Food Chem 2020; 337:128069. [PMID: 32950762 DOI: 10.1016/j.foodchem.2020.128069] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Selective enrichment of the highly active antioxidant peptides is required as the lack of an efficient method leads to long screening processes, hampering the research of antioxidant peptides. A simple synthetic metal-organic framework MIL-53 (Cr) was initially applied to extract specific antioxidant peptides from rice dreg protein hydrolysate. The highest active fraction was further purified by reversed-phase high-performance liquid chromatography. The antioxidant peptides with the highest antioxidant activities were identified as Gly-Asp-Met-Asn-Pro and Leu-Leu-Leu-Arg-Trp by LC-MS. These two peptides were synthesized and also exhibited good scavenging activity on the DPPH free radical, superoxide anion free radical and hydroxyl radical, and good chelating ability on Fe2+. The results confirmed that the angling method was effective for antioxidant peptide enrichment from protein hydrolysates.
Collapse
Affiliation(s)
- Mao-Long Chen
- Hunan Provincial Key Laboratory of Cytochemistry, College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China.
| | - Peng Ning
- Hunan Provincial Key Laboratory of Cytochemistry, College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Ye Jiao
- Hunan Provincial Key Laboratory of Cytochemistry, College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Zhou Xu
- Hunan Provincial Key Laboratory of Cytochemistry, College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Yun-Hui Cheng
- Hunan Provincial Key Laboratory of Cytochemistry, College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China.
| |
Collapse
|
82
|
Optimal Production of Protein Hydrolysates from Monkfish By-Products: Chemical Features and Associated Biological Activities. Molecules 2020; 25:molecules25184068. [PMID: 32899910 PMCID: PMC7570475 DOI: 10.3390/molecules25184068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
The aim of this work was the recovery of protein substrates from monkfish waste (heads and viscera) generated in the on-board processing of this species. Initially, the effect of pH, temperature, and protease concentration was studied on mixtures of a 1:1 ratio (w/v) of monkfish heads/water. The optimal conditions of proteolytic digestion were established at 57.4 °C, pH 8.31, [Alcalase] = 0.05% (v/w) for 3 h of hydrolysis. Later on, a set of hydrolysis at 5L-pH-stat reactor were run under the aforementioned conditions, confirming the validity of the optimization studies for the head and viscera of monkfish. Regarding the chemical properties of the fish protein hydrolysates (FPH), the yield of digestion was higher than 90% in both cases and the degrees of hydrolysis and the soluble protein content were not especially large (<20% and <45 g/L, respectively). In vitro digestibility was higher than 90% and the percentage of essential amino acids ranged from 40 to 42%. Antioxidant activities were higher in viscera FPH, and antihypertensive ability was superior in head FPH. The values of number average molecular weights (Mn) of monkfish hydrolysates were 600 Da in the viscera and 947 Da in the head. The peptide size distribution, obtained by size-exclusion chromatography, indicated that the largest presence of peptides below 1000 Da and 200 Da was observed in the viscera FPH.
Collapse
|
83
|
Huang J, Wu M, Yang K, Zhao M, Wu D, Ma J, Ding B, Sun W. Effect of nanoliposomal entrapment on antioxidative hydrolysates from goose blood protein. J Food Sci 2020; 85:3034-3042. [PMID: 32869338 DOI: 10.1111/1750-3841.15409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/09/2020] [Accepted: 07/31/2020] [Indexed: 11/27/2022]
Abstract
In this study, the encapsulation of goose blood hydrolysate (GBH) was performed within nanoliposomes. We investigated the physicochemical properties, stability, antioxidant indices, the morphology of nanoparticles, the digestion stability in simulated gastrointestinal fluid, differential scanning calorimetry (DSC) analysis, and Fourier transform infrared (FTIR) spectroscopy. GBH was successfully encapsulated into nanoliposomes using reverse-phase evaporation method. The entrapment efficiency of GBH-loaded nanoliposomes was about 70.99 ± 2.85%, the average particle size was 93.3 ± 2.45 nm, the zeta-potential of GBH-loaded nanoliposomes was -30 mV, and the morphology of GBH-loaded nanoliposomes was characterized by transmission electron microscope. Moreover, the results of DSC and FTIR showed that the GBH nanoliposome was more stable than the empty liposomes due to hydrogen bond complexation between liposome and GBH. The release of GBH from nanoliposomes could be significantly controlled, and the release ratios were 48.9 ± 2.96% in simulated gastric fluid and 59.9 ± 5.30% in simulated intestinal fluid, respectively, proving that degradation rate of antioxidant activities of GBH encapsulated in nanoliposomes was decreased. In conclusion, nanoliposomes embedding is a promising and effective way to increase the stability of hydrolysates from GBH and produce various types of functional food.
Collapse
Affiliation(s)
- Jin Huang
- the College of Life Science, Yangtze University, Jingzhou, Hubei, 434023, P. R. China
| | - Mengting Wu
- the College of Life Science, Yangtze University, Jingzhou, Hubei, 434023, P. R. China
| | - Kun Yang
- the College of Life Science, Yangtze University, Jingzhou, Hubei, 434023, P. R. China
| | - Manman Zhao
- the College of Life Science, Yangtze University, Jingzhou, Hubei, 434023, P. R. China
| | - Di Wu
- the College of Life Science, Yangtze University, Jingzhou, Hubei, 434023, P. R. China
| | - Jing Ma
- College of Life Science, and Jingchu Food Research and Development Center, Yangtze University, Jingzhou, Hubei, 434023, P. R. China
| | - Baomiao Ding
- College of Life Science, and Jingchu Food Research and Development Center, Yangtze University, Jingzhou, Hubei, 434023, P. R. China
| | - Weiqing Sun
- College of Life Science, and Jingchu Food Research and Development Center, Yangtze University, Jingzhou, Hubei, 434023, P. R. China
| |
Collapse
|
84
|
Zheng J, Tian X, Xu B, Yuan F, Gong J, Yang Z. Collagen Peptides from Swim Bladders of Giant Croaker ( Nibea japonica) and Their Protective Effects against H 2O 2-Induced Oxidative Damage toward Human Umbilical Vein Endothelial Cells. Mar Drugs 2020; 18:E430. [PMID: 32824671 PMCID: PMC7460321 DOI: 10.3390/md18080430] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/26/2022] Open
Abstract
Five different proteases were used to hydrolyze the swim bladders of Nibea japonica and the hydrolysate treated by neutrase (collagen peptide named SNNHs) showed the highest DPPH radical scavenging activity. The extraction process of SNNHs was optimized by response surface methodology, and the optimal conditions were as follows: a temperature of 47.2 °C, a pH of 7.3 and an enzyme concentration of 1100 U/g, which resulted in the maximum DPPH clearance rate of 95.44%. Peptides with a Mw of less than 1 kDa (SNNH-1) were obtained by ultrafiltration, and exhibited good scavenging activity for hydroxyl radicals, ABTS radicals and superoxide anion radicals. Furthermore, SNNH-1 significantly promoted the proliferation of HUVECs, and the protective effect of SNNH-1 against oxidative damage of H2O2-induced HUVECs was investigated. The results indicated that all groups receiving SNNH-1 pretreatment showed an increase in GSH-Px, SOD, and CAT activities compared with the model group. In addition, SNNH-1 pretreatment reduced the levels of ROS and MDA in HUVECs with H2O2-induced oxidative damage. These results indicate that collagen peptides from swim bladders of Nibea japonica can significantly reduce the oxidative stress damage caused by H2O2 in HUVECs and provides a basis for the application of collagen peptides in the food industry, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Jiawen Zheng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| | - Xiaoxiao Tian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| | - Baogui Xu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| | - Falei Yuan
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| | - Jianfang Gong
- Donghai Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China;
| | - Zuisu Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| |
Collapse
|
85
|
Wu R, Huang J, Huan R, Chen L, Yi C, Liu D, Wang M, Liu C, He H. New insights into the structure-activity relationships of antioxidative peptide PMRGGGGYHY. Food Chem 2020; 337:127678. [PMID: 32791429 DOI: 10.1016/j.foodchem.2020.127678] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
The sequence and structure of antioxidant peptides play fundamental roles in their antioxidant functions. However, the structural mechanism of antioxidant peptides is still unclear. In this study, we used quantum calculations to reveal the antioxidant mechanism of the peptide PMRGGGGYHY. PMRGGGGYHY has multiple antioxidant active sites, and two tyrosine residues were determined to be the major active sites. Based on the structure-activity relationships of PMRGGGGYHY, the antioxidant activity of the modified peptide significantly improved by 4.8-fold to 9.73 ± 0.61 μmol TE/μmol. In addition, the removal of glycine residues from PMRGGGGYHY would increase the energy of the HOMOs and simplify the hydrogen bonding network, causing a significant increase in antioxidant activity. The intracellular ROS scavenging ability gradually decreased with decreasing glycine content. This same peptide has very different effects in vitro versus as a cellular antioxidant. This paper provides new insights into the structural mechanism and rational design/modification of novel antioxidant peptides.
Collapse
Affiliation(s)
- RiBang Wu
- School of Life Sciences, Central South University, Changsha 410013, China
| | - JiaFeng Huang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Ran Huan
- School of Life Sciences, Central South University, Changsha 410013, China
| | - LeiLei Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), China; Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan 250100, China
| | - CuiPing Yi
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Dan Liu
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Meng Wang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - CongLing Liu
- School of Life Sciences, Central South University, Changsha 410013, China
| | - HaiLun He
- School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
86
|
Wang M, Lei M, Samina N, Chen L, Liu C, Yin T, Yan X, Wu C, He H, Yi C. Impact of Lactobacillus plantarum 423 fermentation on the antioxidant activity and flavor properties of rice bran and wheat bran. Food Chem 2020; 330:127156. [PMID: 32531631 DOI: 10.1016/j.foodchem.2020.127156] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022]
Abstract
Rice bran (RB) and wheat bran (WB) fermented with L. plantarum 423 had enhanced odor intensity, especially for sulfides and aromatics. The hydroxyl radical-scavenging activity (73.28 ± 3.18%) and oxygen radical-scavenging activity (2.12 ± 0.08 mmol·TE/g) of RB fermentation broth were better than those of WB fermentation broth. Even at 2 μg/ml, the purified antioxidant fractions from the WB fermentation broth showed strong intracellular ROS-scavenging activity in human umbilical vein endothelial cells (HUVECs), and the purified antioxidant fractions (200 μg/ml) from the RB fermentation broth had a good antiaging effect. The dominant antioxidant components in the RB and WB fermentation broths were acids (70.21%) and ketones (10.64%), these components jointly give the RB and WB fermentation broths a variety of antioxidant properties. These results are beneficial for developing RB and WB deep-processing technology and laid the foundation for the preparation of antioxidant fractions with L. plantarum 423.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Science, Central South University, Changsha 410013, China
| | - Ming Lei
- School of Life Science, Central South University, Changsha 410013, China
| | - Noor Samina
- School of Life Science, Central South University, Changsha 410013, China
| | - LeiLei Chen
- Institute of Agro-Food Science and Technology & Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100037, China
| | - CongLing Liu
- School of Life Science, Central South University, Changsha 410013, China
| | - TingTing Yin
- School of Life Science, Central South University, Changsha 410013, China
| | - XiaoTao Yan
- School of Life Science, Central South University, Changsha 410013, China
| | - Cuiling Wu
- Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Hailun He
- School of Life Science, Central South University, Changsha 410013, China.
| | - CuiPing Yi
- School of Chemistry and Biology Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China.
| |
Collapse
|
87
|
Antioxidant Peptides from Collagen Hydrolysate of Redlip Croaker ( Pseudosciaena polyactis) Scales: Preparation, Characterization, and Cytoprotective Effects on H 2O 2-Damaged HepG2 Cells. Mar Drugs 2020; 18:md18030156. [PMID: 32168851 PMCID: PMC7142964 DOI: 10.3390/md18030156] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Bioactive peptides from fish collagens with antioxidant properties have become a topic of great interest for health, food, and processing/preservation industries. To explore the high-value utilized way of scales produced during the fish processing, collagen hydrolysates of redlip croaker (Pseudosciaena polyactis) scales were prepared using six different proteases, and the hydrolysate (RSCH) prepared using neutrase showed the highest degree of hydrolysis (21.36 ± 1.18%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH·) radical scavenging activity (30.97 ± 1.56%) among the six hydrolysates. Subsequently, six antioxidant peptides were purified from RSCH using membrane ultrafiltration and serial chromatography, and their amino acid sequences were identified as DGPEGR, GPEGPMGLE, EGPFGPEG, YGPDGPTG, GFIGPTE, and IGPLGA with molecular masses of 629.61, 885.95, 788.96, 762.75, 733.80, and 526.61 Da, respectively. Among six collagen peptides, GPEGPMGLE, EGPFGPEG, and GFIGPTE exhibited the strongest scavenging activities on DPPH· radical (EC50 0.59, 0.37, and 0.45 mg/mL), hydroxyl radical (EC50 0.45, 0.33, and 0.32 mg/mL), and superoxide anion radical (EC50 0.62, 0.47, and 0.74 mg/mL). GPEGPMGLE, EGPFGPEG, and GFIGPTE showed high inhibiting ability on lipid peroxidation in a linoleic acid model system and protective activities on oxidation-damaged DNA. More importantly, GPEGPMGLE, EGPFGPEG, and GFIGPTE could protect HepG2 cells from H2O2-induced oxidative damage through decreasing the levels of reactive oxygen species (ROS) and MDA and activating intracellular antioxidant enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). These results suggested that six collagen peptides (RCP1–RCP6), especially GPEGPMGLE, EGPFGPEG, and GFIGPTE, might serve as potential antioxidants applied in nutraceutical and pharmaceutical products.
Collapse
|
88
|
Hu XM, Wang YM, Zhao YQ, Chi CF, Wang B. Antioxidant Peptides from the Protein Hydrolysate of Monkfish ( Lophius litulon) Muscle: Purification, Identification, and Cytoprotective Function on HepG2 Cells Damage by H 2O 2. Mar Drugs 2020; 18:E153. [PMID: 32164197 PMCID: PMC7142609 DOI: 10.3390/md18030153] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
In the work, defatted muscle proteins of monkfish (Lophius litulon) were separately hydrolyzed by pepsin, trypsin, and in vitro gastrointestinal (GI) digestion methods, and antioxidant peptides were isolated from proteins hydrolysate of monkfish muscle using ultrafiltration and chromatography processes. The antioxidant activities of isolated peptides were evaluated using radical scavenging and lipid peroxidation assays and H2O2-induced model of HepG2 cells. In which, the cell viability, reactive oxygen species (ROS) content, and antioxidant enzymes and malondialdehyde (MDA) levels were measured for evaluating the protective extent on HepG2 cells damaged by H2O2. The results indicated that the hydrolysate (MPTH) prepared using in vitro GI digestion method showed the highest degree of hydrolysis (27.24 ± 1.57%) and scavenging activity on a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (44.54 ± 3.12%) and hydroxyl radical (41.32 ± 2.73%) at the concentration of 5 mg protein/mL among the three hydrolysates. Subsequently, thirteen antioxidant peptides (MMP-1 to MMP-13) were isolated from MPTH. According to their DPPH radical and hydroxyl radical scavenging activity, three peptides with the highest antioxidant activity were selected and identified as EDIVCW (MMP-4), MEPVW (MMP-7), and YWDAW (MMP-12) with molecular weights of 763.82, 660.75, and 739.75 Da, respectively. EDIVCW, MEPVW, and YWDAW showed high scavenging activities on DPPH radical (EC50 0.39, 0.62, and 0.51 mg/mL, respectively), hydroxyl radical (EC50 0.61, 0.38, and 0.32 mg/mL, respectively), and superoxide anion radical (EC50 0.76, 0.94, 0.48 mg/mL, respectively). EDIVCW and YWDAW showed equivalent inhibiting ability on lipid peroxidation with glutathione in the linoleic acid model system. Moreover, EDIVCW, MEPVW, and YWDAW had no cytotoxicity to HepG2 cells at the concentration of 100.0 µM and could concentration-dependently protect HepG2 cells from H2O2-induced oxidative damage through decreasing the levels of reactive oxygen species (ROS) and MDA and activating intracellular antioxidant enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). These present results indicated that the protein hydrolysate and isolated antioxidant peptides from monkfish muscle, especially YWDAW could serve as powerful antioxidants applied in the treatment of some liver diseases and healthcare products associated with oxidative stress.
Collapse
Affiliation(s)
- Xiao-Meng Hu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (X.-M.H.); (Y.-M.W.); (Y.-Q.Z.)
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (X.-M.H.); (Y.-M.W.); (Y.-Q.Z.)
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (X.-M.H.); (Y.-M.W.); (Y.-Q.Z.)
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (X.-M.H.); (Y.-M.W.); (Y.-Q.Z.)
| |
Collapse
|
89
|
de Melo Oliveira V, Carneiro da Cunha MN, Dias de Assis CR, Matias da Silva Batista J, Nascimento TP, dos Santos JF, de Albuquerque Lima C, de Araújo Viana Marques D, de Souza Bezerra R, Figueiredo Porto AL. Separation and partial purification of collagenolytic protease from peacock bass (Cichla ocellaris) using different protocol: Precipitation and partitioning approaches. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
90
|
Tian Y, Zhu Z, Sun DW. Naturally sourced biosubstances for regulating freezing points in food researches: Fundamentals, current applications and future trends. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
91
|
Liang LL, Cai SY, Gao M, Chu XM, Pan XY, Gong KK, Xiao CW, Chen Y, Zhao YQ, Wang B, Sun KL. Purification of antioxidant peptides of Moringa oleifera seeds and their protective effects on H2O2 oxidative damaged Chang liver cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103698] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
92
|
Chen S, Yang Q, Chen X, Tian Y, Liu Z, Wang S. Bioactive peptides derived from crimson snapper and in vivo anti-aging effects on fat diet-induced high fat Drosophila melanogaster. Food Funct 2020; 11:524-533. [DOI: 10.1039/c9fo01414d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Crimson snapper scale peptides (CSSPs) prepared from crimson snapper scales exhibited significant antioxidant activity in vitro and anti-aging effects in vivo on fat diet-induced high fat Drosophila melanogaster.
Collapse
Affiliation(s)
- Shengyang Chen
- College of Biological Science and Technology
- Fuzhou University
- Fuzhou 350108
- China
| | - Qian Yang
- College of Biological Science and Technology
- Fuzhou University
- Fuzhou 350108
- China
| | - Xuan Chen
- College of Biological Science and Technology
- Fuzhou University
- Fuzhou 350108
- China
| | - Yongqi Tian
- College of Biological Science and Technology
- Fuzhou University
- Fuzhou 350108
- China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian
- Xiamen 361001
- China
| | - Shaoyun Wang
- College of Biological Science and Technology
- Fuzhou University
- Fuzhou 350108
- China
| |
Collapse
|
93
|
Xie J, Ye H, Du M, Yu Q, Chen Y, Shen M. Mung Bean Protein Hydrolysates Protect Mouse Liver Cell Line Nctc-1469 Cell from Hydrogen Peroxide-Induced Cell Injury. Foods 2019; 9:foods9010014. [PMID: 31877918 PMCID: PMC7023459 DOI: 10.3390/foods9010014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/24/2022] Open
Abstract
Mung bean is nutritious and rich in protein (19.5%–33.1%). However, there are few studies on mung bean protein active peptides so the mung bean protein hydrolysates (MBPHs) were investigated for evaluating their ability to clear intracellular reactive oxygen species (ROS) and regulating the ability of antioxidant enzymes on NCTC-1469 cells. Results showed that MBPHs, MBPHs-I (molecular weight < 3 kDa), MBPHs-II (molecular weight between 3 and 10 kDa), and MBPHs-III (molecular weight > 10 kDa) could all improve the survival rate of cells compared with the model group. MBPHs, MBPHs-I, and MBPHs-II could significantly decrease the content of lactate dehydrogenase (LDH) and reduce the generation of malonaldehyde (MDA) at a concentration of 0.4 mg/mL. Regarding the intracellular ROS, the result showed that MBPHs-I significantly reduced the production of ROS (from 58.3% to 26.6%) and had a dose-dependent relationship. In addition, the amino acid analysis showed that MBPHs-I had a balanced amino acid composition. MBPHs-I is rich in lysine but was deficient in cereals. Therefore, the hydrophobic and aromatic amino acids in MBPHs-I were high, which could improve its antioxidant activity. According to the results, MBPHs-I was the best and most potent natural antioxidant and it can contribute to drug development and medical application.
Collapse
|
94
|
Valorization of Aquaculture By-Products of Salmonids to Produce Enzymatic Hydrolysates: Process Optimization, Chemical Characterization and Evaluation of Bioactives. Mar Drugs 2019; 17:md17120676. [PMID: 31801228 PMCID: PMC6950744 DOI: 10.3390/md17120676] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/02/2023] Open
Abstract
In the present manuscript, various by-products (heads, trimmings, and frames) generated from salmonids (rainbow trout and salmon) processing were evaluated as substrates for the production of fish protein hydrolysates (FPHs), potentially adequate as protein ingredients of aquaculture feeds. Initially, enzymatic conditions of hydrolysis were optimized using second order rotatable designs and multivariable statistical analysis. The optimal conditions for the Alcalase hydrolysis of heads were 0.1% (v/w) of enzyme concentration, pH 8.27, 56.2°C, ratio (Solid:Liquid = 1:1), 3 h of hydrolysis, and agitation of 200 rpm for rainbow trout and 0.2% (v/w) of enzyme, pH 8.98, 64.2 °C, 200 rpm, 3 h of hydrolysis, and S:L = 1:1 for salmon. These conditions obtained at 100 mL-reactor scale were then validated at 5L-reactor scale. The hydrolytic capacity of Alcalase and the protein quality of FPHs were excellent in terms of digestion of wastes (Vdig > 84%), high degrees of hydrolysis (Hm > 30%), high concentration of soluble protein (Prs > 48 g/L), good balance of amino acids, and almost full in vitro digestibility (Dig > 93%). Fish oils were recovered from wastes jointly with FPHs and bioactive properties of hydrolysates (antioxidant and antihypertensive) were also determined. The salmon FPHs from trimmings + frames (TF) showed the higher protein content in comparison to the rest of FPHs from salmonids. Average molecular weights of salmonid-FPHs ranged from 1.4 to 2.0 kDa and the peptide sizes distribution indicated that hydrolysates of rainbow trout heads and salmon TF led to the highest percentages of small peptides (0-500 Da).
Collapse
|
95
|
Cytoprotective Effect of Antioxidant Pentapeptides from the Protein Hydrolysate of Swim Bladders of Miiuy Croaker ( Miichthys miiuy) against H 2O 2-Mediated Human Umbilical Vein Endothelial Cell (HUVEC) Injury. Int J Mol Sci 2019; 20:ijms20215425. [PMID: 31683554 PMCID: PMC6862189 DOI: 10.3390/ijms20215425] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
In our previous research, ten antioxidant pentapeptides including FYKWP, FTGMD, GFEPY, YLPYA, FPPYERRQ, GFYAA, FSGLR, FPYLRH, VPDDD, and GIEWA were identified from the hydrolysate of miiuy croaker (Miichthys miiuy) swim bladder. In this work, their protective function on H2O2-induced oxidative damage to human umbilical vein endothelial cells (HUVECs) was studied. Results indicated that there was no significant difference in the HUVEC viability between the normal group and the treated groups with the 10 pentapeptides at the concentration of 100 μM for 24 h (p < 0.05). Furthermore, FPYLRH of 100 μg/mL extremely significantly (p < 0.001) increased the viability (80.58% ± 5.01%) of HUVECs with H2O2-induced oxidative damage compared with that of the model group. The protective mechanism indicated that FPYLRH could extremely significantly (p < 0.001) increase the levels of superoxide dismutase (SOD) (211.36 ± 8.29 U/mg prot) and GSH-Px (53.06 ± 2.34 U/mg prot) and decrease the contents of reactive oxygen species (ROS) (139.1 ± 11.8% of control), malondialdehyde (MDA) (13.66 ± 0.71 nM/mg), and nitric oxide (NO) (4.36 ± 0.32 µM/L) at the concentration of 100 μM in HUVECs with H2O2-induced oxidative damage compared with those of the model group. In addition, FPYLRH dose-dependently protected DNA in oxidative damage HUVECs model. These results suggested that FPYLRH could significantly attenuate the H2O2-induced stress injury in HUVECs and might be used as a potential natural antioxidant in the functional food industries.
Collapse
|
96
|
Liu D, Huang J, Wu C, Liu C, Huang R, Wang W, Yin T, Yan X, He H, Chen L. Purification, Characterization, and Application for Preparation of Antioxidant Peptides of Extracellular Protease from Pseudoalteromonas sp. H2. Molecules 2019; 24:molecules24183373. [PMID: 31527535 PMCID: PMC6766936 DOI: 10.3390/molecules24183373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/06/2019] [Accepted: 09/14/2019] [Indexed: 01/29/2023] Open
Abstract
The study reported on the isolation of a metalloprotease named EH2 from Pseudoalteromonas sp. H2. EH2 maintained more than 80% activity over a wide pH range of 5–10, and the stability was also nearly independent of pH. Over 65% activity was detected at a wide temperature range of 20–70 °C. The high stability of the protease in the presence of different surfactants and oxidizing agents was also observed. Moreover, we also investigated the antioxidant activities of the hydrolysates generated from porcine and salmon skin collagen by EH2. The results showed that salmon skin collagen hydrolysates demonstrated higher DPPH (1,1-diphenyl-2-picrylhydrazyl) (42.88% ± 1.85) and hydroxyl radical (61.83% ± 3.05) scavenging activity than porcine skin collagen. For oxygen radical absorbance capacity, the hydrolysates from porcine skin collagen had higher efficiency (7.72 ± 0.13 μmol·TE/μmol). Even 1 nM mixed peptides could effectively reduce the levels of intracellular reactive oxygen species. The two types of substrates exerted the best antioxidant activity when hydrolyzed for 3 h. The hydrolysis time and type of substrate exerted important effects on the antioxidant properties of hydrolysates. The hydrolyzed peptides from meat collagens by proteases have good antioxidant activity, which may have implications for the potential application of marine proteases in the biocatalysis industry.
Collapse
Affiliation(s)
- Dan Liu
- School of Life Sciences, Central South University, Changsha 410013, China
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
| | - Jiafeng Huang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Cuiling Wu
- Department of Biochemistry, Changzhi Medical College, Changzhi 046000, China
| | - Congling Liu
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Ran Huang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Weng Wang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Tingting Yin
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Xiaotao Yan
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Hailun He
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Leilei Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
97
|
Ding D, Du B, Zhang C, Zaman F, Huang Y. Isolation and identification of an antioxidant collagen peptide from skipjack tuna ( Katsuwonus pelamis) bone. RSC Adv 2019; 9:27032-27041. [PMID: 35528566 PMCID: PMC9070664 DOI: 10.1039/c9ra04665h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/19/2019] [Indexed: 11/23/2022] Open
Abstract
To date, many researchers have developed active components that are derived from seafood processing for the purposes of healthcare. Here, an antioxidant collagen peptide was obtained from skipjack tuna (Katsuwonus pelamis) bone by using a combination of trypsin and chymotrypsin as the catalyst. The amino acid sequence of the peptide was identified as Ser-Ser-Gly-Pro-Pro-Val-Pro-Gly-Pro-Met-Gly-Pro-Met-Gly-Pro-Arg (SSGPPVPGPMGPMGPR) by liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS) analysis. We found that the as-prepared collagen peptide can efficiently scavenge DPPH radical (IC50 3.149 mM), superoxide anion radical (IC50 3.803 mM) and ABTS radical (IC50 9.489 mM). In addition, it has been found that the methionine (Met) residue in the collagen peptide could provide a precise active site during the scavenging of DPPH radicals by Fourier transform infrared spectroscopy (FTIR) analysis and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analysis. These results suggest that the peptide can find wide uses in the food, cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
- Ding Ding
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology Beijing 100029 People's Republic of China +86-10-64438266 +86-10-64438266
| | - Bowei Du
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology Beijing 100029 People's Republic of China +86-10-64438266 +86-10-64438266
| | - Chao Zhang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology Beijing 100029 People's Republic of China +86-10-64438266 +86-10-64438266
| | - Fakhar Zaman
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology Beijing 100029 People's Republic of China +86-10-64438266 +86-10-64438266
| | - Yaqin Huang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology Beijing 100029 People's Republic of China +86-10-64438266 +86-10-64438266
| |
Collapse
|
98
|
Zhang S, Zhang M, Yang R, Zhang S, Lin S. Preparation, identification, and activity evaluation of antioxidant peptides from protein hydrolysate of corn germ meal. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sitian Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian P.R. China
- College of Food Science and Technology Jilin University Changchun P.R. China
| | - Mingdi Zhang
- College of Food Science and Technology Jilin University Changchun P.R. China
| | - Ruiwen Yang
- College of Food Science and Technology Jilin University Changchun P.R. China
| | - Simin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian P.R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian P.R. China
| |
Collapse
|
99
|
Zhang L, Zhao GX, Zhao YQ, Qiu YT, Chi CF, Wang B. Identification and Active Evaluation of Antioxidant Peptides from Protein Hydrolysates of Skipjack Tuna ( Katsuwonus pelamis) Head. Antioxidants (Basel) 2019; 8:antiox8080318. [PMID: 31430875 PMCID: PMC6721175 DOI: 10.3390/antiox8080318] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
For the full use of fish by-products to produce antioxidant peptides, skipjack tuna (Katsuwonus pelamis) heads generated during can processing were defatted and hydrolyzed using the in vitro gastrointestinal (GI) digestion (pepsin–trypsin system) method and six antioxidant peptides (P1 to P6) were purified from the head hydrolysate (KPH) using ultrafiltration and serial chromatography methods. Six isolated peptides (P1 to P6) were identified as Val-Glu-Glu (VEE, P1), Trp-Met-Phe-Asp-Trp (WMFDW, P2), Asp-Ala-Gly-Pro-Tyr-Gly-Pro-Ile (DAGPYGPI, P3), Trp-Met-Gly-Pro-Tyr (WMGPY, P4), Glu-Arg-Gly-Pro-Leu-Gly-Pro-His (ERGPLGPH, P5), and Glu-Met- Gly-Pro-Ala (EMGPA, P6), respectively, using a protein sequencer and electrospray ionization-mass spectrometer. Among skipjack tuna head hydrolysates, fractions, and six isolated peptides (P1 to P6), WMFDW (P2), WMGPY (P4), and EMGPA (P6) showed the highest radical scavenging activities on 2,2-diphenyl-1-picrylhydrazyl (DPPH) (EC50 values of 0.31, 0.33, and 0.46 mg/mL for WMFDW, WMGPY, and EMGPA, respectively), hydroxyl (EC50 values of 0.30, 0.43, and 0.52 mg/mL for WMFDW, WMGPY, and EMGPA, respectively), and superoxide anion (EC50 values of 0.56, 0.38, and 0.71 mg/mL for WMFDW, WMGPY, and EMGPA, respectively). Moreover, WMFDW, WMGPY, and EMGPA showed strong capability in reducing power and lipd peroxidation inhibition in the linoleic acid system. In addition, WMFDW, WMGPY, and EMGPA can retain strong antioxidant activity at temperatures lower than 60 °C and pH values ranged from 5 to 9. The results showed that six isolated peptides (P1 to P6) from skipjack tuna heads, especially WMFDW, WMGPY, and EMGPA, might be applied in health care products acting as powerful antioxidant agents.
Collapse
Affiliation(s)
- Lun Zhang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Guo-Xu Zhao
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yi-Ting Qiu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
100
|
Hydrolysed Collagen from Sheepskins as a Source of Functional Peptides with Antioxidant Activity. Int J Mol Sci 2019; 20:ijms20163931. [PMID: 31412541 PMCID: PMC6719941 DOI: 10.3390/ijms20163931] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
The extraction and enzymatic hydrolysis of collagen from sheepskins at different times of hydrolysis (0, 10, 15, 20, 30 min, 1, 2, 3 and 4 h) were investigated in terms of amino acid content (hydroxyproline), isoelectric point, molecular weight (Mw) by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) method, viscosity, Fourier-transform infrared (FTIR) spectroscopy, antioxidant capacity by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, thermal properties (Differential Scanning Calorimetry) and morphology by scanning electron microscopy (SEM) technique. The kinetics of hydrolysis showed an increase in the protein and hydroxyproline concentration as the hydrolysis time increased to 4 h. FTIR spectra allowed us to identify the functional groups of hydrolysed collagen (HC) in the amide I region for collagen. The isoelectric point shifted to lower values compared to the native collagen precursor. The change in molecular weight and viscosity from time 0 min to 4 h promoted important antioxidant activity in the resulting HC. The lower the Mw, the greater the ability to donate an electron or hydrogen to stabilize radicals. From the SEM images it was evident that HC after 2 h had a porous and spongy structure. These results suggest that HC could be a good alternative to replace HC from typical sources like pigs, cows and fish.
Collapse
|