51
|
Contribution of catechin monomers in tea polyphenols to the structure and physicochemical properties of wheat gluten and its sub-fractions. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
52
|
Yang J, Zhang B, Zhang Y, Rasheed M, Gu S, Guo B. Effect of freezing rate and frozen storage on the rheological properties and protein structure of non-fermented doughs. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110377] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
53
|
Wang Z, Ma S, Sun B, Wang F, Huang J, Wang X, Bao Q. Effects of thermal properties and behavior of wheat starch and gluten on their interaction: A review. Int J Biol Macromol 2021; 177:474-484. [PMID: 33636262 DOI: 10.1016/j.ijbiomac.2021.02.175] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Starch and gluten, the most important macromolecules in wheat flour, vary in thermal properties. The thermal behavior of starch, gluten and their complexes during the manufacture and quality control of flour products need to be accurately understood. However, the high complexity of starch-gluten systems impedes the accurate description of their interactions. When heated within varying temperature ranges and when water molecules are involved, the behaviors of amylose and amylopectin change, and the properties of the starch are modified. Moreover, important indicators of starch granules such as gelatinization temperature, peak viscosity, and so on, which are encapsulated by the gluten matrix, are altered. Meanwhile, the high-temperature environment induces the opening of the intrachain disulfide bonds of gliadin, leading to an increase in the probability of interchain disulfide bond formation in the gluten network system. These behaviors are notable and may provide insights into this complex interaction. In this review, the relationship between the thermal behavior of wheat starch and gluten and the quality of flour products is analyzed. Several methods used to investigate the thermal characteristics of wheat and its flour products are summarized, and some thermal interaction models of starch and gluten are proposed.
Collapse
Affiliation(s)
- Zhen Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Fengcheng Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jihong Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Qingdan Bao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| |
Collapse
|
54
|
Abedi E, Pourmohammadi K. Physical modifications of wheat gluten protein: An extensive review. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture Fasa University Fasa Iran
| | | |
Collapse
|
55
|
Si X, Li T, Zhang Y, Zhang W, Qian H, Li Y, Zhang H, Qi X, Wang L. Interactions between gluten and water-unextractable arabinoxylan during the thermal treatment. Food Chem 2020; 345:128785. [PMID: 33310257 DOI: 10.1016/j.foodchem.2020.128785] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 11/27/2022]
Abstract
This study aimed to investigate the interactions between gluten and water-unextractable arabinoxylan (WUAX), which changed the conformation and aggregation of gluten during the thermal treatment. In this work, the interactions between water-unextractable arabinoxylan and wheat gluten during thermal treatment were extensively evaluated by different techniques. The results showed that the extra WUAX could impair the viscoelasticity as well as weaken the thermal properties of gluten. The fluorescence spectra revealed the extra WUAX changed the conformation of gluten molecules. Besides, chemical interaction measurement indicated that the extra WUAX prevented the formation of partial disulfide bonds and had a major effect on the hydrophobic interaction of gluten. In summary, these results indicated that WUAX disrupted the covalent crosslinking by affecting disulfide bonds between gluten proteins, and dominated the folding/unfolding process of gluten via the competition with gluten for water, resulting in the poor quality of whole wheat-based foods.
Collapse
Affiliation(s)
- Xiaojing Si
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhang
- Dalian Customs Comprehensive Technical Service Center, 75 Renmin Road, Zhongshan District, Dalian 116001, China
| | - Wenhui Zhang
- Institute of Food Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lasa 850000, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiguang Qi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
56
|
Effects of dietary fiber on the digestion and structure of gluten under different thermal processing conditions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
57
|
Lu L, Xing JJ, Yang Z, Guo XN, Zhu KX. Influence of ε-poly-l-lysine treated yeast on gluten polymerization and freeze-thaw tolerance of frozen dough. Food Chem 2020; 343:128440. [PMID: 33127224 DOI: 10.1016/j.foodchem.2020.128440] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/16/2023]
Abstract
The effects of ε-poly-l-lysine (ε-PL) treated yeast on gluten polymerization of frozen dough and quality of steamed bread after freeze-thaw cycles were investigated. Compared with steamed bread made from frozen dough containing ε-PL and untreated yeast (PUTY) or only untreated yeast, steamed bread made from frozen dough containing ε-PL treated yeast (PTY) had a larger specific volume, lower hardness and more porous. A dynamic rheological and scanning electron microscopic analysis demonstrated that using PTY instead of yeast could reduce dough elasticity and damage protein network after freeze-thaw cycles. Lower sodium dodecyl sulfate (SDS) soluble polymeric proteins and monomeric proteins, and higher SDS insoluble proteins were found in frozen dough containing PTY, which indicates a reduced depolymerization of gluten proteins after freeze-thaw cycles. After 4 freeze-thaw cycles, the lower glutathione and free sulfhydryl in dough containing PTY indicate that the interchain disulfide bonds between proteins were preserved.
Collapse
Affiliation(s)
- Lu Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Jun-Jie Xing
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Zhen Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
58
|
Pan J, Zhang H, Liu J, Jiang Y, Lv Y, Han J. Effects of catechins on the polymerisation behaviour, conformation and viscoelasticity of wheat gluten. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junxian Pan
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou310018China
- Hangzhou Tea Research Institute CHINA COOP Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources Hangzhou310016China
| | - Haihua Zhang
- Hangzhou Tea Research Institute CHINA COOP Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources Hangzhou310016China
| | - Jun Liu
- Hangzhou Tea Research Institute CHINA COOP Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources Hangzhou310016China
| | - Yulan Jiang
- Hangzhou Tea Research Institute CHINA COOP Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources Hangzhou310016China
| | - Yangjun Lv
- Hangzhou Tea Research Institute CHINA COOP Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources Hangzhou310016China
| | - Jianzhong Han
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou310018China
| |
Collapse
|
59
|
Zhu J, Li K, Wu H, Li W, Sun Q. Multi-spectroscopic, conformational, and computational atomic-level insights into the interaction of β-lactoglobulin with apigenin at different pH levels. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105810] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
60
|
Persimmon tannin changes the properties and the morphology of wheat gluten by altering the cross-linking, and the secondary structure in a dose-dependent manner. Food Res Int 2020; 137:109536. [PMID: 33233165 DOI: 10.1016/j.foodres.2020.109536] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 02/05/2023]
Abstract
The effects of persimmon tannin (PT) on the texture, viscoelasticity, thermal stability, and morphology of gluten were studied and the underlying mechanisms were also explored. The results showed that PT increased the hardness and viscoelasticity but lowered the cohesiveness and extensibility of gluten in a dose-dependent manner. Additionally, PT increased the denaturation temperature and enthalpy of gluten, and induced the formation of gluten with compact structure. High concentration of PT (8%) significantly increased the hardness and viscoelasticity of gluten, and induced the formation of compact structure of gluten by disturbing the conformation of gluten, and interfering gluten cross-linking through decreasing disulfide bonds, free sulfydryl groups, and free amino groups. In contrast, low concentration (0.25%) of PT slightly altered the gluten properties and morphology. Our work extended the study on the supplementation of phenolic compounds in wheat flour-based products.
Collapse
|
61
|
Han C, Ma M, Li M, Sun Q. Further interpretation of the underlying causes of the strengthening effect of alkali on gluten and noodle quality: Studies on gluten, gliadin, and glutenin. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105661] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
62
|
Wang P, Zou M, Li D, Zhou Y, Jiang D, Yang R, Gu Z. Conformational rearrangement and polymerization behavior of frozen-stored gluten during thermal treatment. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
63
|
Zhou R, Sun J, Qian H, Li Y, Zhang H, Qi X, Wang L. Effect of the frying process on the properties of gluten protein of you-tiao. Food Chem 2020; 310:125973. [DOI: 10.1016/j.foodchem.2019.125973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/14/2019] [Accepted: 11/27/2019] [Indexed: 01/06/2023]
|
64
|
Progressive study of the effect of superfine green tea, soluble tea, and tea polyphenols on the physico-chemical and structural properties of wheat gluten in noodle system. Food Chem 2020; 308:125676. [DOI: 10.1016/j.foodchem.2019.125676] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/10/2019] [Accepted: 10/07/2019] [Indexed: 11/17/2022]
|
65
|
Li XM, Xie QT, Zhu J, Pan Y, Meng R, Zhang B, Chen HQ, Jin ZY. Chitosan hydrochloride/carboxymethyl starch complex nanogels as novel Pickering stabilizers: Physical stability and rheological properties. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
66
|
Zhang M, Wang P, Zou M, Yang R, Tian M, Gu Z. Microbial transglutaminase-modified protein network and its importance in enhancing the quality of high-fiber tofu with okara. Food Chem 2019; 289:169-176. [DOI: 10.1016/j.foodchem.2019.03.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/04/2019] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
|
67
|
Influence of Konjac Glucomannan and Frozen Storage on Rheological and Tensile Properties of Frozen Dough. Polymers (Basel) 2019; 11:polym11050794. [PMID: 31052589 PMCID: PMC6572217 DOI: 10.3390/polym11050794] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023] Open
Abstract
The impact of various amounts of konjac glucomannan on the structural and physicochemical properties of gluten proteins/dough at different periods of frozen storage is evaluated in the present study. As frozen storage time was prolonged, the molecular weight and the free sulfhydryl content of gluten proteins and the tensile properties of frozen dough all decreased. The addition of konjac glucomannan reduced the variations in the structural and rheological properties of gluten proteins/dough. Frozen dough with 2.5% added konjac glucomannan showed the highest water binding capacity and retarded the migration of water. Scanning electron microscopy and differential scanning calorimetry results also revealed that adding konjac glucomannan reduced the cracks and holes in the dough and enhanced its thermal stability. The correlations between mechanical characteristics and structure parameters further indicated that konjac glucomannan could not only stabilize the structures of gluten proteins but also bind free water to form more stable complexes, thereby retaining the rheological and tensile properties of the frozen dough.
Collapse
|
68
|
Li XM, Zhu J, Pan Y, Meng R, Zhang B, Chen HQ. Fabrication and characterization of pickering emulsions stabilized by octenyl succinic anhydride -modified gliadin nanoparticle. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.12.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
69
|
Zou M, Yang R, Gu Z, Wang P. Heat-triggered polymerization of frozen gluten: The micro-morphology and thermal characteristic study. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
70
|
Wang P, Liu K, Yang R, Gu Z, Zhou Q, Jiang D. Comparative Study on the Bread Making Quality of Normoxia- and Hypoxia-Germinated Wheat: Evolution of γ-Aminobutyric Acid, Starch Gelatinization, and Gluten Polymerization during Steamed Bread Making. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3480-3490. [PMID: 30817141 DOI: 10.1021/acs.jafc.9b00200] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To explore the bread making characteristics of germinated wheat flour, the current study focused on the componential evolution throughout the steamed bread making process. Hypoxia-germinated wheat (HGW) dough produced the maximum γ-aminobutyric acid as a result of high glutamic acid decarboxylase activity during fermentation compared to normoxia-germinated wheat (NGW) and sound wheat (SW). HGW was superior to NGW in terms of rheological properties and restored the organoleptic characteristics as SW bread. Blocking of α-amylase activity and protein polymerization demonstrated that the decline in pasting and gelation properties was not caused by changes in intrinsic starch and protein properties. Polymerization of α- and γ-gliadin to glutenin was facilitated in germinated wheat bread, while the cross-linking degree of glutenin-gliadin was suppressed. In comparison to NGW bread, more high-molecular-weight glutenin subunits but less α-gliadin fractions polymerized upon steaming of HGW dough. Results demonstrate that HGW has great potential to be exploited as a nutritious functional ingredient for wheat-based food.
Collapse
|
71
|
Wang P, Hou C, Zhao X, Tian M, Gu Z, Yang R. Molecular characterization of water-extractable arabinoxylan from wheat bran and its effect on the heat-induced polymerization of gluten and steamed bread quality. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
72
|
Ma YS, Pan Y, Xie QT, Li XM, Zhang B, Chen HQ. Evaluation studies on effects of pectin with different concentrations on the pasting, rheological and digestibility properties of corn starch. Food Chem 2019; 274:319-323. [DOI: 10.1016/j.foodchem.2018.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/27/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022]
|
73
|
Wang P, Zou M, Tian M, Gu Z, Yang R. The impact of heating on the unfolding and polymerization process of frozen-stored gluten. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.07.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
74
|
Tao H, Huang JS, Xie QT, Zou YM, Wang HL, Wu XY, Xu XM. Effect of multiple freezing-thawing cycles on structural and functional properties of starch granules isolated from soft and hard wheat. Food Chem 2018; 265:18-22. [DOI: 10.1016/j.foodchem.2018.05.065] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022]
|