51
|
Qi W, Li XX, Guo YH, Bao YZ, Wang N, Luo XG, Yu CD, Zhang TC. Integrated metabonomic-proteomic analysis reveals the effect of glucose stress on metabolic adaptation of Lactococcus lactis ssp. lactis CICC23200. J Dairy Sci 2020; 103:7834-7850. [PMID: 32684472 DOI: 10.3168/jds.2019-17810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
A combined proteomic and metabonomic approach was used to investigate the metabolism of Lactococcus lactis ssp. lactis subjected to glucose stress treatment. A proteomic method was used to determine 1,427 altered proteins, including 278 proteins with increased expression and 255 proteins with decreased expression. A metabonomic approach was adopted to identify 98 altered metabolites, including 62 metabolites with increased expression and 26 metabolites with decreased expression. The integrated analysis indicated that the RNA and DNA mismatch repair process and energy metabolism were enhanced in response to high-glucose stress in L. lactis. Lactococcus lactis responded to glucose stress by up-regulating oxidoreductase activity, which acted on glycosyl bonds, hydrolase activity, and organic acid transmembrane transporter activity. This led to an improvement in the metabolic flux from glucose to pyruvate, lactate, acetate, and maltose. Down-regulation of amino acid transmembrane transporter, aminoacyl-transfer RNA ligase, hydroxymethyl-, formyl-, and related transferase activities resulted in a decrease in the nitrogen metabolism-associated metabolic pathway, which might be related to inhibition of the production of biogenic amines. Overall, we highlight the response of metabolism to glucose stress and provide potential possibilities for the reduced formation of biogenic amines in improved level of sugar in the dairy fermentation industry. Moreover, according to the demand for industrial production, sugar concentration in fermented foods should be higher, or lower, than a set value that is dependent on bacterial strain and biogenic amine yield.
Collapse
Affiliation(s)
- Wei Qi
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China.
| | - Xiao-Xue Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Yao-Hua Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Yan-Zhou Bao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Nan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Xue-Gang Luo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Chun-Di Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Tong-Cun Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China.
| |
Collapse
|
52
|
Zhang B, Sheng W, Liu Y, Huang N, Zhang W, Wang S. Multiplexed fluorescence immunoassay combined with magnetic separation using upconversion nanoparticles as multicolor labels for the simultaneous detection of tyramine and histamine in food samples. Anal Chim Acta 2020; 1130:117-125. [DOI: 10.1016/j.aca.2020.07.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/11/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
|
53
|
Jia W, Zhang R, Shi L, Zhang F, Chang J, Chu X. Effects of spices on the formation of biogenic amines during the fermentation of dry fermented mutton sausage. Food Chem 2020; 321:126723. [DOI: 10.1016/j.foodchem.2020.126723] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/12/2020] [Accepted: 03/31/2020] [Indexed: 11/30/2022]
|
54
|
Involvement of Organic Cation Transporter 2 and a Na +-dependent active transporter in p-tyramine transport across Caco-2 intestinal cells. Life Sci 2020; 253:117696. [PMID: 32334013 DOI: 10.1016/j.lfs.2020.117696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
AIMS We have previously demonstrated that p-tyramine (TYR), an endogenous trace amine-associated receptor 1 agonist, passage across neuronal membranes involves a transporter exhibiting the pharmacological profile of Organic Cation Transporter 2 (OCT2). Since TYR is also a constituent of foodstuffs and produced by the intestinal microbiota, here we have investigated whether similar processes are involved in the passage of 100 nM TYR across apical and basolateral membranes of the Caco-2 human intestinal epithelial cell line. MATERIALS AND METHODS [3H]TYR transport across apical and basolateral membranes of Caco-2 cell monolayers was measured in the presence of inhibitors of TYR metabolizing enzymes. Cellular, apical, and basolateral compartments were collected at various timepoints, TYR concentrations calculated, and transport properties pharmacologically characterized. KEY FINDINGS Apical transport resulted in equimolar accumulation of TYR within cells. Pentamidine (OCT1/OCT2 inhibitor) decreased apical transport (P = 0.001) while atropine (OCT1 inhibitor) had no effect, suggesting apical transport involved OCT2. In contrast, basolateral transport resulted in 500-1000 nM cellular concentrations (P < 0.0001) indicating the presence of an active transporter. Replacement of Na+ on an equimolar basis with choline resulted in loss of TYR transport (P = 0.017). Unexpectedly, this active transport was also atropine-sensitive (P = 0.020). Kinetic analysis of the active transporter revealed Vmax = 43.0 nM/s with a Kt = 33.1 nM. SIGNIFICANCE We have demonstrated for the first time that TYR is transported across Caco-2 apical membranes via facilitated diffusion by OCT2, whereas transport across basolateral membranes is by a Na+-dependent, atropine-sensitive, active transporter.
Collapse
|
55
|
Domingos-Lopes MFP, Stanton C, Ross RP, Silva CCG. Histamine and cholesterol lowering abilities of lactic acid bacteria isolated from artisanal Pico cheese. J Appl Microbiol 2020; 129:1428-1440. [PMID: 32500572 DOI: 10.1111/jam.14733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/27/2020] [Accepted: 05/26/2020] [Indexed: 01/30/2023]
Abstract
AIMS This study was designed to select lactic acid bacteria with histamine- and cholesterol-reducing abilities to be used as potential probiotics. METHODS AND RESULTS Thirty strains of lactic acid bacteria isolated from an artisanal raw milk cheese were screened for their abilities to degrade histamine, reduce cholesterol and hydrolyse bile salts. Strains were also screened for safety and probiotic traits, such as resistance to gastrointestinal conditions, adhesion to Caco-2 cells, resistance to antibiotics and presence of virulence genes. Two Lactobacillus paracasei strains presented high cholesterol- and histamine-lowering abilities, tested negative for the presence of virulence genes and showed susceptibility to most important antibiotics. These strains were also shown to possess desirable in vitro probiotic properties, revealed by tolerance to gastrointestinal conditions and high adhesion to intestinal cells. CONCLUSIONS Among the screened strains, Lb. paracasei L3C21M6 revealed the best cholesterol and histamine reducing abilities together with desirable probiotic and safety features to be used in food applications. SIGNIFICANCE AND IMPACT OF THE STUDY The strain L3C21M6 is a good candidate for use as a probiotic with histamine-degrading activity and cholesterol lowering effect. In addition, this strain could be use in dairy foods to prevent histamine food poisoning.
Collapse
Affiliation(s)
- M F P Domingos-Lopes
- Instituto de Investigação e Tecnologias Agrárias e do Ambiente dos Açores (IITAA), Universidade dos Açores, Angra do Heroísmo, Portugal
| | - C Stanton
- Teagasc Moorepark Food Reseach Centre, Fermoy, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - R P Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - C C G Silva
- Instituto de Investigação e Tecnologias Agrárias e do Ambiente dos Açores (IITAA), Universidade dos Açores, Angra do Heroísmo, Portugal
| |
Collapse
|
56
|
Sang X, Li K, Zhu Y, Ma X, Hao H, Bi J, Zhang G, Hou H. The Impact of Microbial Diversity on Biogenic Amines Formation in Grasshopper Sub Shrimp Paste During the Fermentation. Front Microbiol 2020; 11:782. [PMID: 32390997 PMCID: PMC7193991 DOI: 10.3389/fmicb.2020.00782] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/01/2020] [Indexed: 01/02/2023] Open
Abstract
Biogenic amines (BAs) and microbial diversity are important factors affecting food quality and safety in fermented foods. In this study, the bacterial and fungal diversity in grasshopper sub shrimp paste taken at different fermentation times were comprehensively analyzed, while the pH, colony counts, salinity, total volatile base nitrogen (TVB-N) and BA contents were quantitatively determined. In addition, the correlations among the samples with respect to microbial communities and the different parameters investigated especially BAs were also established. By combining the results of spearman correlation heatmap with the contents of BAs produced by the 102 halotolerant bacteria isolated from the grasshopper sub shrimp paste, six major genera of bacteria (Jeotgalibaca, Jeotgalicoccus, Lysinibacillus, Sporosarcina, Staphylococcus, and Psychrobacter) were found to be positively correlated with BA production level, suggesting that these bacteria might have a strong tendency to produce BAs. Other bacteria such as Lentibacillus, Pseudomonas, and Salinicoccus were considered as poor BA producers. The grasshopper sub shrimp paste was characterized by a relatively high abundance of Tetragenococcus, which was the dominant genus during the fermentation process, and it also produced a relatively high level of BAs but the spearman correlation heatmap revealed a negative correlation between T. muriaticus and BA level. Analysis of the species relevance network in grasshopper sub shrimp explained that the actual production of BAs by a certain strain was closely related to other species present in the complex fermentation system.
Collapse
Affiliation(s)
- Xue Sang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, China
| | - Kexin Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, China
| | - Yaolei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, China
| | - Xinxiu Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, China
| | - Hongshun Hao
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
57
|
|
58
|
El Youssef C, Bonnarme P, Fraud S, Péron AC, Helinck S, Landaud S. Sensory Improvement of a Pea Protein-Based Product Using Microbial Co-Cultures of Lactic Acid Bacteria and Yeasts. Foods 2020; 9:E349. [PMID: 32192189 PMCID: PMC7143830 DOI: 10.3390/foods9030349] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 12/23/2022] Open
Abstract
Consumer demands for plant-based products have increased in recent years. However, their consumption is still limited due to the presence of off-flavor compounds, primarily beany and green notes, which are mainly associated with the presence of aldehydes, ketones, furans, and alcohols. To overcome this problem, fermentation is used as a lever to reduce off-flavors. A starter culture of lactic acid bacteria (LAB) was tested in a 4% pea protein solution with one of the following yeasts: Kluyveromyces lactis, Kluyveromyces marxianus, or Torulaspora delbrueckii. The fermented samples were evaluated by a sensory panel. Non-fermented and fermented matrices were analyzed by gas chromatography coupled with mass spectrometry to identify and quantify the volatile compounds. The sensory evaluation showed a significant reduction in the green/leguminous attributes of pea proteins and the generation of new descriptors in the presence of yeasts. Compared to the non-fermented matrix, fermentations with LAB or LAB and yeasts led to the degradation of many off-flavor compounds. Moreover, the presence of yeasts triggered the generation of esters. Thus, fermentation by a co-culture of LAB and yeasts can be used as a powerful tool for the improvement of the sensory perception of a pea protein-based product.
Collapse
Affiliation(s)
- Cynthia El Youssef
- General Mills Yoplait, Vienne Technical Center, 38205 Vienne, France; (C.E.Y.); (S.F.)
| | - Pascal Bonnarme
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850 Thiverval-Grignon, France; (P.B.); (A.-C.P.); (S.L.)
| | - Sébastien Fraud
- General Mills Yoplait, Vienne Technical Center, 38205 Vienne, France; (C.E.Y.); (S.F.)
| | - Anne-Claire Péron
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850 Thiverval-Grignon, France; (P.B.); (A.-C.P.); (S.L.)
| | - Sandra Helinck
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850 Thiverval-Grignon, France; (P.B.); (A.-C.P.); (S.L.)
| | - Sophie Landaud
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850 Thiverval-Grignon, France; (P.B.); (A.-C.P.); (S.L.)
| |
Collapse
|
59
|
Anal AK, Perpetuini G, Petchkongkaew A, Tan R, Avallone S, Tofalo R, Nguyen HV, Chu-Ky S, Ho PH, Phan TT, Waché Y. Food safety risks in traditional fermented food from South-East Asia. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106922] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
60
|
Sun S, Jiang D, Fan M, Li H, Jin C, Liu W. Selection of a versatileLactobacillus plantarumfor wine production and identification and preliminary characterisation of a novel histamine‐degrading enzyme. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shuyang Sun
- School of Food Engineering Ludong University Yantai Shandong 264025China
- Institute of Bionanotechnology Ludong University Yantai Shandong 264025China
| | - Dongqi Jiang
- Institute of Food Science and Engineering Yantai University Yantai Shandong 264005China
| | - Minting Fan
- Institute of Food Science and Engineering Yantai University Yantai Shandong 264005China
| | - Huamin Li
- School of Food Engineering Ludong University Yantai Shandong 264025China
- Institute of Bionanotechnology Ludong University Yantai Shandong 264025China
| | - Chengwu Jin
- School of Food Engineering Ludong University Yantai Shandong 264025China
| | - Wenli Liu
- School of Food Engineering Ludong University Yantai Shandong 264025China
- Institute of Bionanotechnology Ludong University Yantai Shandong 264025China
| |
Collapse
|
61
|
Świder O, Roszko MŁ, Wójcicki M, Szymczyk K. Biogenic Amines and Free Amino Acids in Traditional Fermented Vegetables-Dietary Risk Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:856-868. [PMID: 31891502 DOI: 10.1021/acs.jafc.9b05625] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biogenic amines (BAs) are low molecular weight organic bases. BAs occurring naturally in living organisms are responsible for a number of vital functions, including (in humans) secretion of gastric acids, controlling body temperature, differentiation and growth of cells, immune reactions, and brain activity. However, if oversupplied with food, BAs may cause food poisoning and produce undesirable effects. Nine BAs and eight free amino acids (FAAs) were determined in 85 samples of 19 different varieties of fermented vegetables available on the Polish retail market. Both BA and FAA levels differed significantly among various varieties of the studied fermented vegetables. Averages for the sum of all tested BAs ranged from 30.29 ± 16.43 mg·kg-1 in fermented olives to 612.1 ± 359.33 mg·kg-1 in fermented Brussels sprout. BA profiles were dominated by putrescine (42%), tyramine (20%), cadaverine (18%), and histamine (8%); jointly, the four amines amounted to 88% of all nine studied BAs. The combined level of the latter four BAs was calculated for each vegetable variety as the so-called BA index (BAI). On that basis, the risk of BA-related adverse health effects has been assessed as high/medium/low in 6/3/10 of all 19 studied varieties of fermented vegetables. Brussels sprout and broccoli turned out to be the most risky vegetables from that point of view (BAI above 400 mg·kg-1). FAA levels ranged from 54.8 ± 12.76 (fermented olives) to 3917.42 ± 1528.73 mg·kg-1 (fermented garlic). The high content of FAAs may increase the risk of forming toxic amounts of BAs, depending on characteristics of the current and added microflora as well as on environmental and technological conditions the product is subjected to.
Collapse
Affiliation(s)
- Olga Świder
- Department of Food Analysis , Institute of Agricultural and Food Biotechnology , Rakowiecka 36, 02-532 Warsaw , Poland
| | - Marek Łukasz Roszko
- Department of Food Analysis , Institute of Agricultural and Food Biotechnology , Rakowiecka 36, 02-532 Warsaw , Poland
| | - Michał Wójcicki
- Department of Fermentation Technology , Institute of Agricultural and Food Biotechnology , Rakowiecka 36, 02-532 Warsaw , Poland
| | - Krystyna Szymczyk
- Department of Food Analysis , Institute of Agricultural and Food Biotechnology , Rakowiecka 36, 02-532 Warsaw , Poland
| |
Collapse
|
62
|
Yang B, Tan Y, Kan J. Regulation of quality and biogenic amine production during sufu fermentation by pure Mucor strains. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
63
|
Bartkiene E, Mozuriene E, Lele V, Zokaityte E, Gruzauskas R, Jakobsone I, Juodeikiene G, Ruibys R, Bartkevics V. Changes of bioactive compounds in barley industry by-products during submerged and solid state fermentation with antimicrobial Pediococcus acidilactici strain LUHS29. Food Sci Nutr 2020; 8:340-350. [PMID: 31993160 PMCID: PMC6977520 DOI: 10.1002/fsn3.1311] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 01/02/2023] Open
Abstract
In this study, changes of bioactive compounds (crude protein (CP), crude fat (CF), dietary fiber (DF), fatty acids (FAs), free amino acids (FAAs), phenolic compounds (PCs), biogenic amines (BAs), lignans, and alkylresorcinols) in barley industry by-products (BB) during submerged and solid state fermentation (SSF) with Pediococcus acidilactici were analyzed. It was established that both fermentation conditions reduce the CP and CF content in BB (by 25.8% and 35.9%, respectively) and increase DF content (on average by 25.0%). Fermentation increases the oleic, arachidic, eicosadienoic, behenic, and lignoceric FA in BB samples. The highest total BA content was found in untreated samples (290.6 mg/kg). Solid state fermentation increased the content of the alkylresorcinol C19:0. Finally, collecting data about the changes of these compounds during technological processes is very important, because according to the specific compounds formed during fermentation, further recommendations for by-product valorization and uses in food, pharmaceutical, or feed industries can be suggested.
Collapse
Affiliation(s)
| | | | - Vita Lele
- Lithuanian University of Health SciencesKaunasLithuania
| | | | | | - Ida Jakobsone
- Centre of Food ChemistryUniversity of LatviaRigaLatvia
- Institute of Food SafetyAnimal Health and EnvironmentRigaLatvia
| | | | - Romas Ruibys
- Institute of Agricultural and Food SciencesAgriculture AcademyVytautas Magnus UniversityKaunasLithuania
| | - Vadims Bartkevics
- Centre of Food ChemistryUniversity of LatviaRigaLatvia
- Institute of Food SafetyAnimal Health and EnvironmentRigaLatvia
| |
Collapse
|
64
|
Bajpai VK, Shukla S, Khan I, Kang SM, Haldorai Y, Tripathi KM, Jung S, Chen L, Kim T, Huh YS, Han YK. A Sustainable Graphene Aerogel Capable of the Adsorptive Elimination of Biogenic Amines and Bacteria from Soy Sauce and Highly Efficient Cell Proliferation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43949-43963. [PMID: 31684721 DOI: 10.1021/acsami.9b16989] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A graphene aerogel (GA) with a three-dimensional (3D) structure, ultra-lightweight nature, and high hydrophobicity was simply fabricated by the one-step pyrolysis of glucose and ammonium chloride. The as-synthesized GA exhibited a 3D interconnected microporous architecture with a high surface area of ∼2860 m2 g-1 and pore volume of 2.24 cm3 g-1. The hydrophobic GA (10 mg 100 mL-1) demonstrated rapid and excellent adsorption performance for the removal of food toxins such as various biogenic amines (histamine, cadaverine, and spermine) and the hazardous bacterium Staphylococcus aureus (a food contaminant and a cause of poor wound healing) from a liquid matrix with a maximum simultaneous adsorption capacity for multiple biogenic amines of >85.19% (histamine), 74.1% (cadaverine), and 70.11% (spermidine) and a 100% reduction in the viable cell count of S. aureus within 80 min of interaction. The outstanding adsorption capacity can be attributed to a highly interconnected porous network in the 3D architecture and a high surface-to-volume ratio. A case study using soy sauce spiked with multiple biogenic amines showed successful removal of toxins with excellent recyclability without any loss in absorption performance. Biocompatibility of the GA in terms of cell viability was observed even at high concentrations (83.46% and 75.28% at 25 and 50 mg mL-1, respectively). Confirmatory biocompatibility testing was conducted via live/dead cell evaluation, and the morphology of normal lung epithelial cells was examined via scanning electron microscopy showed no cellular shrinkage. Moreover, GA showed excellent removal of live colonies of S. aureus from the food matrix and immunoblotting analysis showed elevated protein expression levels of β-catenin and α-SMA (α-smooth muscle actin). The biocompatible sugar-based GA could simultaneously adsorb multiple biogenic amines and live bacteria and was easy to regenerate via simple separation due to its high floatability, hydrophobicity, surface area, and porosity without any structural and functional loss, making it especially relevant for food safety and biomedical applications.
Collapse
Affiliation(s)
- Vivek K Bajpai
- Department of Energy and Materials Engineering , Dongguk University - Seoul , 30 Pildong-ro 1-gil, Seoul 04620 , Republic of Korea
| | - Shruti Shukla
- Department of Food Science and Technology , National Institute of Food Technology Entrepreneurship and Management (NIFTEM) , Sonipat , Haryana 131028 , India
| | - Imran Khan
- Department of Chemical Engineering , Inha University , 100 Inha-ro, Nam-gu, Incheon 22212 , Republic of Korea
| | - Sung-Min Kang
- Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Yuvaraj Haldorai
- Department of Nanoscience and Technology , Bharathiar University , Coimbatore 641046 , Tamil Nadu , India
| | - Kumud Malika Tripathi
- Department of Bionanotechnology , Gachon University , 1342 Seongnam-daero, Sujeong-gu, Seongnam-si , Gyeonggi-do 461-701 , Republic of Korea
| | - SungHoon Jung
- Department of Bionanotechnology , Gachon University , 1342 Seongnam-daero, Sujeong-gu, Seongnam-si , Gyeonggi-do 461-701 , Republic of Korea
| | - Lei Chen
- College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - TaeYoung Kim
- Department of Bionanotechnology , Gachon University , 1342 Seongnam-daero, Sujeong-gu, Seongnam-si , Gyeonggi-do 461-701 , Republic of Korea
| | - Yun Suk Huh
- Department of Chemical Engineering , Inha University , 100 Inha-ro, Nam-gu, Incheon 22212 , Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering , Dongguk University - Seoul , 30 Pildong-ro 1-gil, Seoul 04620 , Republic of Korea
| |
Collapse
|
65
|
Majcherczyk J, Surówka K. Effects of onion or caraway on the formation of biogenic amines during sauerkraut fermentation and refrigerated storage. Food Chem 2019; 298:125083. [DOI: 10.1016/j.foodchem.2019.125083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 01/07/2023]
|
66
|
Ahmad W, Mohammed GI, Al-Eryani DA, Saigl ZM, Alyoubi AO, Alwael H, Bashammakh AS, O'Sullivan CK, El-Shahawi MS. Biogenic Amines Formation Mechanism and Determination Strategies: Future Challenges and Limitations. Crit Rev Anal Chem 2019; 50:485-500. [PMID: 31486337 DOI: 10.1080/10408347.2019.1657793] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The evolution in foodstuff-monitoring processes has increased the number of studies on biogenic amines (BAs), in recent years. This trend with future perspective needs to be assembled to address the associated health risks. Thus, this study aims to cover three main aspects of BAs: (i) occurrence, physiology, and toxicological effects, most probable formation mechanisms and factors controlling their growth; (ii) recent advances, strategies for determination, preconcentration steps, model technique, and nature of the matrix; and (iii) milestone, limitations with existing methodologies, future trends, and detailed expected developments for clinical use and on-site ultra-trace determination. The core of the ongoing review will discuss recent trends in pre-concentration toward miniaturization, automation, and possible coupling with electrochemical techniques, surface-enhanced Raman scattering, spectrofluorimetry, and lateral flow protocols to be exploited for the development of rapid, facile, and sensitive on-site determination strategies for BAs.
Collapse
Affiliation(s)
- Waqas Ahmad
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - G I Mohammed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemistry, Faculty of Applied Sciences, Umm Al Qura University, Makka, Saudi Arabia
| | - D A Al-Eryani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Z M Saigl
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A O Alyoubi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - H Alwael
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A S Bashammakh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - C K O'Sullivan
- Nanobiotechnology & Bioanalysis Group, Department d Enginyeria Quimica, Universitat i Virgili, Tarragona, Spain
| | - M S El-Shahawi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
67
|
Characterization and Evaluation of Aroma Quality in Doubanjiang, a Chinese Traditional Fermented Red Pepper Paste, Using Aroma Extract Dilution Analysis and a Sensory Profile. Molecules 2019; 24:molecules24173107. [PMID: 31461894 PMCID: PMC6749255 DOI: 10.3390/molecules24173107] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 11/17/2022] Open
Abstract
Doubanjiang, a Chinese traditional fermented red pepper paste, is eaten worldwide for its unique flavor. The objective of this study was to evaluate the aroma quality of doubanjiang using solvent-assisted flavor evaporation (SAFE) and headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). A total of 165 volatile compounds, belonging to 13 chemical classes, were identified. Esters and hydrocarbons were the predominant groups. Thirteen aroma-active compounds were detected by AEDA of SAFE and HS-SPME, and their odor activity values (OAVs) were calculated by dividing their concentration by their odor threshold in water. Among them, ethyl isovalerate, β-damascenone, 3-isobutyl-2-methoxypyrazine (IBMP), and sotolone had the highest OAVs (>1000). In addition, sotolone, methional, β-damascenone, 3-isobutyl-2-methoxypyrazine, ethyl isovalerate, phenylethyl alcohol and linalool had high flavor dilution (FD) factors. Sotolone, β-damascenone and 3-isobutyl-2-methoxypyrazine were identified for the first time in doubanjiang and played significant roles in its aroma quality.
Collapse
|
68
|
Extraction Process of Polyphenols from Soybean (Glycine max L.) Sprouts: Optimization and Evaluation of Antioxidant Activity. Processes (Basel) 2019. [DOI: 10.3390/pr7080489] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This research aimed to optimize the total polyphenol content (TPC) extracted from soybean sprout powder under different experimental parameters, including ethanol concentration (60–100% v/v), extraction temperature (40–80 °C), extraction time (15–150 min), material:solvent ratio (1:4–1:10 g/mL), the number extraction cycles (1, 2 and 3 times), the age of sprout (0–7 days), and the used part of the sprout (cotyledon, hypocotyl, or radicle). The obtained results were used in response surface methodology, in combination with a central composite design, to model the total polyphenol content (TPC) with respect to three variables, including ethanol concentration, extraction temperature, and material:solvent ratio. The experimental conditions for optimal recovery of TPC consisted of ethanol concentration of 88% (v/v), extraction temperature of 59 °C, material:solvent ratio of 1:6.5 g/mL, extraction time of 60 min, and 2 cycles of maceration. In addition, for maximal TPC, the sprout should undergo the germination of 5 days and the radicle fraction should be used. Based on the suggested optimum conditions, the obtained and verified TPC was 19.801 mg genistein (GE)/g dry weight (d.w.). The obtained dried extract also exhibited low antioxidant activity.
Collapse
|
69
|
Formation of Biogenic Amines in Pa (Green Onion) Kimchi and Gat (Mustard Leaf) Kimchi. Foods 2019; 8:foods8030109. [PMID: 30909649 PMCID: PMC6462971 DOI: 10.3390/foods8030109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/03/2022] Open
Abstract
In this study, biogenic amine content in Pa (green onion) kimchi and Gat (mustard leaf) kimchi, Korean specialty kimchi types, was determined by high-performance liquid chromatography (HPLC). Many kimchi samples contained low levels of biogenic amines, but some samples had histamine and tyramine content over the safe levels. Based on the comparative analysis between the ingredient information on food labels and biogenic amine content of kimchi samples, Myeolchi-aekjeot appeared to be an important source of biogenic amines in both kimchi. Besides, through the 16s rRNA sequence analysis, Lactobacillus brevis appeared to be responsible for the formation of biogenic amines (tyramine, β-phenylethylamine, putrescine, and cadaverine) in both kimchi, in a strain-dependent manner. During fermentation, a higher accumulation of tyramine, β-phenylethylamine, and putrescine was observed in both or one (for putrescine) of kimchi types when L. brevis strains served as inocula. The addition of Myeolchi-aekjeot affected the initial concentrations of most biogenic amines (except for spermidine in Gat kimchi) in both kimchi. Therefore, this study suggests that using appropriately salted and fermented seafood products for kimchi preparation and using biogenic amine-negative and/or biogenic amine-degrading starter cultures would be effective in reducing biogenic amine content in Pa kimchi and Gat kimchi.
Collapse
|