51
|
Si K, Gong T, Ding S, Liu H, Shi S, Tu J, Zhu L, Song L, Song L, Zhang X. Binding mechanism and bioavailability of a novel phosvitin phosphopeptide (Glu-Asp-Asp-pSer-pSer) calcium complex. Food Chem 2023; 404:134567. [DOI: 10.1016/j.foodchem.2022.134567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/20/2022] [Accepted: 10/08/2022] [Indexed: 11/22/2022]
|
52
|
Zhang H, Liu H, Qi L, Xv X, Li X, Guo Y, Jia W, Zhang C, Richel A. Application of steam explosion treatment on the collagen peptides extraction from cattle bone. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
53
|
Zhang H, Qi L, Wang X, Guo Y, Liu J, Xu Y, Liu C, Zhang C, Richel A. Preparation of a cattle bone collagen peptide-calcium chelate by the ultrasound method and its structural characterization, stability analysis, and bioactivity on MC3T3-E1 cells. Food Funct 2023; 14:978-989. [PMID: 36541828 DOI: 10.1039/d2fo02146c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study was designed to prepare a cattle bone-derived collagen peptide-calcium chelate by the ultrasound method (CP-Ca-US), and its structure, stability, and bioactivity on MC3T3-E1 cells were characterized. Single-factor experiments optimized the preparation conditions: ultrasound power 90 W, ultrasound time 40 min, CaCl2/peptides ratio 1/2, pH 7. Under these conditions, the calcium-chelating ability reached 39.48 μg mg-1. The result of Fourier transform-infrared spectroscopy indicated that carboxyl oxygen and amino nitrogen atoms were chelation sites. Morphological analysis indicated that CP-Ca-US was characterized by a porous surface and large particles. Stability analysis demonstrated that CP-Ca-US was stable in the thermal environment and under intestinal digestion. CP-Ca-US showed more stability in gastric juice than the chelate prepared by the hydrothermal method. Cell experiments indicated that CP-Ca-US increased osteoblast proliferation (proliferation rate 153% at a concentration of 300 μg mL-1) and altered the cell cycle. Significantly, CP-Ca-US enhanced calcium absorption by interacting with calcium-sensing receptors and promoted the mineralization of MC3T3-E1 cells. This study provides the scientific basis for applying the ultrasound method to prepare peptide-calcium chelates and clarifies the positive role of chelates in bone building.
Collapse
Affiliation(s)
- Hongru Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Laboratory of Biomass and Green Technologies, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, B-5030, Gembloux, Belgium
| | - Liwei Qi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xiaodan Wang
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD, Wageningen, The Netherlands
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jiqian Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yang Xu
- Inner Mongolia Peptide (Mengtai) Biological Engineering Co., Ltd, Shengle Economic Park, Helinger County, Hohhot, Inner Mongolia, 010000, China
| | - Chengjiang Liu
- Institute of Agro-Products Processing Science, Technology Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, B-5030, Gembloux, Belgium
| |
Collapse
|
54
|
Pérez A, Ruz M, García P, Jiménez P, Valencia P, Ramírez C, Pinto M, Nuñez SM, Park JW, Almonacid S. Nutritional Properties of Fish Bones: Potential Applications in the Food Industry. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2022.2153136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Alvaro Pérez
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Manuel Ruz
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paula García
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paula Jiménez
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pedro Valencia
- Departamento de Ingeniería Quimica y Ambiental, Universidad Técnica Federico Santa Maria, Valparaíso, Chile
| | - Cristian Ramírez
- Departamento de Ingeniería Quimica y Ambiental, Universidad Técnica Federico Santa Maria, Valparaíso, Chile
| | - Marlene Pinto
- Departamento de Ingeniería Quimica y Ambiental, Universidad Técnica Federico Santa Maria, Valparaíso, Chile
| | - Suleivys M. Nuñez
- Departamento de Ingeniería Quimica y Ambiental, Universidad Técnica Federico Santa Maria, Valparaíso, Chile
| | - Jae W. Park
- Department of Food Science & Technology, Oregon State University Seafood Research and Education Center, Astoria, OR, USA
| | - Sergio Almonacid
- Departamento de Ingeniería Quimica y Ambiental, Universidad Técnica Federico Santa Maria, Valparaíso, Chile
| |
Collapse
|
55
|
Isolation and Characterization of Collagen and Collagen Peptides with Hyaluronidase Inhibition Activity Derived from the Skin of Marlin ( Istiophoridae). Molecules 2023; 28:molecules28020889. [PMID: 36677946 PMCID: PMC9865037 DOI: 10.3390/molecules28020889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Type I and V collagens are the major components of fibrillogenic proteins in fish skin, and their hydrolysis products possess hyaluronidase inhibitory activity. In this study, for the first time, type I and V collagens were isolated from the skin of shortbill spearfish and striped marlin. Type I (2α1[I]α2[I]) and type V (α1[V]α3[V]α2[V]) collagens composed of distinct α-peptide chains with comparable structures were investigated using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and UV spectrophotometric chromatography. After enzymatic digestion, the collagen peptides were purified by using ultrafiltration (30 KDa) and high-performance liquid chromatography (RP-HPLC) to yield CPI-F3 and CPV-F4 fractions with strong hyaluronidase inhibition rates (42.17% and 30.09%, respectively). Based on the results of simulated gastrointestinal fluid, temperature, and pH stability assays, CPI-F3 and CPV-F4 exhibited stability in gastric fluid and showed no significant changes under the temperature range from 50 to 70 °C (p > 0.05). The results of this first research on the bioactivity of type V collagen peptides provide valuable information for the biomedical industry and show the potential for future bioactivity investigations of type V collagen and its peptides.
Collapse
|
56
|
Fan C, Ge X, Hao J, Wu T, Liu R, Sui W, Geng J, Zhang M. Identification of high iron–chelating peptides with unusual antioxidant effect from sea cucumbers and the possible binding mode. Food Chem 2023; 399:133912. [DOI: 10.1016/j.foodchem.2022.133912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/11/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
|
57
|
Shao J, Wang M, Zhang G, Zhang B, Hao Z. Preparation and characterization of sesame peptide-calcium chelate with different molecular weight. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2130355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Jiawei Shao
- School of Food Science and Engineering, Shandong Agricultural and Engineering University, Jinan, China
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Minghui Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Guixiang Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Bingwen Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Zhenghong Hao
- School of Food Science and Engineering, Shandong Agricultural and Engineering University, Jinan, China
| |
Collapse
|
58
|
A novel Atlantic salmon (Salmo salar) bone collagen peptide delays osteoarthritis development by inhibiting cartilage matrix degradation and anti-inflammatory. Food Res Int 2022; 162:112148. [PMID: 36461366 DOI: 10.1016/j.foodres.2022.112148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Nowadays, the biological activity of collagen peptides has been revealed, but the effect of Atlantic salmon (Salmo salar) bone-derived collagen peptide (CPs) on osteoarthritis remains unclear. In this study, CPs was identified as a small molecular weight peptide rich in Gly-X-Y structure. Meanwhile, interleukin-1β (IL-1β)-induced hypertrophic chondrocytes and partial medial meniscectomy (pMMx) surgery model in rats were performed. In IL-1β stimulated chondrocytes, CPs significantly increased the type-II collagen content, reduced the type-X collagen abundance and chondrocytes apoptosis. Meanwhile, CPs reversed the increased expression of matrix metalloproteinase, metalloproteinase with thrombospondin motifs and RUNX family transcription factor 2 in chondrocytes induced by IL-1β. In vivo, CPs increased pain tolerance of rats and without organ toxicity at 1.6 g/kg.bw. CPs significantly decreased the levels of COMP and Helix-II in serum. Furthermore, a significant decrease of IL-1β in synovial fluid and cartilage tissue were observed by CPs intervention. From Micro-CT, CPs (0.8 g/kg.bw) significantly decreased Tb.sp and SMI value. Meanwhile, the expression of tumor necrosis factor and interleukin-6 were reduced by CPs administration both in vitro and in vivo. Together, CPs showed potential to be a novel and safe dietary supplement for helping anti-inflammatory and cartilage regeneration, ultimately hindering osteoarthritis development. However, the clear mechanism of CPs's positive effect on osteoarthritis needs to be further explored.
Collapse
|
59
|
Xiang ZX, Gong JS, Shi JH, Liu CF, Li H, Su C, Jiang M, Xu ZH, Shi JS. High-efficiency secretory expression and characterization of the recombinant type III human-like collagen in Pichia pastoris. BIORESOUR BIOPROCESS 2022; 9:117. [PMID: 38647563 PMCID: PMC10992891 DOI: 10.1186/s40643-022-00605-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Collagen, the highest content protein in the body, has irreplaceable biological functions, and it is widespread concerned in food, beauty, and medicine with great market demand. The gene encoding the recombinant type III human-like collagen α1 chain fragment was integrated into P. pastoris genome after partial amino acids were substituted. Combined with promoter engineering and high-density fermentation technology, soluble secretory expression with the highest yield of 1.05 g L-1 was achieved using two-stage feeding method, and the purity could reach 96% after affinity purification. The determination of N/C-terminal protein sequence were consistent with the theoretical expectation and showed the characteristics of Gly-X-Y repeated short peptide sequence. In amino acid analysis, glycine shared 27.02% and proline 23.92%, which were in accordance with the characteristics of collagen. Ultraviolet spectrum combined with Fourier transform infrared spectroscopy as well as mass spectrometry demonstrated that the target product conformed to the characteristics of collagen spectrums and existed as homologous dimer and trimer in the broth. This work provided a sustainable and economically viable source of the recombinant type III human-like collagen.
Collapse
Affiliation(s)
- Zhi-Xiang Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China.
| | - Jin-Hao Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Chun-Fang Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| |
Collapse
|
60
|
Zhao M, Ahn DU, Li S, Liu W, Yi S, Huang X. Effects of phosvitin phosphopeptide-Ca complex prepared by efficient enzymatic hydrolysis on calcium absorption and bone deposition of mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
61
|
Ke H, Ma R, Liu X, Xie Y, Chen J. Highly effective peptide-calcium chelate prepared from aquatic products processing wastes: Stickwater and oyster shells. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
62
|
Wang Y, Bai H, Wang S, Wang R, Wang Z. Casein phosphopeptide-calcium chelate: Preparation, calcium holding capacity and simulated digestion in vitro. Food Chem 2022; 401:134218. [PMID: 36115235 DOI: 10.1016/j.foodchem.2022.134218] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
In this work, CPP-Ca chelate was synthesized by chelating casein phosphopeptide (CPP) and calcium and characterized by Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) Energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The antioxidant activity and calcium holding capacity of CPP-Ca were evaluated and its secondary structure transition was monitored during gastrointestinal digestion by in situ Raman spectroscopy. The results demonstrated that calcium chelating rate reached 40 % and calcium ion was bound to CPP mainly through the interaction of carboxyl and amino groups. The result of calcium holding capacity confirmed the formation of calcium phosphate precipitates could be delayed by 10-15 min with increasing CPP concentration. In vitro simulated digestion revealed CPP-Ca exhibited excellent calcium solubility and its secondary structural changes occurred, especially α-helix and β-sheet content. These findings provided significant insights into enhancing bioavailability of calcium supplements and developing of calcium functional foods for human and animals.
Collapse
Affiliation(s)
- Ying Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huasong Bai
- Nourse Science Centre for Pet Nutrition, Wuhu 241200, China
| | - Songjun Wang
- Nourse Science Centre for Pet Nutrition, Wuhu 241200, China
| | - Ruixue Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhanzhong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Nourse Science Centre for Pet Nutrition, Wuhu 241200, China.
| |
Collapse
|
63
|
Peptide-Calcium Chelate from Antler ( Cervus elaphus) Bone Enhances Calcium Absorption in Intestinal Caco-2 Cells and D-gal-Induced Aging Mouse Model. Nutrients 2022; 14:nu14183738. [PMID: 36145113 PMCID: PMC9504974 DOI: 10.3390/nu14183738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Antler bone calcium (AB−Ca) and bioactive peptides (ABPs) were extracted from antler bones (Cervus elaphus) to maximize their value. In this study, 0.14 g calcium was obtained from 1 g antler bone. The peptide−calcium chelate rate was 53.68 ± 1.80%, and the Gly, Pro, and Glu in ABPs were identified to donate most to the increased calcium affinity through the mass spectrometry. Fourier transform infrared spectroscopy showed that calcium predominantly interacted with amino nitrogen atoms and carboxyl oxygen atoms, thereby generating a peptide–calcium chelate. The peptide−calcium chelates were characterized using scanning electron microscopy. A Caco-2 cell monolayer model showed that ABPs significantly increased calcium transport. Furthermore, the D-gal-induced aging mouse model indicated that the ABPs + AB−Ca group showed higher Ca and PINP levels, lower P, ALP, and CTX-1content in serum, and considerably higher tibia index and tibia calcium content. Results showed that ABPs + AB-Ca increased bone formation and inhibited bone resorption, thereby providing calcium supplements for ameliorating senile osteoporosis (SOP).
Collapse
|
64
|
Xiang H, Huang H, Sun-Waterhouse D, Hu X, Li L, Waterhouse GI, Tang R, Xiong J, Cui C. Enzymatically synthesized γ-[Glu](n≥1)-Gln as novel calcium-binding peptides to deliver calcium with enhanced bioavailability. Food Chem 2022; 387:132918. [DOI: 10.1016/j.foodchem.2022.132918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022]
|
65
|
Hu G, Wang D, Sun L, Su R, Corazzin M, Sun X, Dou L, Zhang M, Zhao L, Su L, Jin Y. Isolation, Purification and Structure Identification of a Calcium-Binding Peptide from Sheep Bone Protein Hydrolysate. Foods 2022; 11:foods11172655. [PMID: 36076840 PMCID: PMC9455869 DOI: 10.3390/foods11172655] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
To isolate a novel peptide with calcium-binding capacity, sheep bone protein was hydrolyzed sequentially using a dual-enzyme system (alcalase treatment following neutrase treatment) and investigated for its characteristics, separation, purification, and structure. The sheep bone protein hydrolysate (SBPH) was enriched in key amino acids such as Gly, Arg, Pro, Leu, Lys, Glu, Val, and Asp. The fluorescence spectra, circular dichroism spectra, and Fourier-transform infrared spectroscopy results showed that adding calcium ions decreased the α-helix and β-sheet content but significantly increased the random and β-turn content (p < 0.05). Carboxyl oxygen and amino nitrogen atoms of SBPH may participate in peptide−calcium binding. Scanning electron microscopy and energy dispersive spectrometry results showed that SBPH had strong calcium-chelating ability and that the peptide−calcium complex (SBPH−Ca) combined with calcium to form a spherical cluster structure. SBPH was separated and purified gradually by ultrafiltration, gel filtration chromatography, and reversed-phase high-performance liquid chromatography. Liquid chromatography-electrospray ionization/mass spectrometry identified the amino acid sequences as GPSGLPGERG (925.46 Da) and GAPGKDGVRG (912.48 Da), with calcium-binding capacities of 89.76 ± 0.19% and 88.26 ± 0.25%, respectively. The results of this study provide a scientific basis for the preparation of a new type of calcium supplement and high-value utilization of sheep bone.
Collapse
Affiliation(s)
- Guanhua Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Debao Wang
- Agricultural and Animal Products Processing Research Institute, Inner Mongolia Academy of Agriculture and Animal Husbandry Academy, Hohhot 010018, China
| | - Lina Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rina Su
- Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010010, China
| | - Mirco Corazzin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Xueying Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lu Dou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence:
| |
Collapse
|
66
|
Calcium-binding capacity of peptides obtained from sheep bone and structural characterization and stability of the peptide-calcium chelate. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
67
|
Huang W, Lao L, Deng Y, Li Z, Liao W, Duan S, Xiao S, Cao Y, Miao J. Preparation, characterization, and osteogenic activity mechanism of casein phosphopeptide-calcium chelate. Front Nutr 2022; 9:960228. [PMID: 35983483 PMCID: PMC9378869 DOI: 10.3389/fnut.2022.960228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/07/2022] [Indexed: 12/25/2022] Open
Abstract
Casein phosphopeptides (CPPs) are good at calcium-binding and intestinal calcium absorption, but there are few studies on the osteogenic activity of CPPs. In this study, the preparation of casein phosphopeptide calcium chelate (CPP-Ca) was optimized on the basis of previous studies, and its peptide-calcium chelating activity was characterized. Subsequently, the effects of CPP-Ca on the proliferation, differentiation, and mineralization of MC3T3-E1 cells were studied, and the differentiation mechanism of CPP-Ca on MC3T3-E1 cells was further elucidated by RNA sequencing (RNA-seq). The results showed that the calcium chelation rate of CPPs was 23.37%, and the calcium content of CPP-Ca reached 2.64 × 105 mg/kg. The test results of Ultraviolet–Visible absorption spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) indicated that carboxyl oxygen and amino nitrogen atoms of CPPs might be chelated with calcium during the chelation. Compared with the control group, the proliferation of MC3T3-E1 cells treated with 250 μg/mL of CPP-Ca increased by 21.65%, 26.43%, and 28.43% at 24, 48, and 72 h, respectively, and the alkaline phosphatase (ALP) activity and mineralized calcium nodules of MC3T3-E1 cells were notably increased by 55% and 72%. RNA-seq results showed that 321 differentially expressed genes (DEGs) were found in MC3T3-E1 cells treated with CPP-Ca, including 121 upregulated and 200 downregulated genes. Gene ontology (GO) revealed that the DEGs mainly played important roles in the regulation of cellular components. The enrichment of the Kyoto Encyclopedia of Genes and Genomes Database (KEGG) pathway indicated that the AMPK, PI3K-Akt, MAPK, and Wnt signaling pathways were involved in the differentiation of MC3T3-E1 cells. The results of a quantitative real-time PCR (qRT-PCR) showed that compared with the blank control group, the mRNA expressions of Apolipoprotein D (APOD), Osteoglycin (OGN), and Insulin-like growth factor (IGF1) were significantly increased by 2.6, 2.0 and 3.0 times, respectively, while the mRNA levels of NOTUM, WIF1, and LRP4 notably decreased to 2.3, 2.1, and 4.2 times, respectively, which were consistent both in GO functional and KEGG enrichment pathway analysis. This study provided a theoretical basis for CPP-Ca as a nutritional additive in the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Wen Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Linhui Lao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuliang Deng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Ziwei Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wanwen Liao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shan Duan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Suyao Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin, China.,Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, China
| |
Collapse
|
68
|
Su J, Chen T, Liao D, Wang Y, Su Y, Liu S, Chen X, Ruifang Q, Jiang L, Liu Z. Novel peptides extracted from Muraenesox cinereus bone promote calcium transport, osteoblast differentiation, and calcium absorption. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
69
|
Calcium supplements and structure–activity relationship of peptide-calcium chelates: a review. Food Sci Biotechnol 2022; 31:1111-1122. [DOI: 10.1007/s10068-022-01128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022] Open
|
70
|
Cui P, Li M, Yu M, Liu Y, Ding Y, Liu W, Liu J. Advances in sports food: Sports nutrition, food manufacture, opportunities and challenges. Food Res Int 2022; 157:111258. [DOI: 10.1016/j.foodres.2022.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
|
71
|
Synergistic Effects and Mechanisms of Ultrasound-Assisted Pretreatments on the Release of Yak (Bos grunniens) Bone Collagen–Derived Osteogenic Peptides in Enzymatic Hydrolysis. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02841-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
72
|
Loria KG, Pilosof AM, Farías ME. Self-association of caseinomacropeptide in presence of CaCl2 at neutral pH: Calcium binding determination. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
73
|
GLPGPSGEEGKR: Fe2+ chelating characterization and potential transport pathways for improving Fe2+ bioavailability in Caco-2 cells. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
74
|
Modulatory activity of a bovine hydrolyzed collagen-hydroxyapatite food complex on human primary osteoblasts after simulating its gastrointestinal digestion and absorption. NUTR HOSP 2022; 39:644-651. [PMID: 35485386 DOI: 10.20960/nh.03978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
INTRODUCTION osteoporosis is the most prevalent bone disease and one of the main causes of chronic disability in middle and advanced ages. Conventional pharmacological treatments are still limited, and their prolonged use can cause adverse effects that motivate poor adherence to treatment. Nutritional strategies are traditionally based on supplementing the diet with calcium and vitamin D. Recent studies confirm that the results of this supplementation are significantly improved if it is accompanied by the intake of oral hydrolyzed collagen. OBJECTIVE to evaluate the possible in vitro osteogenic activity of a peptide-mineral complex formed by bovine hydrolyzed collagen and bovine hydroxyapatite (Phoscollagen®, PHC®). METHODS the digestion and absorption of PHC® were simulated using the dynamic gastrointestinal digester of AINIA and Caco-2 cell model, respectively. Primary cultures of human osteoblasts were treated with the resulting fraction of PHC® and changes were evaluated in the proliferation of preosteoblasts and in the mRNA expression of osteogenic biomarkers at different stages of osteoblast maturation: Runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteocalcin (OC) and type I collagen (ColA1). RESULTS an increase in preosteoblastic proliferation was observed (p ≤ 0,05). No changes were detected in the biomarkers of osteoblasts with 5 days of differentiation, but were with 14 days, registering an increase in Runx2 (p = 0.0008), ColA1 (p = 0.035), OC (p = 0.027) and ALP (without significance). CONCLUSION these results show that the PHC® peptide-mineral complex stimulates the activity of mature osteoblasts, being capable of promoting bone formation.
Collapse
|
75
|
He J, Guo H, Zhang M, Wang M, Sun L, Zhuang Y. Purification and Characterization of a Novel Calcium-Binding Heptapeptide from the Hydrolysate of Tilapia Bone with Its Osteogenic Activity. Foods 2022; 11:468. [PMID: 35159617 PMCID: PMC8834476 DOI: 10.3390/foods11030468] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, a calcium-binding peptide was obtained by hydrolyzing tilapia bone and its osteogenic activity was evaluated. Animal protease was selected from nine enzymes, and its hydrolysate was purified through preparative and semi-preparative reverse phase high-performance liquid chromatography. The purified peptide was identified as DGPSGPK (656.32 Da) and its calcium-binding capacity reached 111.98 µg/mg. The peptide calcium chelate (DGPSGPK-Ca) was obtained, and its structure was characterized through Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and mass spectrometry (MS). The results of XRD and SEM showed that DGPSGPK-Ca was formed as a new compound. The carboxyl and amino groups of Lys and Asp residues may be the chelating sites of DGPSGPK according to the FTIR and MS results. The molecular simulation showed the carbonyl groups of Asp, Pro, Ser, and Lys residues involved in the binding of calcium. The interaction of DGPSGPK and different integrins was evaluated by molecular docking simulation, and the main forces involved were electrostatic interaction forces, hydrogen bonding and hydrophobic interactions. Furthermore, DGPSGPK could inhibit the differentiation of osteoclast and promote the proliferation, differentiation and mineralization of osteoblasts.
Collapse
Affiliation(s)
- Jinlun He
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| | - Hao Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| | - Mei Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| | - Meng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| |
Collapse
|
76
|
Phosphorylation modification of collagen peptides from fish bone enhances their calcium-chelating and antioxidant activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
77
|
Qu W, Feng Y, Xiong T, Li Y, Wahia H, Ma H. Preparation of corn ACE inhibitory peptide-ferrous chelate by dual-frequency ultrasound and its structure and stability analyses. ULTRASONICS SONOCHEMISTRY 2022; 83:105937. [PMID: 35144194 PMCID: PMC8844830 DOI: 10.1016/j.ultsonch.2022.105937] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 05/03/2023]
Abstract
In order to improve iron chelating ability and retain the activity of functional peptide, corn peptide was chelated with iron to form corn ACE inhibitory peptide-ferrous chelate (CP-Fe) treated by dual-frequency ultrasound. Furthermore, the chelating mechanism was revealed by analyzing various structural changes, and the stability was further evaluated. Under this study condition, the iron-binding capacity of corn ACE inhibitory peptide (CP) and chelate yield reached 66.39% and 82.87%, respectively. Ultrasound-treated CP exhibited a high iron chelating ability, meanwhile, chelation reaction had no significant effect on the ACE inhibition activity (82.21%) of the peptide. CP-Fe was formed by binding the peptides amino, carbonyl and carboxyl groups with Fe2+ demonstrated by Ultra-violet spectroscopy, Fourier transform infrared characterization, X-ray diffraction, energy dispersion spectrum, zeta potential, amino acid composition and other multi-angle analyses. Moreover, ultrasound-treated CP-Fe chelate exhibited porous surface and uniform nanoparticle shape. Furthermore, ultrasound-treated CP-Fe chelate exhibited an excellent stability towards various pH (retention rate ≥ 95.47% at pH 6-10), temperatures (retention rate ≥ 85.10% at 25-70 °C), and gastrointestinal digestion (retention rate 79.18%). Overall, ultrasound-treated CP-Fe chelate possessed high iron-chelating ability, ACE inhibition activity and stability. This study provides a novel synthesis method of the iron-chelating corn ACE inhibitory peptide, which is promising to be applied as iron supplements with high efficiency, bioactivity, and stability.
Collapse
Affiliation(s)
- Wenjuan Qu
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yiting Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ting Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuhan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
78
|
Diluted Acetic Acid Softened Intermuscular Bones from Silver Carp ( Hypophthalmichthys molitrix) by Dissolving Hydroxyapatite and Collagen. Foods 2021; 11:foods11010001. [PMID: 35010127 PMCID: PMC8749972 DOI: 10.3390/foods11010001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Intermuscular bones (IBs) pose physical hazards that threaten consumer health and food safety. This study aimed to investigate the mechanism of softening IBs from silver carp with diluted acetic acid. IBs (separated from muscle) and fillets (without removing IBs) were treated with diluted acetic acid. Analyses of sensory attributes and the hardness of treated IBs indicated that diluted acetic acid (<10 mmol/L) could soften IBs effectively. Additionally, 0.5 mmol/L acetic acid softened IBs within fillets without significantly affecting the texture and flavor of fillets. Analyses of microstructure, minerals (calcium and phosphorus) and collagen content, and the Fourier transform infrared (FTIR) spectra of IBs indicated that acetic acid broke connections (formed by collagen that shared hydroxyl groups) between collagen molecules, and between collagen and hydroxyapatite (HAP), thus inducing the dissolution of collagen and HAP. The dissolution of HAP contributed more to IBs softening than collagen.
Collapse
|
79
|
Effect of Welsh Onion on Taste Components and Sensory Characteristics of Porcine Bone Soup. Foods 2021; 10:foods10122968. [PMID: 34945519 PMCID: PMC8701721 DOI: 10.3390/foods10122968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 02/02/2023] Open
Abstract
To investigate the effect of welsh onion on taste components and sensory characteristics in porcine bone soup, the stewing condition was as follows: the material–liquid ratio (m/V) was 1:1, the stewing time was 5.0 h, and the ratio of welsh onion was 2.5%. Then, the content of taste components was measured. The content of free amino acids in porcine bone soup with welsh onion (PWS) was higher than the sum of welsh onion soup (WS) and porcine bone soup (PS); particularly, the umami amino acids increased by 35.73% compared with PS. Significant increases in four organic acids (lactic acid, pyroglutamic acid, citric acid and ascorbic acid), two 5′-nucleotides (5′-AMP and 5′-GMP) and three mineral elements (K, Ca and Mg) were observed in PWS. Compared with PS, the equivalent umami concentration (EUC) value was increased from 79.09 to 106.47 mg MSG/100 g in PWS, which was due to the high content of umami amino acids and the synergistic effect with 5′-nucleotides. The results of the sensory analysis indicated a certain enhancement of umami taste in PWS, and the sweet and salty tastes were also increased with the addition of welsh onion. The correlation analysis was consistent with the variation of the components tested above.
Collapse
|
80
|
Zhu L, Shi L, Wang QE, Meng D, Zhou Z, Yang R. Fabrication of a ferritin-casein phosphopeptide-calcium shell-core composite as a novel calcium delivery strategy. Food Funct 2021; 12:11378-11386. [PMID: 34671796 DOI: 10.1039/d1fo02134f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plant ferritin has a natural cage-like nanospace for carrying bioactive ingredients. By taking advantage of the calcium binding ability of casein phosphopeptide (CPP) and the cage-like conformation of plant ferritin, a ferritin-CPP shell-core complex (FC) was fabricated with the reversible self-assembly character of ferritin induced by a pH 2.0/7.0 transition strategy. The FC-calcium composite (FCC) was further fabricated by binding of the FC with calcium ions. When the same amount of calcium was loaded, the calcium binding capacity of the FCC was 28.13 ± 1.65%, which was significantly higher than that of ferritin and CPP alone. Fluorescence and Fourier transform infrared analysis indicated that the CPP encapsulation and the calcium binding in the FCC influenced the ferritin structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) results showed that the spherical morphology and the 12 nm-diameter size were sustained in the FC and FCC. Moreover, the FCC as a transport carrier could increase the precipitation time of calcium phosphate, and the encapsulated calcium could be released in a more sustained manner as compared with ferritin and CPP under simulated in vitro gastrointestinal conditions. This study presents a novel calcium delivery strategy based on the ferritin cage and CPP, which will improve the applicability of ferritin and CPP and enhance the bioavailability of calcium ions.
Collapse
Affiliation(s)
- Lei Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Lina Shi
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Qiao-E Wang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Zhongkai Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
81
|
Tian Q, Fan Y, Hao L, Wang J, Xia C, Wang J, Hou H. A comprehensive review of calcium and ferrous ions chelating peptides: Preparation, structure and transport pathways. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34761991 DOI: 10.1080/10408398.2021.2001786] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Calcium and iron play crucial roles in human health, deficiencies of which have globally generated public health risks. The poor solubility, low bioavailability and gastrointestinal irritation of existing commercial mineral supplements limit their further application. As an emerging type of mineral supplement, mineral chelating peptides have drawn plenty of attention due to their advantages in stability, absorptivity and safety. A majority of calcium and ferrous ions chelating peptides have been isolated from food processing by-products. Enzymatic hydrolysis combined with affinity chromatography, gel filtration and other efficient separation techniques is the predominant method to obtain peptides with high calcium and ferrous affinity. Peptides with small molecular weight are more likely to chelate metals, and carboxyl, amino groups and nitrogen, oxygen, sulfur atoms in the side chain, which can provide lone-pair electrons to combine with metallic ions. Unidentate, bidentate, tridentate, bridging and α mode are regarded as common chelating modes. Moreover, the stability of peptide-mineral complexes in the gastrointestinal tract and possible transport pathways were summarized. This review is to present an overview of the latest research progress, existing problems and research prospects in the field of peptide-mineral complexes and to provide a more comprehensive theoretical basis for their exploitation in food industry.
Collapse
Affiliation(s)
- Qiaoji Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yan Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Li Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chensi Xia
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
82
|
Bao Z, Zhang P, Sun N, Lin S. Elucidating the Calcium-Binding Site, Absorption Activities, and Thermal Stability of Egg White Peptide-Calcium Chelate. Foods 2021; 10:2565. [PMID: 34828847 PMCID: PMC8619475 DOI: 10.3390/foods10112565] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/15/2023] Open
Abstract
With the current study, we aimed to determine the characteristics and calcium absorption capacity of egg white peptide-calcium complex (EWP-Ca) and determine the effect of sterilization on EWP-Ca to study the possibility of EWP-Ca as a new potential calcium supplement. The results of SEM and EDS showed a high calcium chelating ability between EWP and calcium, and the structure of EWP-Ca was clustered spherical particles due its combination with calcium. The FTIR and Raman spectrum results showed that EWP could chelate with calcium by carboxyl, phosphate, and amino groups, and peptide bonds may also participate in peptide-calcium binding. Moreover, the calcium absorption of EWP-Ca measured by the intestinal everted sac model in rats was 32.38 ± 6.83 μg/mL, significantly higher than the sample with CaCl2, and the mixture of EWP and Ca (p < 0.05) revealed appropriate calcium absorption capacity. The fluorescence spectra and CD spectra showed that sterilization caused a decrease in the content of α-helix and β-sheet and a significant increase in β-turn (p < 0.05). Sterilization changed the EWP-Ca structure and decreased its stability; the calcium-binding capacity of EWP-Ca after sterilization was decreased to 41.19% (p < 0.05). Overall, these findings showed that EWP could bind with calcium, form a peptide-calcium chelate, and serve as novel carriers for calcium supplements.
Collapse
Affiliation(s)
| | | | | | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Z.B.); (P.Z.); (N.S.)
| |
Collapse
|
83
|
Jiang Y, Liu XC, Ahrné LM, Skibsted LH. Enthalpy-entropy compensation in calcium binding to acid-base forms of glycine tyrosine dipeptides from hydrolysis of α-lactalbumin. Food Res Int 2021; 149:110714. [PMID: 34600648 DOI: 10.1016/j.foodres.2021.110714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 11/27/2022]
Abstract
Calcium binding to peptides formed by hydrolysis of whey proteins during digestion is important for calcium uptake in the intestines and affects the antioxidant function of the peptides. For the two dipeptides, Gly-Tyr and Tyr-Gly, potential hydrolysis products of α-lactalbumin, calcium binding to the three forms of each dipeptide in acid-base equilibrium at intestinal pH was determined electrochemically and compared to binding to tyrosine for aqueous 0.16 M NaCl for 5 < pH < 9 at 15 °C, 25 °C, and 37 °C. At milk pH at 25 °C, binding of calcium to the zwitterion of GlyTyr dominates, with an association constant Kass2 = 22 M-1 with ΔH0 = -46 kJ·mol-1, while binding to the mononegative TyrGly dominates for TyrGly with Kass3 = 32 M-1 and ΔH0 = -38 kJ·mol-1. At intestinal conditions, pH = 7 and 37 °C, binding of calcium has similar affinity for GlyTyr and TyrGly, while at higher pH and lower temperature, GlyTyr binds stronger. Density Functional Theory calculations confirmed a stronger binding to the zwitterion of GlyTyr than of TyrGly and an increasing affinity with increasing pH for both. Calcium binding to the acid/base forms of the dipeptides is at neutral pH strongly exothermic with ΔH0 becoming less negative at higher pH, and a linear enthalpy-entropy compensation (r2 = 0.99) results in comparable binding important for calcium bioavailability along the changing distribution among acid-base forms. Calcium binding decreases radical scavenging rate and antioxidative activity of both dipeptides.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Xiao-Chen Liu
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Lilia M Ahrné
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Leif H Skibsted
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark.
| |
Collapse
|
84
|
Purification and Identification of Novel Xanthine Oxidase Inhibitory Peptides Derived from Round Scad ( Decapterus maruadsi) Protein Hydrolysates. Mar Drugs 2021; 19:md19100538. [PMID: 34677437 PMCID: PMC8538066 DOI: 10.3390/md19100538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
The objective of the present study was to investigate the xanthine oxidase (XO) inhibitory effects of peptides purified and identified from round scad (Decapterus maruadsi) hydrolysates (RSHs). In this study, RSHs were obtained by using three proteases (neutrase, protamex and alcalase). Among them, the RSHs of 6-h hydrolysis by neutrase displayed the strongest XO inhibitory activity and had an abundance of small peptides (<500 Da). Four novel peptides were purified by immobilized metal affinity chromatography and identified by nano-high-performance liquid chromatography mass/mass spectrometry. Their amino acid sequences were KGFP (447.53 Da), FPSV (448.51 Da), FPFP (506.59 Da) and WPDGR (629.66 Da), respectively. Then the peptides were synthesized to evaluate their XO inhibitory activity. The results indicated that the peptides of both FPSV (5 mM) and FPFP (5 mM) exhibited higher XO inhibitory activity (22.61 ± 1.81% and 20.09 ± 2.41% respectively). Fluorescence spectra assay demonstrated that the fluorescence quenching mechanism of XO by these inhibitors (FPSV and FPFP) was a static quenching procedure. The study of inhibition kinetics suggested that the inhibition of both FPSV and FPFP was reversible, and the type of their inhibition was a mixed one. Molecular docking revealed the importance of π-π stacking between Phe residue (contained in peptides) and Phe914 (contained in the XO) in the XO inhibitory activity of the peptides.
Collapse
|
85
|
Sun X, Ruan S, Zhuang Y, Sun L. Anti-osteoporosis effect and purification of peptides with high calcium-binding capacity from walnut protein hydrolysates. Food Funct 2021; 12:8454-8466. [PMID: 34190289 DOI: 10.1039/d1fo01094h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The walnut protein hydrolysate (WPH) was prepared via simulated gastrointestinal digestion. The degree of hydrolysis (DH), amino acid composition, and relative molecular weight distribution of WPH were analyzed. The results showed that the DH of WPH was 11.6%, WPH was rich in Glu and Pro, and the relative average molecular weight of 572 Da accounted for 59.78%. The effects of WPH on osteoporosis were evaluated using a model of retinoic acid-induced osteoporosis rat. Treatment with WPH effectively increased the serum calcium and phosphorus contents, alleviated calcium loss, and reduced tartrate-resistant acid phosphate and alkaline phosphatase activities and bone gla protein content. WPH treatment significantly improved the biomechanical properties of the bone and increased the value of bone mineral density. In addition, WPH treatment improved the bone microstructure. WPH was isolated and purified by Sephadex G-25 gel filtration chromatography and semi-preparative reversed-phase high-performance liquid chromatography. A fraction with high calcium-binding activity was obtained and 15 peptides were identified.
Collapse
Affiliation(s)
- Xiaodong Sun
- Faculty of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| | - Shiyan Ruan
- Faculty of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| | - Yongliang Zhuang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| | - Liping Sun
- Faculty of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| |
Collapse
|
86
|
Qiao F, Yu X, Tie S, Chen Y, Hou S, Tan M. Zinc delivery system constructed from food-borne nanoparticles derived from Undaria pinnatifida. Food Funct 2021; 12:8626-8634. [PMID: 34346455 DOI: 10.1039/d1fo01852c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Food-borne nanoparticles from Undaria pinnatifida (UPFNs) were prepared and successfully applied as nanocarriers for microelement zinc delivery. UPFNs were spherical nanoparticles with average sizes of about 4.07 ± 1.09 nm, which chelated with zinc ions through amino nitrogen and carboxyl oxygen atoms as characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. Thermodynamic analysis revealed that the overall chelation process between UPFNs and zinc ions was a spontaneous enthalpy-driven endothermic reaction. Compared to zinc sulfate, UPFN-Zn2+ showed higher solubility both in phytic acid solution and the process of gastrointestinal digestion. Meanwhile, no obvious cytotoxicity was found in UPFNs and UPFN-Zn2+. Specifically, UPFN-Zn2+ could successfully rescue cell viability, DNA replication activity and restore cell proliferation ability in zinc-deficient cells induced by a specific zinc chelator TPEN. Overall, UPFNs might serve as efficient, stable, and safe nanocarriers for zinc delivery.
Collapse
Affiliation(s)
- Fengzhi Qiao
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiaoting Yu
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shanshan Tie
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yannan Chen
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shuai Hou
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
87
|
Lin S, Hu X, Li L, Yang X, Chen S, Wu Y, Yang S. Preparation, purification and identification of iron-chelating peptides derived from tilapia (Oreochromis niloticus) skin collagen and characterization of the peptide-iron complexes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
88
|
Preparation, characterization and biological activities of egg white peptides-calcium chelate. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
89
|
Ke X, Hu X, Li L, Yang X, Chen S, Wu Y, Xue C. A novel zinc-binding peptide identified from tilapia (Oreochromis niloticus) skin collagen and transport pathway across Caco-2 monolayers. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
90
|
Kong X, Bao S, Song W, Hua Y, Zhang C, Chen Y, Li X. Contributions of ethanol fractionation on the properties of vegetable protein hydrolysates and differences in the characteristics of metal (Ca, Zn, Fe)-chelating peptides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
91
|
Yuanqing H, Pengyao Y, Yangyang D, Min C, Rui G, Yuqing D, Haihui Z, Haile M. The Preparation, Antioxidant Activity Evaluation, and Iron-Deficient Anemic Improvement of Oat ( Avena sativa L.) Peptides-Ferrous Chelate. Front Nutr 2021; 8:687133. [PMID: 34235170 PMCID: PMC8256796 DOI: 10.3389/fnut.2021.687133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Iron-chelating peptides have been widely considered as one of the best iron supplements to alleviate the iron deficiency. In this study, a novel oat peptides-ferrous (OP-Fe2+) chelate was prepared from antioxidant oat peptides obtained in the laboratory of the authors. The optimal preparation condition was obtained through the single-factor and response surface methodology, and the chelating rate could reach up to 62.6%. After chelation, the OP-Fe2+ chelate exhibited a significantly higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity than oat peptides. It was discovered that the hemoglobin concentration and the number of red blood cell levels in OP-Fe2+-treated iron-deficient anemic (IDA) rats were significantly higher than untreated IDA rats. The OP-Fe2+ chelate could also improve the hypertrophy of the spleen, serum iron (SI), total iron and binding capacity, and serum ferritin levels in the IDA rats. In addition, the OP-Fe2+ treatment significantly increased the antioxidant activities of super oxidase and glutathione in the liver homogenate of the IDA rats. Therefore, the OP-Fe2+ chelate is an effective type of iron supplement for IDA rats, which could be a promising source with anti-anemia and antioxidant activity.
Collapse
Affiliation(s)
- He Yuanqing
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
- The Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
| | - Yang Pengyao
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ding Yangyang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Chen Min
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Guo Rui
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Duan Yuqing
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhang Haihui
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ma Haile
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
92
|
Zhang P, Bao Z, Jiang P, Zhang S, Zhang X, Lin S, Sun N. Nanoliposomes for encapsulation and calcium delivery of egg white peptide-calcium complex. J Food Sci 2021; 86:1418-1431. [PMID: 33880783 DOI: 10.1111/1750-3841.15677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 11/28/2022]
Abstract
Nanoliposomes and crude liposomes loaded with egg white peptide-calcium complex (EWP-Ca) were fabricated by thin-film dispersion with or without dynamic high-pressure microfluidization. Their physiochemical properties, in vitro stability, and calcium release profiles were investigated in this study. Results showed that the EWP-Ca-loaded nanoliposomes exhibited spherical structures with a lower particle size and polydispersity index as well as a higher thermal stability as compared to the corresponding crude liposomes. Further investigations revealed that EWP-Ca was embedded into the liposomes mainly through hydrogen bonding and present in an amorphous form within the liposomes. Additionally, the EWP-Ca-loaded nanoliposomes effectively slowed the release of calcium in gastric digestion, allowing more soluble calcium to enter the intestinal tract; in the subsequent intestinal digestion, the EWP-Ca-loaded nanoliposomes were more electrically and physically stable than the crude liposomes. Therefore, the EWP-Ca-loaded nanoliposomes could be used as a favorable dietary calcium delivery system to promote calcium bioavailability. PRACTICAL APPLICATION: Nanoliposomes were fabricated in this study to encapsulate the egg white peptide-calcium complex (EWP-Ca) for calcium delivery. The EWP-Ca-loaded nanoliposomes effectively slowed the release of calcium in gastric digestion, allowing more soluble calcium to enter the intestinal tract, and were more electrically and physically stable in the subsequent intestinal digestion. Therefore, the EWP-Ca-loaded nanoliposomes may be incorporated in calcium-fortified food to enhance calcium delivery for maintaining bone health.
Collapse
Affiliation(s)
- Penglin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Pengfei Jiang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Simin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiumin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
93
|
Zhang H, Zhao L, Shen Q, Qi L, Jiang S, Guo Y, Zhang C, Richel A. Preparation of cattle bone collagen peptides-calcium chelate and its structural characterization and stability. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
94
|
Zhang W, Huang L, Chen W, Wang J, Wang S. Influence of ultrasound-assisted ionic liquid pretreatments on the functional properties of soy protein hydrolysates. ULTRASONICS SONOCHEMISTRY 2021; 73:105546. [PMID: 33845246 PMCID: PMC8063908 DOI: 10.1016/j.ultsonch.2021.105546] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 05/02/2023]
Abstract
In this work, the effect of dual-frequency ultrasound-assisted ionic liquids (ILs) pretreatment on the functional properties of soy protein isolate (SPI) hydrolysates was investigated. The degree of hydrolysis (DH) of SPI pretreated by ultrasound and [BMIM][PF6] increased by 12.53% as compared to control (P < 0.05). More peptides with low molecular weight were obtained, providing support for the changes in DH. The trichloroacetic acid-nitrogen soluble index presented an increase, suggesting a better protein hydrolysate property. The increase in the calcium-binding activity showed the ultrasound-assisted ILs pretreatment could potentially improve bone health. The foaming capacity and stability of SPI hydrolysates pretreated by ultrasound-assisted [BMIM][PF6] always increased remarkably as compared to ultrasound-assisted [BDMIM][Cl] pretreatment. However, the synergistic effect of ultrasound-assisted [BMIM][PF6] on the emulsifying activity and antioxidant activities (DPPH and hydroxyl radical scavenging activity) was not as ideal as ultrasound-assisted [BDMIM][Cl] pretreatment, which may be affected by the structure of peptide. In conclusion, these results indicated the combination of dual-frequency ultrasound and ionic liquids would be a promising method to improve the functional properties of SPI hydrolysates and broaden the application scope of compound modification in proteolysis industry.
Collapse
Affiliation(s)
- Wenxue Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Wenwen Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jiale Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Shiheng Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
95
|
Peighambardoust SH, Karami Z, Pateiro M, Lorenzo JM. A Review on Health-Promoting, Biological, and Functional Aspects of Bioactive Peptides in Food Applications. Biomolecules 2021; 11:631. [PMID: 33922830 PMCID: PMC8145060 DOI: 10.3390/biom11050631] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Food-derived bioactive peptides are being used as important functional ingredients for health-promoting foods and nutraceuticals in recent times in order to prevent and manage several diseases thanks to their biological activities. Bioactive peptides are specific protein fractions, which show broad applications in cosmetics, food additives, nutraceuticals, and pharmaceuticals as antimicrobial, antioxidant, antithrombotic, and angiotensin-I-converting enzyme (ACE)-inhibitory ingredients. These peptides can preserve consumer health by retarding chronic diseases owing to modulation or improvement of the physiological functions of human body. They can also affect functional characteristics of different foods such as dairy products, fermented beverages, and plant and marine proteins. This manuscript reviews different aspects of bioactive peptides concerning their biological (antihypertensive, antioxidative, antiobesity, and hypocholesterolemic) and functional (water holding capacity, solubility, emulsifying, and foaming) properties. Moreover, the properties of several bioactive peptides extracted from different foods as potential ingredients to formulate health promoting foods are described. Thus, multifunctional properties of bioactive peptides provide the possibility to formulate or develop novel healthy food products.
Collapse
Affiliation(s)
| | - Zohreh Karami
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
96
|
Lu D, Peng M, Yu M, Jiang B, Wu H, Chen J. Effect of Enzymatic Hydrolysis on the Zinc Binding Capacity and in vitro Gastrointestinal Stability of Peptides Derived From Pumpkin ( Cucurbita pepo L.) Seeds. Front Nutr 2021; 8:647782. [PMID: 33869265 PMCID: PMC8044297 DOI: 10.3389/fnut.2021.647782] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 12/31/2022] Open
Abstract
Zinc is a crucial micronutrient for maintaining body immune system and metabolism function. However, insufficient intake from diet may lead to zinc deficiency and impair normal body function. In addition, conventional zinc salts supplementation has the disadvantage of low bioavailability since the zinc ions may be easily chelated by dietary fiber or phytate commonly found in diets rich in plants, and form precipitates that cannot be absorbed. Therefore, the objective of the present study is to prepare pumpkin seed derived peptides and to evaluate the effect of structure and surface properties on the zinc binding behavior of the pumpkin seed protein hydrolysate (PSPH), as well as their gastrointestinal stability. Briefly, different PSPHs were prepared using enzymatic hydrolysis method with bromelain, papain, flavourzyme, alcalase, and pepsin. The particle size, zeta potential, surface hydrophobicity, degree of hydrolysis, ATR-FTIR spectra, and zinc binding capacity were determined. The representative samples were chosen to characterize the binding energy and surface morphology of PSPH-Zn. At last, the in vitro gastrointestinal stability of PSPH and PSPH-Zn were evaluated. Our results showed that peptides hydrolyzed by papain had the largest average molecular weight, smallest particle size, highest hydrophobicity, and the greatest zinc binding capacity. Zinc showed better gastrointestinal stability in PSPHs chelates than in its salt. Meanwhile, PSPH-Zn with higher zinc binding capacity showed better stability. The result of this study indicated pumpkin seed hydrolyzed by papain may be used as a potential source for zinc fortification. The findings in this study may provide important implications for developing plant-based zinc chelating peptides.
Collapse
Affiliation(s)
- Dan Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mengyao Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Min Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hong Wu
- Key Laboratory of Agro-Products Processing, Institute of Agro-Products Processing Science and Technology, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
97
|
Ma T, Fu Q, Mei Q, Tu Z, Zhang L. Extraction optimization and screening of angiotensin-converting enzyme inhibitory peptides from Channa striatus through bioaffinity ultrafiltration coupled with LC-Orbitrap-MS/MS and molecular docking. Food Chem 2021; 354:129589. [PMID: 33773481 DOI: 10.1016/j.foodchem.2021.129589] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 11/25/2022]
Abstract
Channa striatus is high-protein food with many health functions. This study aimed to prepare, screen and identify the angiotensin-converting enzyme inhibition peptides (ACEIPs) from C. striatus hydrolysates by response surface methodology and bioaffinity ultrafiltration coupled with LC-Orbitrap-MS/MS and molecular docking. The optimal conditions for preparing ACEIPs were hydrolysis temperature 55 °C, hydrolysis time 3 h, pH 9, solid-liquid ratio 1:20 g/mL, and enzyme addition 5%, the ACE inhibition and molecular weight distribution of obtained hydrolysate was 54.35% and 8770-160 Da, respectively. Seven novel ACEIPs were screened through the established high-throughput screening approach, among which, EYFR and LPGPGP showed the strongest ACE inhibition with the IC50 value of 179.2 and 186.3 μM, respectively (P > 0.05). Molecular docking revealed that three and ten hydrogen bonds were formed between ACE and LPGPGP and EYFR, respectively, S1 and S2 were the major active pockets, but the major driving forces varied.
Collapse
Affiliation(s)
- Tianxin Ma
- National R&D Center for Freshwater Fish Processing, Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qiaoqin Fu
- National R&D Center for Freshwater Fish Processing, Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qianggen Mei
- National R&D Center for Freshwater Fish Processing, Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zongcai Tu
- National R&D Center for Freshwater Fish Processing, Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Lu Zhang
- National R&D Center for Freshwater Fish Processing, Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
98
|
Li P, He L, Liu X, Fan S, Yuan Y, Zhang J, Wang H, Li S. Electro-deposition synthesis of tube-like collagen-chitosan hydrogels and their biological performance. Biomed Mater 2021; 16:035019. [PMID: 33657015 DOI: 10.1088/1748-605x/abd995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electro-deposition is a smart, safe and efficient method for biomaterial manufacturing. Collagen, a functional protein with excellent biocompatibility and biosafety, is a promising candidate for tissue engineering and biomedical applications. However, there are few reports on electro-deposition of biomaterials using collagen without electrically or magnetically active nanoparticles. In this study, electro-deposition was employed to swiftly fabricate tube-like collagen-chitosan hydrogels in a mild environment. Fourier transform infrared spectroscopy was employed to analyze the ingredients of the tube-like hydrogels. The result showed that the hydrogels contained both collagen and chitosan. The distribution and content of collagen in the hydrogels was further measured by hematoxylin-eosin staining and hydroxyproline titration. Collagen was distributed homogeneously and its content was related to the initial collagen:chitosan ratio. The tension resistance of the composite gels and the thermal stability of collagen in the composites were obviously enhanced by the chitosan doping. Meanwhile, the tube-like hydrogels retained a good ability to promote cell proliferation of collagen. This method offers a convenient approach to the design and fabrication of collagen-based materials, which could effectively retain the bioactivity and biosafety of collagen and furnish a new way to enhance the stability of collagen and the tensile strength of collagen-based materials.
Collapse
Affiliation(s)
- Ping Li
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei Province 430023, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Zhang X, Jia Q, Li M, Liu H, Wang Q, Wu Y, Niu L, Liu Z. Isolation of a novel calcium-binding peptide from phosvitin hydrolysates and the study of its calcium chelation mechanism. Food Res Int 2021; 141:110169. [PMID: 33642025 DOI: 10.1016/j.foodres.2021.110169] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/15/2022]
Abstract
A new peptide with strong calcium binding capacity was isolated from phosvitin hydrolysates. Taking calcium chelating rate as an indicator, phosvitin hydrolysates were separated gradually by anion-exchange chromatography, gel filtration chromatography and reversed-phase high performance liquid chromatography. A peptide with a molecular weight of 1106.44402 Da was identified by liquid chromatography-electrospray/mass spectrometry (LC-ESI/MS), and its amino acid sequence was DEEENDQVK, the calcium binding capacity reached 151.10 ± 3.57 mg/g. Its chelating mechanism was investigated. Results showed that, the β-sheet structure of peptide increased after adding calcium ion, and the main binding sites were carboxyl oxygen atom and amino nitrogen atom. In vitro simulated digestion experiments showed that, the solubility and dialysis rate of calcium in peptide-calcium chelate were higher than those in CaCO3 and D-calcium gluconate. This finding would promote the development of calcium supplements from food resources.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qi Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Mengyu Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Huiping Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Qing Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yaru Wu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lulu Niu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zitian Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
100
|
Zhang Y, Ding X, Li M. Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans. Food Chem 2021; 349:129101. [PMID: 33540219 DOI: 10.1016/j.foodchem.2021.129101] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/24/2020] [Accepted: 01/10/2021] [Indexed: 01/20/2023]
Abstract
Mung bean protein was enzymatically hydrolyzed with either alcalase, neutral protease, or papain. The mung bean protein hydrolysates (MPH) showed good ability to chelate ferrous ions, and the chelates had high stability in vitro. The hydrolysates prepared by alcalase showed the highest degree of hydrolysis and the highest ferrous chelating rate. Single factor tests showed that the pH and the material ratio had significant effects on ferrous chelating rates. The optimal MPH to FeCl2·4H2O material ratio was 8:1 (w/w) and the optimal pH of the reaction was 7.0, which yielded a chelating rate of 96.19 ± 0.94%. The fraction 3 with the highest ferrous chelating activity up to 61.25 ± 1.02 μg/mg was obtained from MPH by affinity chromatography. Meanwhile, the MPH-Fe complex had higher digestive stability than just MPH in both in vitro and acid-alkali tolerance assays. The characterization results showed that ferrous ions mainly combined with the amino, carboxyl, imidazole and other chelating active groups in mung bean peptides to form peptide-iron chelates. Scanning electron microscopy (SEM) analysis showed that mung bean peptide chelated ferrous ions to form polymer particles. These results provided insight into ways to develop functional foods such as iron-fortified cereals.
Collapse
Affiliation(s)
- Yijun Zhang
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center of Functional Food for Plant Active Peptides, Hefei 230036, Anhui, China
| | - Xiangjun Ding
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center of Functional Food for Plant Active Peptides, Hefei 230036, Anhui, China; College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Meiqing Li
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center of Functional Food for Plant Active Peptides, Hefei 230036, Anhui, China; College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|