51
|
Ramirez D, Abellán-Victorio A, Beretta V, Camargo A, Moreno DA. Functional Ingredients From Brassicaceae Species: Overview and Perspectives. Int J Mol Sci 2020; 21:E1998. [PMID: 32183429 PMCID: PMC7139885 DOI: 10.3390/ijms21061998] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
Brassicaceae vegetables are important crops consumed worldwide due to their unique flavor, and for their broadly recognized functional properties, which are directly related to their phytochemical composition. Isothiocyanates (ITC) are the most characteristic compounds, considered responsible for their pungent taste. Besides ITC, these vegetables are also rich in carotenoids, phenolics, minerals, and vitamins. Consequently, Brassica's phytochemical profile makes them an ideal natural source for improving the nutritional quality of manufactured foods. In this sense, the inclusion of functional ingredients into food matrices are of growing interest. In the present work, Brassicaceae ingredients, functionality, and future perspectives are reviewed.
Collapse
Affiliation(s)
- Daniela Ramirez
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
- Instituto de Biología Agrícola de Mendoza, CONICET Mendoza 54 261, Argentina
| | - Angel Abellán-Victorio
- Phytochemistry and Healthy Foods Laboratory, Department of Food Science and Technology, Spanish National Research Council for Scientific Research (CEBAS-CSIC), Murcia 30100, Spain;
| | - Vanesa Beretta
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
| | - Alejandra Camargo
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
- Instituto de Biología Agrícola de Mendoza, CONICET Mendoza 54 261, Argentina
| | - Diego A. Moreno
- Phytochemistry and Healthy Foods Laboratory, Department of Food Science and Technology, Spanish National Research Council for Scientific Research (CEBAS-CSIC), Murcia 30100, Spain;
| |
Collapse
|
52
|
Enhancement of the Anti-Inflammatory Effect of Mustard Kimchi on RAW 264.7 Macrophages by the Lactobacillus plantarum Fermentation-Mediated Generation of Phenolic Compound Derivatives. Foods 2020; 9:foods9020181. [PMID: 32059406 PMCID: PMC7074436 DOI: 10.3390/foods9020181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 12/22/2022] Open
Abstract
Mustard leaf kimchi contains numerous functional compounds that have various health benefits. However, the underlying mechanisms of their anti-inflammatory effects are unclear. In this study, changes in the mustard leaf kimchi phenolics profile after fermentation with or without Lactobacillus plantarum were determined using liquid chromatography–mass spectrometry/mass spectrometry (LC–MS/MS). To correlate changes in phenolic profiles with anti-inflammatory activities of the fermentation extracts, lipopolysaccharides (LPS)-stimulated RAW 264.7 cells were treated with the extracts. We identified 12 phenolic acids in mustard leaf kimchi fermented with L. plantarum. Caffeic acid, chlorogenic acid, epicatechin, and catechin substituted the metabolite abundance. Extracts of mustard leaf kimchi fermented by L. plantarum (MLKL) markedly inhibited nitric oxide production by decreasing interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX2) expression levels in LPS-treated RAW 264.7 cells. Thus, fermentation with L. plantarum potentially improves the anti-inflammatory activities of mustard leaf and mustard leaf fermented with this microorganism may serve as a proper diet for the treatment of inflammation.
Collapse
|
53
|
Abstract
Numerous traditional low-alcohol fermented beverages produced from fruit or vegetables are described around the world. Fruit and vegetables and lactic fermented products both present nutritional benefits, which give reasons for the recent expansion of non-dairy lactic fermented juices on the market. In addition, fruit and vegetable juices are new carriers for probiotic bacteria. Specific phenotypic traits of lactic acid bacteria (LAB) are required so that LAB can effectively grow in fruit or vegetable juices, increase their safety and improve their sensory and nutritional quality. From the diversity of microbiota of spontaneous fermentations, autochthonous starters can be selected, and their higher performance than allochthonous LAB was demonstrated. Achieving long-term storage and constant high quality of these beverages requires additional processing steps, such as heat treatment. Alternatives to conventional treatments are investigated as they can better preserve nutritional properties, extract bioactive compounds and promote the growth and metabolism of LAB. Specific processing approaches were shown to increase probiotic viability of fruit and vegetable juices. More knowledge on the metabolic activity of lactic acid bacterium consortium in fruit or vegetable juices has become a bottleneck for the understanding and the prediction of changes in bioactive compounds for functional beverages development. Hopefully, the recent developments of metabolomics and methods to describe enzymatic machinery can result in the reconstruction of fermentative pathways.
Collapse
|
54
|
Cai YX, Wang JH, McAuley C, Augustin MA, Terefe NS. Fermentation for enhancing the bioconversion of glucoraphanin into sulforaphane and improve the functional attributes of broccoli puree. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
55
|
Guan Y, Hu W, Jiang A, Xu Y, Sa R, Feng K, Zhao M, Yu J, Ji Y, Hou M, Yang X. Effect of Methyl Jasmonate on Phenolic Accumulation in Wounded Broccoli. Molecules 2019; 24:E3537. [PMID: 31574924 PMCID: PMC6804049 DOI: 10.3390/molecules24193537] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 11/17/2022] Open
Abstract
In order to find an efficient way for broccoli to increase the phenolic content, this study intended primarily to elucidate the effect of methyl jasmonate (MeJA) treatment on the phenolic accumulation in broccoli. The optimum concentration of MeJA was studied first, and 10 μM MeJA was chosen as the most effective concentration to improve the phenolic content in wounded broccoli. Furthermore, in order to elucidate the effect of methyl jasmonate (MeJA) treatment on phenolic biosynthesis in broccoli, the key enzyme activities of phenylpropanoid metabolism, the total phenolic content (TPC), individual phenolic compounds (PC), antioxidant activity (AOX) and antioxidant metabolism-associated enzyme activities were investigated. Results show that MeJA treatment stimulated phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarin coenzyme A ligase (4CL) enzymes activities in phenylpropanoid metabolism, and inhibited the activity of polyphenol oxidase (PPO), and further accelerated the accumulation of the wound-induced rutin, caffeic acid, and cinnamic acid accumulation, which contributed to the result of the total phenolic content increasing by 34.8% and ferric reducing antioxidant power increasing by 154.9% in broccoli. These results demonstrate that MeJA in combination with wounding stress can induce phenylpropanoid metabolism for the wound-induced phenolic accumulation in broccoli.
Collapse
Affiliation(s)
- Yuge Guan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China.
| | - Aili Jiang
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China.
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Rengaowa Sa
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Ke Feng
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China.
| | - Manru Zhao
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Jiaoxue Yu
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Yaru Ji
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Mengyang Hou
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Xiaozhe Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
56
|
Liu Y, Cheng H, Liu H, Ma R, Ma J, Fang H. Fermentation by Multiple Bacterial Strains Improves the Production of Bioactive Compounds and Antioxidant Activity of Goji Juice. Molecules 2019; 24:molecules24193519. [PMID: 31569407 PMCID: PMC6804111 DOI: 10.3390/molecules24193519] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023] Open
Abstract
Microorganisms can be used for enhancing flavors or metabolizing functional compounds. The fermented-food-derived bacterial strains comprising Bacillus velezensis, Bacillus licheniformis, and Lactobacillus reuteri mixed with Lactobacillus rhamnosus and Lactobacillus plantarum were used to ferment goji berry (Lycium barbarum L.) juice in this study. The fermentation abilities and antioxidant capacities of different mixtures of multiple strains in goji juice were compared. The results showed that the lactic acid contents increased 9.24-16.69 times from 25.30 ± 0.71 mg/100 mL in goji juice fermented using the SLV (Lactobacillus rhamnosus, Lactobacillus reuteri, and Bacillus velezensis), SZP (Lactobacillus rhamnosus, Lactobacillus plantarum, and Bacillus licheniformis), and SZVP (Lactobacillus rhamnosus, Lactobacillus plantarum, Bacillus velezensis, and Bacillus licheniformis) mixtures, and the protein contents increased 1.31-2.11 times from 39.23 ± 0.67 mg/100 mL. In addition, their contents of volatile compounds increased with positive effects on aroma in the fermented juices. Conversion of the free and bound forms of phenolic acids and flavonoids in juice was influenced by fermentation, and the antioxidant capacity improved significantly. Fermentation enhanced the contents of lactic acid, proteins, volatile compounds, and phenols. The antioxidant capacity was strongly correlated with the phenolic composition.
Collapse
Affiliation(s)
- Yuxuan Liu
- College of Agriculture, Ningxia University, Yinchuan 750021, China.
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China.
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| | - Huiyan Liu
- College of Agriculture, Ningxia University, Yinchuan 750021, China.
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China.
| | - Ruoshuang Ma
- College of Agriculture, Ningxia University, Yinchuan 750021, China.
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China.
| | - Jiangtao Ma
- College of Agriculture, Ningxia University, Yinchuan 750021, China.
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China.
| | - Haitian Fang
- College of Agriculture, Ningxia University, Yinchuan 750021, China.
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|