51
|
Zhao L, Tong Q, Geng Z, Liu Y, Yin L, Xu W, Rehman A. Recent advances of octenyl succinic anhydride modified polysaccharides as wall materials for nano-encapsulation of hydrophobic bioactive compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6183-6192. [PMID: 35532302 DOI: 10.1002/jsfa.11984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
Polysaccharides can be esterified with octenyl succinic anhydride (OSA) to form derivatives with amphiphilic properties. The general preparation methods of OSA-polysaccharides are described, especially the aqueous method. The new hydrophobic groups introduced result in OSA-polysaccharides showing higher interfacial properties, better emulsifying stability, higher viscosity, and lower digestibility. There have been advances in the development of OSA-polysaccharides-based nano-encapsulation systems for hydrophobic bioactive compounds in recent years. Nano-encapsulation systems are formed through nanoemulsions, nanocapsules, nanoparticles, micelles, vesicles, molecular inclusion complexes, and so on. This review aims to describe the preparation methods, the structure characterizations, and the physicochemical properties of OSA-polysaccharides as encapsulating agents. In addition, the focus is on the different nano-encapsulation systems based on OSA-polysaccharides as wall materials. Future perspectives will concern OSA-polysaccharides-based nano-encapsulation systems with optimized functional properties for providing higher bioavailability and targeted delivery of various hydrophobic bioactive compounds. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qunyi Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ziwei Geng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yutong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lichen Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wentian Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
52
|
Waxy maize starch nanoparticles incorporated tea polyphenols to stabilize Pickering emulsion and inhibit oil oxidation. Carbohydr Polym 2022; 296:119991. [DOI: 10.1016/j.carbpol.2022.119991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
|
53
|
Co-delivery of hydrophobic astaxanthin and hydrophilic phycocyanin by a pH-sensitive water-in-oil-in-water double emulsion-filled gellan gum hydrogel. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
54
|
Chen Y, Su Y, Bai R, Li J, Zheng T. Preparation and characterization of octenyl succinic anhydride-modified ginkgo seed starch with enhanced physicochemical and emulsifying properties. J Food Sci 2022; 87:4453-4464. [PMID: 36117277 DOI: 10.1111/1750-3841.16321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
A quick preparation of octenylsuccinylated (OS)-ginkgo seed starch was proposed by lipase-coupling esterification within 30 min, and the physicochemical and emulsifying properties of OS-ginkgo seed starch were evaluated. High-performance liquid chromatography results revealed that ginkgolic acid in ginkgo seed starch was too low to be detected, which improved the biosafety and application range of OS-ginkgo seed starch. The degree of substitution (DS) of OS-ginkgo starch varied from 0.006 to 0.0169 depending on the lipase concentration increased from 0% to 1% (w/w, based on the volume of starch solution), and the reaction efficiency obtained the highest value of 68.5% at the lipase concentration of 1%. Fourier transform infrared spectra of OS-ginkgo seed starch confirmed ester carbonyl splicing in the starch molecular with the characteristic peaks at 1722 and 1567 cm-1 . Scanning electron microscopy observations revealed that the esterification occurred mainly in the amorphous regions with slight morphological modification. X-ray diffractions suggested that no crystal change occurred on the starch granule. The thermal analysis revealed that OS-ginkgo seed starch showed a lower temperature and endothermic enthalpy for gelatinization, and presented enhanced and DS-dependent emulsifying properties and in vitro antidigestion properties. PRACTICAL APPLICATION: Results indicated that OS-ginkgo seed starch prepared by lipase-coupling esterification would be an alternative emulsion stabilizer for encapsulation and delivery of hydrophobic components. This study would provide an alternative method for the efficient and economical production of OS-ginkgo seed starch, thereby broadening its application in commercial exploitation.
Collapse
Affiliation(s)
- Ying Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ya Su
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Rong Bai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tiesong Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
55
|
Feng Y, Zhang B, Fu X, Huang Q. Starch-lauric acid complex-stabilised Pickering emulsion gels enhance the thermo-oxidative resistance of flaxseed oil. Carbohydr Polym 2022; 292:119715. [PMID: 35725189 DOI: 10.1016/j.carbpol.2022.119715] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 06/04/2022] [Indexed: 11/19/2022]
Abstract
Hydrophobic-modified starch complexes have the potential to form Pickering emulsions and improve the oxidative stability of flaxseed oil. Here, V-type starch-lauric acid complexes (SLACs) were fabricated via solid encapsulation within 0.5-12 h and applied in flaxseed oil Pickering emulsions. Complexing index, X-ray diffraction and differential scanning calorimetry analyses confirmed that the degree of complexation increased with the reaction time. Pickering emulsion gels stabilised by SLACs generated with reaction times of 6 h and 12 h exhibited good storage stability and high yield stress, G' values and apparent viscosity. Confocal laser scanning microscopy and cryo-scanning electron microscopy revealed a gelation mechanism involving increased interface roughness and enhanced droplet-droplet interaction. In comparison to pure flaxseed oil, higher thermo-oxidative resistance was observed at 130 °C, with a markedly longer oxidation induction for emulsions and emulsion gels stabilised by SLACs. Our findings could assist in the design of hydrophobic-modified starch and provide a new paradigm for delaying oil oxidation.
Collapse
Affiliation(s)
- Yinong Feng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
56
|
Liu Y, Liu Y. Construction of lipid-biomacromolecular compounds for loading and delivery of carotenoids: Preparation methods, structural properties, and absorption-enhancing mechanisms. Crit Rev Food Sci Nutr 2022; 64:1653-1676. [PMID: 36062817 DOI: 10.1080/10408398.2022.2118229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the unstable chemical properties and poor water solubility of carotenoids, their processing adaptation and oral bioavailability are poor, limiting their application in hydrophilic food systems. Lipid-biomacromolecular compounds can be excellent carriers for carotenoid delivery by taking full advantage of the solubilization of lipids to non-polar nutrients and the water dispersion and gastrointestinal controlled release properties of biomacromolecules. This paper reviewed the research progress of lipid-biomacromolecular compounds as encapsulation and delivery carriers of carotenoids and summarized the material selection and preparation methods for biomacromolecular compounds. By considering the interaction between the two, this paper briefly discussed the effect of these compounds on carotenoid water solubility, stability, and bioavailability, emphasizing their delivery effect on carotenoids. Finally, various challenges and future trends of lipid-biomacromolecular compounds as carotenoid delivery carriers were discussed, providing new insight into efficient loading and delivery of carotenoids.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
57
|
Jing X, Chen B, Liu T, Cai Y, Zhao Q, Deng X, Zhao M. Formation and stability of Pickering emulsion gels by insoluble soy peptide aggregates through hydrophobic modification. Food Chem 2022; 387:132897. [PMID: 35413552 DOI: 10.1016/j.foodchem.2022.132897] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/02/2022] [Accepted: 04/03/2022] [Indexed: 01/11/2023]
Abstract
In this work, a highly stable food-grade Pickering emulsion gels was successfully prepared by hydrophobically modified insoluble soybean peptide aggregates. The relationships between the surface properties of insoluble soybean peptide aggregates and Pickering emulsion gels characteristics were clarified. After modification, the insoluble soybean peptide aggregates with high surface hydrophobicity had small particle size (377 nm), near-neutral wettability (θo/w = 92°) and strong interfacial adsorption capability. These allowed the modified insoluble soybean peptide aggregates to stabilize the oil-water interface and form continuous network surrounding oil droplets, leading to the formation of stable Pickering emulsion gels. Besides, Pickering emulsion gels prepared by insoluble soybean peptide aggregates with higher surface hydrophobicity had smaller droplet size and higher gel strength, and remained stable even after 60 days of storage. The findings suggest a preferable plant protein particle for the preparation of stable Pickering emulsion gels in food industry.
Collapse
Affiliation(s)
- Xuelian Jing
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Bifen Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Tongxun Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yongjian Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | - Xinlun Deng
- Guangdong Wenbang Biotechnology Co Ltd, Zhaoqing 526000, People's Republic of China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
58
|
Encapsulation of indole-3-carbinol in Pickering emulsions stabilized by OSA-modified high amylose corn starch: Preparation, characterization and storage stability properties. Food Chem 2022; 386:132846. [PMID: 35381538 DOI: 10.1016/j.foodchem.2022.132846] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/27/2021] [Accepted: 03/27/2022] [Indexed: 11/24/2022]
Abstract
The stability of hydrophobic bioactive compound indole-3-carbinol (I3C) is a challenge for application. In this work, Pickering emulsions were prepared to encapsulate I3C. As the emulsifier, high amylose corn starch was pretreated by acid hydrolysis, afterwards modified by different concentrations of octenyl succinic anhydride (OSA), and their emulsions were evaluated. The XRD, SEM and FTIR results indicated the successful modification. ζ-potential, mean droplet size and emulsification index (EI) of the emulsions confirmed that modified starch with a higher degree of substitution (DS) was more effective for enhancing the storage stability. The results of encapsulation efficiency (EE) and retention degree of I3C after 14 d also proved the assumption. Moreover, the Pickering emulsions protected I3C against ultraviolet light and achieved controlled release in vitro. The food-grade Pickering emulsion loading I3C is promising to be used as a nutrient or dietary supplement for food applications.
Collapse
|
59
|
Bu N, Sun R, Huang L, Lin H, Pang J, Wang L, Mu R. Chitosan films with tunable droplet size of Pickering emulsions stabilized by amphiphilic konjac glucomannan network. Int J Biol Macromol 2022; 220:1072-1083. [PMID: 36037908 DOI: 10.1016/j.ijbiomac.2022.08.157] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022]
Abstract
In this work, chitosan (CS) emulsion films were prepared with grapefruit essential oil (GEO) Pickering emulsions (OGEOs) stabilized by amphiphilic octenyl succinic anhydride (OSA) konjac glucomannan (OSA-KGM) network. The droplet size of emulsion was regulated by altering oil content in OGEOs (10 %, 20 %, 30 % and 40 %, w/w). The structural and physicochemical properties of CS films with tunable emulsion droplets (OGEOs) were investigated. The droplet size of OGEOs increased with the increasing content of GEO. FT-IR revealed that the formation of CS-OGEOs films was attributed to hydrogen bonding. CS-OGEOs films with large droplets presented smoother surface, enhanced water resistance, UV-shielding property, mechanical properties, but increased water vapor permeability (WVP) compared with CS-OGEOs films with small droplets. In addition, CS-OGEOs films with large droplets also presented compact film structure, controlled release of GEO, high efficiency of DPPH free radical scavenging and antibacterial activity. To sum up, incorporation of emulsion droplets was a good strategy for improving the structural and physicochemical properties of CS films.
Collapse
Affiliation(s)
- Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Runzhi Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanglong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lin Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China.
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
60
|
Enzymatically modified quinoa starch-based Pickering emulsion: Effect of enzymolysis and emulsifying conditions. Int J Biol Macromol 2022; 219:824-834. [PMID: 35963347 DOI: 10.1016/j.ijbiomac.2022.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/16/2022] [Accepted: 08/07/2022] [Indexed: 11/20/2022]
Abstract
Both the effects of enzymolysis condition on the microstructures and emulsifying property of enzymatic modified quinoa starch (EMQS) and the effects of emulsion formulation on the EMQS based emulsions were investigated. The emulsifying capacity (EC) and stability (ES) of EMQS were positive correlated with enzyme amount (0-2.4 % w/wstarch). The particle sizes of EMQS decreased and its hydrophobicity increased with increasing enzyme amount (0-2.4 % w/wstarch), which were the main reasons for the increasing emulsifying performance of EMQS. With the increasing starch concentration, the EC of the EMQS increased, the oil droplet size of the emulsion decreased. With the oil/water ratios ranging from 1:9 to 6:4, the emulsification index (EI) and oil droplet size of the emulsion increased. EMQS based emulsion had a relatively good stability in the pH range of 2-10. This study lays the foundation for the application of EMQS as a stable clean-label Pickering emulsifier.
Collapse
|
61
|
Xiao Q, Chen Z, Xie X, Zhang Y, Chen J, Weng H, Chen F, Xiao A. A novel Pickering emulsion stabilized solely by hydrophobic agar microgels. Carbohydr Polym 2022; 297:120035. [DOI: 10.1016/j.carbpol.2022.120035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022]
|
62
|
Improving emulsification performance of waxy maize starch by esterification combined with pulsed electric field. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
63
|
Zheng W, Zhang H, Wang J, Wang J, Yan L, Liu C, Zheng L. Pickering emulsion hydrogel based on alginate-gellan gum with carboxymethyl chitosan as a pH-responsive controlled release delivery system. Int J Biol Macromol 2022; 216:850-859. [PMID: 35914551 DOI: 10.1016/j.ijbiomac.2022.07.223] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022]
Abstract
Pickering emulsion hydrogels (PEHs) were developed as a pH-responsive, controlled-release delivery system to address the limitations of Pickering emulsions in some harsh processing or gastrointestinal conditions. Specifically, the PEHs were fabricated based on alginate and various concentrations of gellan gum (GG) with carboxymethyl chitosan (CMCS) matrix. The encapsulation efficiency (EE), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results proved the successful encapsulation. Furthermore, the hydrogels remained stable in the presence of destabilizing ions (Na+ or phosphate ions) and high osmotic pressure mediums. The texture profile analysis (TPA) characteristics and Young's modulus of the 0.8 % GG (w/v) PEHs were superior to the others. The PEHs prevented the emulsions from being released at pH 2.0, while the emulsions were entirely released at pH 7.4 in vitro, with the rate of release controlled by CMCS and the degree by GG concentration. This work facilitates the delivery of Pickering emulsions with excellent stability and pH-responsive controlled release for hydrophobic actives in food applications.
Collapse
Affiliation(s)
- Wenxiu Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huizhe Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ju Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jinjin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ling Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Changhong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
64
|
Tan B, Li Y, Fei X, Tian J, Xu L, Wang Y. Lipase-polydopamine magnetic hydrogel microspheres for the synthesis of octenyl succinic anhydride starch. Int J Biol Macromol 2022; 219:482-490. [PMID: 35850268 DOI: 10.1016/j.ijbiomac.2022.07.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022]
Abstract
Octenyl succinic anhydride (OSA) starch is an important edible additive in the food field, and its synthesis method has attracted much attention. Lipase as a biocatalyst can improve the synthesis efficiency of OSA starch, and significantly inhibit the occurrence of side reactions. However, free lipase has not been widely applied in the synthesis of OSA starch due to the difficulty of separation from starch and poor reusability. In this work, a promising strategy for the synthesis of OSA starch catalyzed by lipase immobilized on polydopamine magnetic hydrogel microspheres (PMHM) is reported. The prepared lipase-polydopamine magnetic hydrogel microspheres (L-PMHM) can be uniformly dispersed in starch slurry, which is conducive to the full contact between lipase and starch. L-PMHM (Km =2.6276 μmol/mL) exhibits better affinity to the substrate than free lipase (Km = 3.4301 μmol/mL). Compared with the OSA starch catalyzed by free lipase (DS = 0.0176), the degree of substitution of OSA starch catalyzed by L-PMHM is up to 0.0277 in a short reaction time. In cyclic catalysis, L-PHMM can remain about 48 % of their original activity after 20 reuses and can be quickly separated from the product. These results suggest that L-PMHM has great potential as a biocatalyst for the efficient synthesis of OSA starch.
Collapse
Affiliation(s)
- Bozhi Tan
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Fei
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Longquan Xu
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
65
|
Zhang L, Chen DL, Wang XF, Xu L, Qian JY, He XD. Enzymatically modified quinoa starch based pickering emulsion as carrier for curcumin: Rheological properties, protection effect and in vitro digestion study. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
66
|
Sani MA, Tavassoli M, Azizi-Lalabadi M, Mohammadi K, McClements DJ. Nano-enabled plant-based colloidal delivery systems for bioactive agents in foods: Design, formulation, and application. Adv Colloid Interface Sci 2022; 305:102709. [PMID: 35640316 DOI: 10.1016/j.cis.2022.102709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/21/2022]
Abstract
Consumers are becoming increasingly aware of the impact of their dietary choices on the environment, animal welfare, and health, which is causing many of them to adopt more plant-based diets. For this reason, many sectors of the food industry are reformulating their products to contain more plant-based ingredients. This article describes recent research on the formation and application of nano-enabled colloidal delivery systems formulated from plant-based ingredients, such as polysaccharides, proteins, lipids, and phospholipids. These delivery systems include nanoemulsions, solid lipid nanoparticles, nanoliposomes, nanophytosomes, and biopolymer nanoparticles. The composition, size, structure, and charge of the particles in these delivery systems can be manipulated to create novel or improved functionalities, such as improved robustness, higher optical clarity, controlled release, and increased bioavailability. There have been major advances in the design, assembly, and application of plant-based edible nanoparticles within the food industry over the past decade or so. As a result, there are now a wide range of different options available for creating delivery systems for specific applications. In the future, it will be important to establish whether these formulations can be produced using economically viable methods and provide the desired functionality in real-life applications.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Tavassoli
- Student's Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
67
|
Lingiardi N, Galante M, de Sanctis M, Spelzini D. Are quinoa proteins a promising alternative to be applied in plant-based emulsion gel formulation? Food Chem 2022; 394:133485. [PMID: 35753255 DOI: 10.1016/j.foodchem.2022.133485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/13/2022] [Accepted: 06/12/2022] [Indexed: 11/17/2022]
Abstract
Emulsion gels are structured emulsion systems that behave as soft solid-like materials. Emulsion gels are commonly used in food-product design both as fat replacers and as delivery carriers of bioactive compounds. Different plant-derived proteins like soy, chia, and oat have been used in emulsion gel formulation to substitute fat in meat products and to deliver some vegetable dyes or extracts. Quinoa protein isolates have been scarcely applied in emulsion gel formulation although they seem to be a promising alternative as emulsion stabilizers. Quinoa protein isolates have a high protein content with a well-balanced amino acid profile and show good emulsifying and gelling capabilities. Unlike quinoa starch, quinoa protein isolates do not require any chemical modification before being used. The present article reviews the state of the art in food emulsion gels stabilized with vegetable proteins and highlights the potential uses of quinoa proteins in emulsion gel formulation.
Collapse
Affiliation(s)
- Nadia Lingiardi
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad del Centro Educativo Latinoamericano, Facultad de Química, Pellegrini 1332, Rosario, Argentina.
| | - Micaela Galante
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad Católica Argentina, Facultad de Química e Ingeniería del Rosario, Pellegrini 3314, Rosario, Argentina
| | - Mariana de Sanctis
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Universidad del Centro Educativo Latinoamericano, Facultad de Química, Pellegrini 1332, Rosario, Argentina
| | - Darío Spelzini
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
68
|
Liang L, Zhu J, Zhang Z, Liu Y, Wen C, Liu X, Zhang J, Li Y, Liu R, Ren J, Deng Q, Liu G, Xu X. Pickering Emulsion Stabilized by Tea Seed Cake Protein Nanoparticles as Lutein Carrier. Foods 2022; 11:1712. [PMID: 35741910 PMCID: PMC9223012 DOI: 10.3390/foods11121712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
To effectively deliver lutein, hydrothermally prepared tea seed cake protein nanoparticles (TSCPN) were used to fabricate Pickering emulsion, and the bioaccessibility of lutein encapsulated by Pickering emulsion and the conventional emulsion was evaluated in vitro. The results indicated that the average size and absolute value of zeta potential of TSCPN increased along with the increase in the protein concentration, and 2% protein concentration was adopted to prepare TSCPN. With the increase in the concentration of TSCPN, the size of Pickering emulsion decreased from 337.02 μm to 89.36 μm, and when the TSCPN concentration was greater than 0.6%, all emulsions exhibited good stability during the 14 days storage. Combined with the microstructure result, 1.2% TSCPN was used to stabilize Pickering emulsion. With the increase in ionic concentration (0-400 mM), the particle size of the emulsions increased while the absolute value of zeta potential decreased. TSCPN-based Pickering emulsion was superior to the conventional emulsion for both lutein encapsulation (96.6 ± 1.0% vs. 82.1 ± 1.4%) and bioaccessibility (56.0 ± 1.1% vs. 35.2 ± 1.2%). Thus, TSCPN-based Pickering emulsion in this study have the potential as an effective carrier for lutein.
Collapse
Affiliation(s)
- Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (L.L.); (J.Z.); (Z.Z.); (Y.L.); (C.W.); (X.L.); (J.Z.); (Y.L.); (G.L.)
| | - Junlong Zhu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (L.L.); (J.Z.); (Z.Z.); (Y.L.); (C.W.); (X.L.); (J.Z.); (Y.L.); (G.L.)
| | - Zhiyi Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (L.L.); (J.Z.); (Z.Z.); (Y.L.); (C.W.); (X.L.); (J.Z.); (Y.L.); (G.L.)
| | - Yu Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (L.L.); (J.Z.); (Z.Z.); (Y.L.); (C.W.); (X.L.); (J.Z.); (Y.L.); (G.L.)
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (L.L.); (J.Z.); (Z.Z.); (Y.L.); (C.W.); (X.L.); (J.Z.); (Y.L.); (G.L.)
| | - Xiaofang Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (L.L.); (J.Z.); (Z.Z.); (Y.L.); (C.W.); (X.L.); (J.Z.); (Y.L.); (G.L.)
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (L.L.); (J.Z.); (Z.Z.); (Y.L.); (C.W.); (X.L.); (J.Z.); (Y.L.); (G.L.)
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (L.L.); (J.Z.); (Z.Z.); (Y.L.); (C.W.); (X.L.); (J.Z.); (Y.L.); (G.L.)
| | - Ruijie Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Qianchun Deng
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (L.L.); (J.Z.); (Z.Z.); (Y.L.); (C.W.); (X.L.); (J.Z.); (Y.L.); (G.L.)
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (L.L.); (J.Z.); (Z.Z.); (Y.L.); (C.W.); (X.L.); (J.Z.); (Y.L.); (G.L.)
| |
Collapse
|
69
|
Triggered and controlled release of bioactives in food applications. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 100:49-107. [PMID: 35659356 DOI: 10.1016/bs.afnr.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioactive compounds (e.g., nutraceuticals, micronutrients, antimicrobial, antioxidant) are added to food products and formulations to enhance sensorial/nutritional attributes and/or shelf-life. Many of these bioactives are susceptible to degradation when exposed to environmental and processing factors. Others involve in undesirable interactions with food constituents. Encapsulation is a useful tool for addressing these issues through various stabilization mechanisms. Besides protection, another important requirement of encapsulation is to design a carrier that predictably releases the encapsulated bioactive at the target site to elicit its intended functionality. To this end, controlled release carrier systems derived from interactive materials have been developed and commercially exploited to meet the requirements of various applications. This chapter provides an overview on basic controlled and triggered release concepts relevant to food and active packaging applications. Different approaches to encapsulate bioactive compounds and their mode of release are presented, from simple blending with a compatible matrix to complex multiphase carrier systems. To further elucidate the mass transport processes, selected diffusion and empirical release kinetic models are presented, along with their brief historical significance. Finally, interactive carriers that are responsive to moisture, pH, thermal and chemical stimuli are presented to illustrate how these triggered release mechanisms can be useful for food applications.
Collapse
|
70
|
Xing Y, Li R, Xue L, Chen M, Lu X, Duan Z, Zhou W, Li J. Double emulsion (W/O/W) gel stabilised by polyglycerol polyricinoleate and calcium caseinate as mangiferin carrier: insights on formulation and stability properties. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuhang Xing
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
- College of Food Science & Technology Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
| | - Lu Xue
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
- College of Food Science & Technology Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
| | - Xuli Lu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
| | - Zhihao Duan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
- College of Tropical Crops Yunnan Agricultural University Pu'er, Yunan 665099 China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
| |
Collapse
|
71
|
Jia Y, Kong L, Zhang B, Fu X, Huang Q. Fabrication and characterization of Pickering high internal phase emulsions stabilized by debranched starch-capric acid complex nanoparticles. Int J Biol Macromol 2022; 207:791-800. [PMID: 35346682 DOI: 10.1016/j.ijbiomac.2022.03.142] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
High internal phase emulsions (HIPEs) stabilized by debranched starch-capric acid (DBS-CA) complex nanoparticles were fabricated and their performance was evaluated. DBS-CA was prepared through enzymatic debranching and solid encapsulation methods, and displayed V-type crystalline structure. Contact angle measurements show enhanced hydrophobicity of DBS-CA compared to native starch. The DBS-CA nanoparticles have an average size of 463.77 nm and tended to be aggregating as analyzed by scanning electron microscope and dynamic light scattering particle size analysis. When used as a particulate emulsifier, DBS-CA could stabilize HIPEs with oil volume fraction as high as 80%. The HIPEs showed pH-dependent properties; good storage stability and mechanical strength were achieved within pH range from 3 to 11, especially under alkaline conditions. It was proposed that smaller particle size and higher surface charging were responsible for the more tightly connected gel structure and thus their performance. This study demonstrates a novel approach to fabricate food-grade Pickering HIPEs, which may have many promising potential applications in the food industry.
Collapse
Affiliation(s)
- Yuhan Jia
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lingyan Kong
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Bin Zhang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
72
|
Ren Z, Chen Z, Zhang Y, Lin X, Weng W, Li B. Pickering Emulsions Stabilized by Tea Water-Insoluble Protein Nanoparticles From Tea Residues: Responsiveness to Ionic Strength. Front Nutr 2022; 9:892845. [PMID: 35558751 PMCID: PMC9087344 DOI: 10.3389/fnut.2022.892845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Tea water-insoluble protein nanoparticles (TWIPNs) can be applied to stabilize Pickering emulsions. However, the effect of ionic strength (0–400 mmol/L) on the characteristics of Pickering emulsions stabilized by TWIPNs (TWIPNPEs) including volume-averaged particle size (d4,3), zeta potential, microstructure and rheological properties is still unclear. Therefore, this work researched the effect of ionic strength on the characteristics of TWIPNPEs. The d4,3 of TWIPNPEs in the aquatic phase increased with the increase in ionic strength (0–400 mmol/L), which was higher than that in the SDS phase. Furthermore, the flocculation index of TWIPNPEs significantly (P < 0.05) increased from 24.48 to 152.92% with the increase in ionic strength. This could be verified from the microstructure observation. These results indicated that ionic strength could promote the flocculation of TWIPNPEs. Besides, the absolute values of zeta potential under different ionic strengths were above 40 mV in favor of the stabilization of TWIPNPEs. The viscosity of TWIPNPEs as a pseudoplastic fluid became thin when shear rate increased from 0.1 to 100 s−1. The viscoelasticity of TWIPNPEs increased with increasing ionic strength to make TWIPNPEs form a gel-like Pickering emulsion. the possible mechanism of flocculation stability of TWIPNPEs under different ionic strengths was propose. TWIPNs adsorbed to the oil-water interface would prompt flocculation between different emulsion droplets under the high ionic strength to form gel-like behavior verified by CLSM. These results on the characteristics of TWIPNPEs in a wide ionic strength range would provide the theoretical basis for applying Pickering emulsions stabilized by plant proteins in the food industry.
Collapse
Affiliation(s)
- Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.,College of Food Science, South China Agricultural University, Guangzhou, China.,Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.,Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian, China
| | - Bin Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
73
|
Li W, Jiao B, Li S, Faisal S, Shi A, Fu W, Chen Y, Wang Q. Recent Advances on Pickering Emulsions Stabilized by Diverse Edible Particles: Stability Mechanism and Applications. Front Nutr 2022; 9:864943. [PMID: 35600821 PMCID: PMC9121063 DOI: 10.3389/fnut.2022.864943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023] Open
Abstract
Pickering emulsions, which are stabilized by particles, have gained considerable attention recently because of their extreme stability and functionality. A food-grade particle is preferred by the food or pharmaceutical industries because of their noteworthy natural benefits (renewable resources, ease of preparation, excellent biocompatibility, and unique interfacial properties). Different edible particles are reported by recent publications with distinct shapes resulting from the inherent properties of raw materials and fabrication methods. Furthermore, they possess distinct interfacial properties and functionalities. Therefore, this review provides a comprehensive overview of the recent advances in the stabilization of Pickering emulsions using diverse food-grade particles, as well as their possible applications in the food industry.
Collapse
Affiliation(s)
- Wei Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Sisheng Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shah Faisal
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Weiming Fu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yiying Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
74
|
Chen H, Dai H, Zhu H, Ma L, Fu Y, Feng X, Sun Y, Zhang Y. Construction of dual-compartmental micro-droplet via shrimp ferritin nanocages stabilized Pickering emulsions for co-encapsulation of hydrophobic/hydrophilic bioactive compounds. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
75
|
Du CX, Xu JJ, Luo SZ, Li XJ, Mu DD, Jiang ST, Zheng Z. Low-oil-phase emulsion gel with antioxidant properties prepared by soybean protein isolate and curcumin composite nanoparticles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
76
|
López-Pedrouso M, Lorenzo JM, Moreira R, Franco D. Potential applications of Pickering emulsions and high internal phase emulsions (HIPEs) stabilized by starch particles. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
77
|
Song X, Gong H, Zhu W, Wang J, Zhai Y, Lin S. Pickering emulsion stabilized by composite-modified waxy corn starch particles. Int J Biol Macromol 2022; 205:66-75. [PMID: 35176323 DOI: 10.1016/j.ijbiomac.2022.02.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/15/2022] [Accepted: 02/09/2022] [Indexed: 12/19/2022]
Abstract
The starch-based Pickering stabilizer has attracted more research interest recently, however, its application in food system is limited due to the low digestibility of raw starch particles. In this study, waxy corn starches were modified with octenyl succinic anhydride and then treated by dry heating at 180 °C for 20-60 min. Pickering emulsions stabilized by the composite-modified starch particles were fabricated, the physical stability, rheology property and microstructure of the emulsions were investigated. The results showed that the composite-modified starches maintained granule structure, their gelatinization temperatures and enthalpy significantly reduced after heat treatment (p < 0.05). Compared with native starch, the composite-modified starches had bigger three-phase contact angles and higher in vitro digestibility, while the relative crystallinity decreased from 32.46% to 24.87%. Pickering emulsions stabilized by composite-modified starch particles had long-term stability up to 300 days. The rheology results showed that all emulsions exhibited pseudoplastic behaviors and had higher storage modulus than loss modulus. Moreover, the viscosities decreased when the starch was roasted for 40 and 60 min. The composite-modified starch particles and few starch macromolecules at oil-water interface stabilized the emulsions collectively. These results provide a new strategy for designing an edible Pickering stabilizer.
Collapse
Affiliation(s)
- Xiaoyan Song
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Hui Gong
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Zhu
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jinling Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Yuge Zhai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Shunshun Lin
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
78
|
Zhao X, Li D, Wang LJ, Wang Y. Rheological properties and microstructure of a novel starch-based emulsion gel produced by one-step emulsion gelation: Effect of oil content. Carbohydr Polym 2022; 281:119061. [DOI: 10.1016/j.carbpol.2021.119061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
|
79
|
Characteristics and ethylene encapsulation properties of V-type linear dextrin with different degrees of polymerisation. Carbohydr Polym 2022; 277:118814. [PMID: 34893231 DOI: 10.1016/j.carbpol.2021.118814] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/13/2021] [Accepted: 10/24/2021] [Indexed: 12/22/2022]
Abstract
The objective of this research was to investigate the effects of preparation method on the characteristics and ethylene loading capacity of V-type linear dextrin (LD). LD with different degrees of polymerisation were obtained from debranched starch by gradient ethanol precipitation. X-ray diffraction (XRD) patterns of samples obtained by precipitation and anti-solvent precipitation presented A + V-type crystalline structure. However, the percentage of V-type structure of samples obtained by anti-solvent precipitation was significantly higher than for samples prepared by precipitation, which was further confirmed by nuclear magnetic resonance spectroscopy (NMR), and molecular dynamics simulation supported the XRD and NMR results. The ethylene encapsulation capabilities of samples fabricated by different methods were in range of 1.15-4.68 cm3/g. Ethylene release from V-type LD was a physical process at different storage temperatures, and the higher percentage of V-type structure, the slower release rate. Thus, a higher V-type structure content was beneficial for encapsulation of gaseous molecules.
Collapse
|
80
|
Stability of zeaxanthin/lutein in yolk oil obtained from microalgae-supplemented egg under various storage conditions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
81
|
Tan H, Zhang R, Han L, Zhang T, Ngai T. Pickering emulsions stabilized by aminated gelatin nanoparticles: Are gelatin nanoparticles acting as genuine Pickering stabilizers or structuring agents? Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
82
|
Physicochemical Properties of Capsicum Oleoresin Emulsions Stabilized by Gum Arabic, OSA-Modified Corn Starch, and Modified Malt. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
83
|
Liu W, Pan W, Li J, Chen Y, Yu Q, Rong L, Xiao W, Wen H, Xie J. Dry heat treatment induced the gelatinization, rheology and gel properties changes of chestnut starch. Curr Res Food Sci 2022; 5:28-33. [PMID: 34993495 PMCID: PMC8713035 DOI: 10.1016/j.crfs.2021.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 10/25/2022] Open
Abstract
The effects of continuous dry heat treatment (CT) and repeated dry heat treatment (RT) on gel and structural properties of chestnut starch (CS) were investigated. CT and RT both reduced the swelling degree of starch and showed significant variations in pasting viscosity, viscoelasticity, gel strength and hardness varying from high to low after dry heat treatment, and CT was lower than that of RT. Neither dry heat treatment nor gelatinization produced new functional groups, and both reduced short-range ordered degree. There were significant decrease in spin-spin relaxation time (T2) with dry heat treatment (CT and RT), which made the starch in the samples closely combine with water. These results are helpful to better understand the changes of physicochemical properties of starch gel products during dry heat treatment and provide some theoretical references for the application of CS in food industry.
Collapse
Affiliation(s)
- Wenmeng Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Wentao Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Jinwang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Liyuan Rong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Wenhao Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.,International Institute of Food Innovation, Nanchang University, Nanchang, 330200, China
| |
Collapse
|
84
|
Liu G, Hu M, Du X, Yan S, Liao Y, Zhang S, Qi B, Li Y. Effects of succinylation and chitosan assembly at the interface layer on the stability and digestion characteristics of soy protein isolate-stabilized quercetin emulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
85
|
Su Y, Sun M, Zhao M, Xu B, Li J, Zheng T. Enhancement of the physicochemical and
in vitro
release properties of lutein by gelatin/octenyl succinic anhydride (OSA)‐modified starch composite as vehicles. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ya Su
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210046 China
| | - Menglin Sun
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210046 China
| | - Mengyuan Zhao
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210046 China
| | - Baoguo Xu
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210046 China
| | - Tiesong Zheng
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210046 China
| |
Collapse
|
86
|
Proximate Composition, Physicochemical, Functional, and Antioxidant Properties of Flours from Selected Cassava ( Manihot esculenta Crantz) Varieties. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:6064545. [PMID: 34926679 PMCID: PMC8674075 DOI: 10.1155/2021/6064545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 12/04/2022]
Abstract
Cassava flour has a high potential to contribute as a raw material in the food industry. This study was aimed at characterizing flours from Sri Lankan cassava varieties with a view to explore the potential in food applications. Flours prepared from five cassava varieties, namely, Kirikawadi, MU51, Swarna, Shani, and Suranimala, were analyzed for proximate composition and physicochemical, functional, and antioxidant properties using standard methods. Flours from tested cassava varieties contained <1% crude fat and <2% crude protein. Flour from MU51 contained the highest amount of HCN (48.05 mg/kg) while flour from Suranimala contained the lowest (4.85 mg/kg). Total starch and amylose contents of flours were significantly lower (p < 0.05) than those of commercial wheat flour. Flour from Suranimala contained approximately similar amylopectin content as commercial wheat flour. Water absorption capacity, oil absorption capacity, water solubility index, swelling power, emulsion activity, and emulsion stability of flours from five cassava varieties were significantly higher (p < 0.05) than those of commercial wheat flour. Swarna was identified as the richest source of phenolic compounds (4.44 mmol GAE/100 g dry weight) among the five varieties. Results showed the promising application potential of flours from these five cassava varieties in different food applications such as weaning foods, bakery foods, and edible films.
Collapse
|
87
|
Hu Z, Shao M, Zhang B, Fu X, Huang Q. Enhanced stability and controlled release of menthol using a β-cyclodextrin metal-organic framework. Food Chem 2021; 374:131760. [PMID: 34915363 DOI: 10.1016/j.foodchem.2021.131760] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/07/2021] [Accepted: 11/29/2021] [Indexed: 11/04/2022]
Abstract
Menthol inclusion complexes (ICs) have addressed a range of opportunities in food applications due to their volatile resistance. However, previous protocols used for their synthesis give low yields and high industrial application costs. In the present investigation, metal-organic frameworks based on β-cyclodextrin (β-CD-MOF) have been prepared for the molecular encapsulation of menthol. Menthol/β-CD-MOF-IC was synthesized under the optimized parameters, after which release behavior was studied. In this optimized manner, a higher menthol capacity was obtained in which the menthol content and encapsulation efficiency were 27.1 and 30.6%, respectively. Compared with menthol/β-CD-IC, menthol/β-CD-MOF-IC is resistant to high temperature, but sensitive to moisture. In a simulated oral release experiment, the rate of menthol release from different samples followed the order of: pure menthol > β-CD > β-CD-MOF, which can be attributed to two mechanisms: non-specific binding and site preference. We propose that β-CD-MOF can be used as a promising delivery system for aroma compounds.
Collapse
Affiliation(s)
- Ziman Hu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Miao Shao
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China
| | - Bin Zhang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
88
|
Zhang R, Cheng L, Luo L, Hemar Y, Yang Z. Formation and characterisation of high-internal-phase emulsions stabilised by high-pressure homogenised quinoa protein isolate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
89
|
Impact of octenyl succinic anhydride (OSA) esterification on microstructure and physicochemical properties of sorghum starch. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
90
|
Formation and creaming stability of alginate/micro-gel particle-induced gel-like emulsions stabilized by soy protein isolate. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
91
|
Dai L, Zhou L, Zhou H, Zheng B, Ji N, Xu X, He X, Xiong L, McClements DJ, Sun Q. Comparison of Lutein Bioaccessibility from Dietary Supplement-Excipient Nanoemulsions and Nanoemulsion-Based Delivery Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13925-13932. [PMID: 34780691 DOI: 10.1021/acs.jafc.1c05261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The impact of lutein-loaded nanoemulsions and excipient nanoemulsions mixed with lutein-based dietary supplements (capsules and soft gels) on the bioaccessibility of lutein was explored using a simulated gastrointestinal tract (GIT). The particle size, particle size distribution, ζ-potential, microstructure, lipid digestibility, and lutein bioaccessibility of all the samples were measured after they were exposed to different environments (stomach and small intestine environments) within a simulated GIT. As expected, the bioaccessibility of lutein from the capsules (1.5%) and soft gels (3.2%) was relatively low when they were administered alone. However, the co-administration of excipient nanoemulsions significantly increased the bioaccessibility of lutein from both the capsules (35.2%) and soft gels (28.7%). This phenomenon was attributed to the fast digestion of the small oil droplets in the excipient nanoemulsions and the further formation of mixed micelles to solubilize any lutein molecules released from the supplements. The lutein-loaded nanoemulsions exhibited a much higher lutein bioaccessibility (86.8%) than any of the supplements, which was attributed to the rapid release and solubilization of lutein when the lipid droplets were rapidly and extensively digested within the small intestine. This study indicates that the bioaccessibility of lutein is much higher in nanoemulsion droplets than that in dietary supplements. However, consuming dietary supplements in the presence of nanoemulsion droplets can greatly increase lutein bioavailability. The results of this study have important guiding significance for the design of more effective lutein supplements.
Collapse
Affiliation(s)
- Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Liyang Zhou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Hualu Zhou
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Bingjing Zheng
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xiaoyang He
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
92
|
Yang L, Liu Y, Yang J, Du C, Zhai L. Changes in the multi-scale structure and physicochemical properties of starch during potato growth. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5927-5937. [PMID: 33818781 DOI: 10.1002/jsfa.11245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/05/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Growth stage contributes critically to the physicochemical properties of starches, which make achieving desired functional properties by controlling the growth period possible. Thus, this study investigated the changes in multiscale structure and physicochemical properties of potatoes starches harvested at different growth stages. RESULTS The amylose and phosphate content varied over the growth period, with the ranges 2.756-2.998 g kg-1 and 0.0058-0.0077 g kg-1 , respectively. The starch granules were round or oval, and the size increased with growth. X-Ray diffraction indicated the B-type crystalline structure of samples. Time-dependent changes in crystallinity were observed. The weight-average molecular weight (Mw ) showed a tendency to decrease first and then increase, and presented the lowest Mw (1.105 × 108 g mol-1 ) at 35 days. A higher proportion of long chains were noted in starch from earlier harvested potatoes than that in later harvested ones. Differential scanning calorimetry revealed that starch gelatinization temperature decreased, and gelatinization enthalpy decreased from 16.39 to 14.89 J g-1 . All samples possessed weak elastic gel-like structure, and starches harvested at early stage possessed highest viscosity and stronger gel behaviour. Resistant starch showed a decreasing trend on the whole, and presented highest value (10.69%) at earliest harvest time. Starch from the potatoes harvested at 35 days after tuberization exhibited excellent light transmittance (up to 62.47%). CONCLUSION Potato starches harvested at different growth period presented extremely different structures and physicochemical properties. The results will provide fundamental data in terms of changes of potato starch during growth which will affect the choice of harvest time. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liping Yang
- School of Food Engineering, Anhui Science and Technology University, Fengyang, China
| | - Yong Liu
- School of Food Engineering, Anhui Science and Technology University, Fengyang, China
| | - Jianting Yang
- School of Food Engineering, Anhui Science and Technology University, Fengyang, China
| | - Chuanlai Du
- School of Food Engineering, Anhui Science and Technology University, Fengyang, China
| | - Ligong Zhai
- School of Food Engineering, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
93
|
Zhang L, Xiong T, Wang XF, Chen DL, He XD, Zhang C, Wu C, Li Q, Ding X, Qian JY. Pickering emulsifiers based on enzymatically modified quinoa starches: Preparation, microstructures, hydrophilic property and emulsifying property. Int J Biol Macromol 2021; 190:130-140. [PMID: 34481848 DOI: 10.1016/j.ijbiomac.2021.08.212] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/14/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022]
Abstract
Quinoa starch was developed as a new kind of Pickering emulsifier by enzymatic modification. The morphological structure, crystalline structure, lamellar structure, fractal structure, particle size distribution, contact angle, emulsion index (EI), and emulsion micromorphology were studied to explore the relationship between structure characteristics, hydrophilic property, and emulsifying properties of enzymatically modified (EM) quinoa starches. With the increasing enzymatic hydrolysis time in the test range of 0-9 h, particle size of EM quinoa starch decreased, and the broken starch and contact angle of EM quinoa starch increased; the EI value of emulsions with EM quinoa starch increased, and the oil droplet size of emulsions with EM quinoa starch decreased. It suggested that both the smallest particle size and the closest extent of the contact angle to 90° derived the best emulsifying property of EM-9. The EM quinoa starch had higher emulsifying capacity at higher oil volume fraction (Φ) (50%) than at lower Φ (20%), proving that the EM starch has potential to be used as Pickering emulsifiers in higher oil products, such as salad dressing.
Collapse
Affiliation(s)
- Liang Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Ting Xiong
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Xian-Fen Wang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Dong-Ling Chen
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Xu-Dong He
- Yangzhou Center for Food and Drug Control, Building No. 2, Food Sci-Tech Park, Linjianglu 205, Yangzhou, Jiangsu 225004, People's Republic of China
| | - Chen Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Chunsen Wu
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Qian Li
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Xiangli Ding
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China.
| |
Collapse
|
94
|
Effects of different vegetable oils and ultrasonicated quinoa protein nanoparticles on the rheological properties of Pickering emulsion and freeze-thaw stability of emulsion gels. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
95
|
Gao Q, Bie P, Tong X, Zhang B, Fu X, Huang Q. Complexation between High-Amylose Starch and Binary Aroma Compounds of Decanal and Thymol: Cooperativity or Competition? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11665-11675. [PMID: 34469152 DOI: 10.1021/acs.jafc.1c01585] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of combinations of aroma compounds is common in many food and cosmetic applications. To investigate the binding behavior between high-amylose maize starch and binary aroma combinations of decanal and thymol, starch-aroma inclusion complexes (ICs) were prepared by a one-step or two-step method with different concentrations and orders of addition. The thymol molecule induced the starch chain to form a larger helical cavity and was more likely to form hydrogen bonds with solvents. The encapsulation efficiency and loading efficiency of starch-thymol ICs were always higher than those of starch-decanal ICs, independent of the aroma concentration and addition order in binary aroma ICs. However, starch-decanal ICs prepared in the presence of thymol encapsulated more decanal than in the absence of thymol. The V6I-type crystals formed by starch-decanal ICs and the V6III-type crystals formed by starch-thymol ICs were both present in binary aroma ICs, resulting in a less-ordered structure and lower thermal transition temperatures. In summary, the complexation between binary aroma compounds and starch exhibited both cooperative and competitive binding behaviors. The synergistic effects between decanal and thymol provide guidance in enhancing the aroma encapsulation in starch carriers.
Collapse
Affiliation(s)
- Qing Gao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Pingping Bie
- Foshan Haitian (Gaoming) Flavoring & Food Co., Ltd., Foshan 528511, China
| | - Xing Tong
- Foshan Haitian (Gaoming) Flavoring & Food Co., Ltd., Foshan 528511, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
- China-Singapore International Joint Research Institute, Guangzhou 511363, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
- China-Singapore International Joint Research Institute, Guangzhou 511363, China
| |
Collapse
|
96
|
Ribeiro E, Morell P, Nicoletti V, Quiles A, Hernando I. Protein- and polysaccharide-based particles used for Pickering emulsion stabilisation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106839] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
97
|
Cui F, Zhao S, Guan X, McClements DJ, Liu X, Liu F, Ngai T. Polysaccharide-based Pickering emulsions: Formation, stabilization and applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106812] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
98
|
Effects of Dry Heat Treatment on Characteristics of Hydrophobically Modified Rice Starch and its Emulsification in Pickering Emulsion. STARCH-STARKE 2021. [DOI: 10.1002/star.202100131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
99
|
Li X, Fan L, Liu Y, Li J. New insights into food O/W emulsion gels: Strategies of reinforcing mechanical properties and outlook of being applied to food 3D printing. Crit Rev Food Sci Nutr 2021; 63:1564-1586. [PMID: 34407718 DOI: 10.1080/10408398.2021.1965953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
3D printing technology has been widely used in food processing with its advantages of customized food design, personalized nutrition design, and simplified food supply chain. Food emulsion gels have application value and prospects in food 3D printing due to their promising properties, including biodegradability, biocompatibility, as well as dual characteristics of emulsions and biopolymer gels. Food emulsion gels with appropriate mechanical properties, as a new type of food inks, expand the types and functions of the inks. However, food emulsion gels without adequate reinforced mechanical properties may suffer from defects in shape, texture, mouthfeel, and functionality during 3D printing and subsequent applications. Therefore, it is necessary to summarize the strategies to improve the mechanical properties of food emulsion gels. According to the methods of characterizing the mechanical properties of emulsion gels, this article summarizes four strategies for improving the mechanical properties of emulsion gels through two ways: inside-out (reinforcement of interface and reinforcement of cross-linking) and outside-in (physical approaches and environmental regulations), as well as their basic mechanisms. The application status and future research trends of emulsion gels in food 3D printing are finally discussed.
Collapse
Affiliation(s)
- Xueqing Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
100
|
Bai L, Huan S, Rojas OJ, McClements DJ. Recent Innovations in Emulsion Science and Technology for Food Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8944-8963. [PMID: 33982568 DOI: 10.1021/acs.jafc.1c01877] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Emulsion technology has been used for decades in the food industry to create a diverse range of products, including homogenized milk, creams, dips, dressings, sauces, desserts, and toppings. Recently, however, there have been important advances in emulsion science that are leading to new approaches to improving food quality and functionality. This article provides an overview of a number of these advanced emulsion technologies, including Pickering emulsions, high internal phase emulsions (HIPEs), nanoemulsions, and multiple emulsions. Pickering emulsions are stabilized by particle-based emulsifiers, which may be synthetic or natural, rather than conventional molecular emulsifiers. HIPEs are emulsions where the concentration of the disperse phase exceeds the close packing limit (usually >74%), which leads to novel textural properties and high resistance to gravitational separation. Nanoemulsions contain very small droplets (typically d < 200 nm), which leads to useful functional attributes, such as high optical clarity, resistance to gravitational separation and aggregation, rapid digestion, and high bioavailability. Multiple emulsions contain droplets that have smaller immiscible droplets inside them, which can be used for reduced-calorie, encapsulation, and delivery purposes. This new generation of advanced emulsions may lead to food and beverage products with improved quality, health, and sustainability.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Siqi Huan
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Orlando J Rojas
- Bioproducts Institute, Departments of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Post Office Box 16300, FI-00076 Aalto, Espoo, Finland
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|