51
|
Ribeiro E, Morell P, Nicoletti V, Quiles A, Hernando I. Protein- and polysaccharide-based particles used for Pickering emulsion stabilisation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106839] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
52
|
Zhou Q, Wei Z. Food-grade systems for delivery of DHA and EPA: Opportunities, fabrication, characterization and future perspectives. Crit Rev Food Sci Nutr 2021; 63:2348-2365. [PMID: 34590971 DOI: 10.1080/10408398.2021.1974337] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Docosahexaenoic acid (C22: 6n-3, DHA) and eicosapentaenoic acid (C20: 5n-3, EPA) have been shown to provide the opportunity to inhibit onset and escalation of chronic diseases. Nevertheless, their undesirable characteristics including poor water solubility, oxidation sensitivity, high melting point and unpleasant sensory attributes hinder their application in the food industry. In recent years, utilizing food-grade delivery systems to deliver DHA/EPA and improve their biological efficacy has emerged as an attractive approach with fascinating prospects. This review focuses on introducing potential delivery systems for DHA/EPA, including microemulsions, nanoemulsions, Pickering emulsions, hydrogels, lipid particles, oleogels, liposomes, microcapsules and micelles. The opportunities, fabrication and characterization of these delivery systems loaded with DHA/EPA are highlighted. Besides, food sources of DHA/EPA, their benefits to the human body and a series of challenges for effective utilization of DHA/EPA are discussed. Promising future research trends of food-grade systems for delivery of DHA/EPA are also presented. Conducting in vivo experiments, applying DHA/EPA-loaded delivery systems into real food, improving the applicability of such delivery systems in industrial production, co-encapsulating DHA/EPA with other substances, seeking measures to improve the performance of existing delivery systems and developing novel food-grade delivery systems inspired by other fields are various future considerations.
Collapse
Affiliation(s)
- Qi Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
53
|
Bottom–up nanoparticle synthesis: a review of techniques, polyphenol-based core materials, and their properties. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03867-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
54
|
Zhang Q, Shen X, Chang S, Ou W, Zhang W. Effect of oil properties on the formation and stability of Pickering emulsions stabilized by ultrafine pearl powder. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
55
|
Tao L, Zhang T, Wang P, Ding M, Liu L, Tao N, Wang X, Zhong J. Shape control and stability of multicore millimetre‐sized capsules using a combined monoaxial dispersion electrospraying–ionotropic gelation technique. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lina Tao
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
| | - Ting Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
| | - Panpan Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
| | - Mengzhen Ding
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
| | - Lijie Liu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
| | - Ningping Tao
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian 116034 China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian 116034 China
| |
Collapse
|
56
|
Liu C, Fan L, Yang Y, Jiang Q, Xu Y, Xia W. Characterization of surimi particles stabilized novel pickering emulsions: Effect of particles concentration, pH and NaCl levels. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106731] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
57
|
Xu J, Zhang T, Zhang Y, Yang L, Nie Y, Tao N, Wang X, Zhong J. Silver carp scale gelatins for the stabilization of fish oil-loaded emulsions. Int J Biol Macromol 2021; 186:145-154. [PMID: 34246667 DOI: 10.1016/j.ijbiomac.2021.07.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023]
Abstract
Herein, three types of silver carp scale gelatins were extracted, and their molecular weight distribution, structural properties, functional properties and emulsifying properties were investigated and discussed. Acetic acid-extracted gelatin (AAG), hot water-extracted gelatin (HWG), and pepsin enzyme-extracted gelatin (PEG) showed similar and four clear bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern, whereas they showed different β chain amounts and β-sheet percentages. The water-holding capacity values (g/g of gelatin) were: AAG (16.8 ± 1.1) > HWG (14.0 ± 0.7) ≈ PEG (13.5 ± 1.6). The fat-binding capacity values (g/g of gelatin) were: AAG (11.8 ± 0.3) > HWG (9.5 ± 1.3) > PEG (5.3 ± 0.4). Emulsion droplet sizes and creaming index values decreased with the increase of gelatin concentrations for all the fish oil-loaded emulsions stabilized by three types of gelatins. Compared with PEG, AAG and HWG show similar and higher emulsion stability at high gelatin concentration (10 mg/mL). The stabilization mechanism of fish oil-loaded silver carp scale gelatin-stabilized emulsions involved an "extraction method-protein molecular weight distribution-protein molecular structure-molecular interaction-emulsibility-droplet structure-emulsion stability" route. This work would be beneficial for the research on the relationship of structure and function of gelatin and to the comprehensive utilization of aquatic products.
Collapse
Affiliation(s)
- Jiamin Xu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ting Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yangyi Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lili Yang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yinghua Nie
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ningping Tao
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China.
| |
Collapse
|
58
|
Zhang T, Xu J, Chen J, Wang Z, Wang X, Zhong J. Protein nanoparticles for Pickering emulsions: A comprehensive review on their shapes, preparation methods, and modification methods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
59
|
Gonzalez Toledo SY, Wu J. Impact of Adding Polysaccharides on the Stability of Egg Yolk/Fish Oil Emulsions under Accelerated Shelf-Life Conditions. Molecules 2021; 26:molecules26134020. [PMID: 34209325 PMCID: PMC8271835 DOI: 10.3390/molecules26134020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/30/2022] Open
Abstract
Polysaccharides can form interfacial complexes with proteins to form emulsions with enhanced stability. We assessed the effect of adding gum guar or gum arabic to egg yolk/fish oil emulsions. The emulsions were produced using simple or high-pressure homogenization, stored for up to 10 days at 45 °C, and characterized for their particle size and distribution, viscosity, encapsulation efficiency, oxidative stability, and cytotoxicity. Emulsions containing gum guar and/or triglycerides had the highest viscosity. There was no significant difference in the encapsulation efficiency of emulsions regardless of the polysaccharide used. However, emulsions containing gum arabic displayed a bridging flocculation effect, resulting in less stability over time compared to those using gum guar. Emulsions produced using high-pressure homogenization displayed a narrower size distribution and higher stability. The formation of peroxides and propanal was lower in emulsions containing gum guar and was attributed to the surface oil. No significant toxicity toward Caco-2 cells was found from the emulsions over time. On the other hand, after 10 days of storage, nonencapsulated fish oil reduced the cell viability to about 80%. The results showed that gum guar can increase the particle stability of egg yolk/fish oil emulsions and decrease the oxidation rate of omega-3 fatty acids.
Collapse
|
60
|
Tubtimsri S, Limmatvapirat C, Limsirichaikul S, Akkaramongkolporn P, Piriyaprasarth S, Patomchaiviwat V, Limmatvapirat S. Incorporation of fixed oils into spearmint oil-loaded nanoemulsions and their influence on characteristic and cytotoxic properties against human oral cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
61
|
Lee KK, Low DYS, Foo ML, Yu LJ, Choong TSY, Tang SY, Tan KW. Molecular Dynamics Simulation of Nanocellulose-Stabilized Pickering Emulsions. Polymers (Basel) 2021; 13:polym13040668. [PMID: 33672331 PMCID: PMC7926420 DOI: 10.3390/polym13040668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
While the economy is rapidly expanding in most emerging countries, issues coupled with a higher population has created foreseeable tension among food, water, and energy. It is crucial for more sustainable valorization of resources, for instance, nanocellulose, to address the core challenges in environmental sustainability. As the complexity of the system evolved, the timescale of project development has increased exponentially. However, research on the design and operation of integrated nanomaterials, along with energy supply, monitoring, and control infrastructure, has seriously lagged. The development cost of new materials can be significantly reduced by utilizing molecular simulation technology in the design of nanostructured materials. To realize its potential, nanocellulose, an amphiphilic biopolymer with the presence of rich -OH and -CH structural groups, was investigated via molecular dynamics simulation to reveal its full potential as Pickering emulsion stabilizer at the molecular level. This work has successfully quantified the Pickering stabilization mechanism profiles by nanocellulose, and the phenomenon could be visualized in three stages, namely the initial homogenous phase, rapid formation of micelles and coalescence, and lastly the thermodynamic equilibrium of the system. It was also observed that the high bead order was always coupled with a high volume of phase separation activities, through a coarse-grained model within 20,000 time steps. The outcome of this work would be helpful to provide an important perspective for the future design and development of nanocellulose-based emulsion products, which cater for food, cosmeceutical, and pharmaceutical industries.
Collapse
Affiliation(s)
- Ka Kit Lee
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor Darul Ehsan, Malaysia; (K.K.L.); (M.L.F.)
| | - Darren Yi Sern Low
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
| | - Mei Ling Foo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor Darul Ehsan, Malaysia; (K.K.L.); (M.L.F.)
| | - Lih Jiun Yu
- Faculty of Engineering, Technology and Built Environment, Kuala Lumpur Campus (North Wing), UCSI University, Lot 12734, Jalan Choo Lip Kung, Taman Tayton View, Cheras 56000, Kuala Lumpur, Malaysia;
| | - Thomas Shean Yaw Choong
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, Seri Kembangan, Serdang 43400, Selangor, Malaysia;
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
- Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Tropical Medicine and Biology Platform, School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Correspondence: (S.Y.T.); (K.W.T.); Tel.: +603-5514-4435 (S.Y.T.); +603-7610-2068 (K.W.T.)
| | - Khang Wei Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor Darul Ehsan, Malaysia; (K.K.L.); (M.L.F.)
- Correspondence: (S.Y.T.); (K.W.T.); Tel.: +603-5514-4435 (S.Y.T.); +603-7610-2068 (K.W.T.)
| |
Collapse
|
62
|
Feng X, Dai H, Ma L, Fu Y, Yu Y, Zhu H, Wang H, Sun Y, Tan H, Zhang Y. Effect of drying methods on the solubility and amphiphilicity of room temperature soluble gelatin extracted by microwave-rapid freezing-thawing coupling. Food Chem 2021; 351:129226. [PMID: 33639430 DOI: 10.1016/j.foodchem.2021.129226] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/16/2023]
Abstract
The effect of three drying methods (hot air, freeze and spray drying) on the solubility and amphiphilicity of gelatin were investigated and compared. Results showed spray drying gelatin (SDG) and hot air drying gelatin (HDG) showed the lowest and best solubility, respectively. This phenomenon was attributed to the degree of subunits degradation and hydrophobicity. The HDG showed an obvious degradation during the hot air drying and displayed the strongest hydrophilicity, while SDG showed a slight degradation and strongest hydrophobicity. The results of wettability showed that SDG had a better amphiphilicity (92.48°) in comparison with HDG (57.7°) and freeze drying gelatin (VDG, 77.53°), which can effectively reduce the interfacial tension of gelatin, thus significantly improving the stability of foam and emulsion (p < 0.05). These results suggested the drying methods can adjust the amphiphilicity of gelatin, and the SDG displayed a better amphiphilicity, showing good potential applications in foam and emulsion.
Collapse
Affiliation(s)
- Xin Feng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yong Yu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hankun Zhu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yi Sun
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongxia Tan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China.
| |
Collapse
|
63
|
Feng T, Wang X, Wang X, Zhang X, Gu Y, Xia S, Huang Q. High internal phase pickering emulsions stabilized by pea protein isolate-high methoxyl pectin-EGCG complex: Interfacial properties and microstructure. Food Chem 2021; 350:129251. [PMID: 33588282 DOI: 10.1016/j.foodchem.2021.129251] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022]
Abstract
The pea protein isolate-high methoxyl pectin-epigallocatechin gallate (PPI-HMP-EGCG) complex was used to stabilize Pickering emulsions (PEs) and high internal phase PEs (HIPPEs), and the effect of interfacial rheology on the microstructure, bulk rheology and stability of these emulsions was investigated. The PPI-HMP-EGCG complex with PPI to EGCG 30:1 exhibited partial wettability (81.6 ± 0.4°) and optimal viscoelasticity for the formation of stable interfacial layer. The microstructure demonstrated that the PPI-HMP-EGCG complex acted as an interfacial layer and surrounded the oil droplets, and continuous phases were mainly filled with excessive HMP, which enhanced emulsion stability. The formation of a firm gel-like network structure required a dense interfacial layer to provide the PEs (complex concentration of 0.1%) and HIPPEs (oil-phase up to 0.83) with ideal viscoelasticity and stability. The results provide the guidelines for the rational design of EGCG-loaded HIPPEs stabilized by water-soluble protein/polysaccharide complexes.
Collapse
Affiliation(s)
- Tingting Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Xuejiao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Xingwei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Yao Gu
- School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Shuqin Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
64
|
Wen Y, Xu Z, Liu Y, Corke H, Sui Z. Investigation of food microstructure and texture using atomic force microscopy: A review. Compr Rev Food Sci Food Saf 2020; 19:2357-2379. [PMID: 33336971 DOI: 10.1111/1541-4337.12605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
We review recent applications of atomic force microscopy (AFM) to characterize microstructural and textural properties of food materials. Based on interaction between probe and sample, AFM can image in three dimensions with nanoscale resolution especially in the vertical orientation. When the scanning probe is used as an indenter, mechanical features such as stiffness and elasticity can be analyzed. The linkage between structure and texture can thus be elucidated, providing the basis for many further future applications of AFM. Microstructure of simple systems such as polysaccharides, proteins, or lipids separately, as characterized by AFM, is discussed. Interaction of component mixtures gives rise to novel properties in complex food systems due to development of structure. AFM has been used to explore the morphological characteristics of such complexes and to investigate the effect of such characteristics on properties. Based on insights from such investigations, development of food products and manufacturing can be facilitated. Mechanical analysis is often carried out to evaluate the suitability of natural or artificial materials in food formulations. The textural properties of cellular tissues, food colloids, and biodegradable films can all be explored at nanometer scale, leading to the potential to connect texture to this fine structural level. More profound understanding of natural food materials will enable new classes of fabricated food products to be developed.
Collapse
Affiliation(s)
- Yadi Wen
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zekun Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, China.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
65
|
Ding M, Zhang T, Zhang H, Tao N, Wang X, Zhong J. Gelatin-stabilized traditional emulsions: Emulsion forms, droplets, and storage stability. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
66
|
Zhang T, Xu J, Zhang Y, Wang X, Lorenzo JM, Zhong J. Gelatins as emulsifiers for oil-in-water emulsions: Extraction, chemical composition, molecular structure, and molecular modification. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
67
|
Zhang T, Ding M, Tao L, Liu L, Tao N, Wang X, Zhong J. Octenyl succinic anhydride modification of bovine bone and fish skin gelatins and their application for fish oil-loaded emulsions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106041] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
68
|
Guo W, Kanski M, Liu W, Gołuński M, Zhou Y, Wang Y, Cheng C, Du Y, Postawa Z, Wei WD, Zhu Z. Three-Dimensional Mass Spectrometric Imaging of Biological Structures Using a Vacuum-Compatible Microfluidic Device. Anal Chem 2020; 92:13785-13793. [PMID: 32872776 DOI: 10.1021/acs.analchem.0c02204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Three-dimensional (3D) molecular imaging of biological structures is important for a wide range of research. In recent decades, secondary-ion mass spectrometry (SIMS) has been recognized as a powerful technique for both two-dimensional and 3D molecular imaging. Sample fixations (e.g., chemical fixation and cryogenic fixation methods) are necessary to adapt biological samples to the vacuum condition in the SIMS chamber, which has been demonstrated to be nontrivial and less controllable, thus limiting the wider application of SIMS on 3D molecular analysis of biological samples. Our group recently developed in situ liquid SIMS that offers great opportunities for the molecular study of various liquids and liquid interfaces. In this work, we demonstrate that a further development of the vacuum-compatible microfluidic device used in in situ liquid SIMS provides a convenient freeze-fixation of biological samples and leads to more controllable and convenient 3D molecular imaging. The special design of this new vacuum-compatible liquid chamber allows an easy determination of sputter rates of ice, which is critical for calibrating the depth scale of frozen biological samples. Sputter yield of a 20 keV Ar1800+ ion on ice has been determined as 1500 (±8%) water molecules per Ar1800+ ion, consistent with our results from molecular dynamics simulations. Moreover, using the information of ice sputter yield, we successfully conduct 3D molecular imaging of frozen homogenized milk and observe network structures of interesting organic and inorganic species. Taken together, our results will significantly benefit various research fields relying on 3D molecular imaging of biological structures.
Collapse
Affiliation(s)
- Wenxiao Guo
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Michal Kanski
- Smoluchowski Institute of Physics, Jagiellonian University, S. Lojasiewicza 11, Kraków 31-007, Poland
| | - Wen Liu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mikołaj Gołuński
- Smoluchowski Institute of Physics, Jagiellonian University, S. Lojasiewicza 11, Kraków 31-007, Poland
| | - Yadong Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yining Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Cuixia Cheng
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Zbigniew Postawa
- Smoluchowski Institute of Physics, Jagiellonian University, S. Lojasiewicza 11, Kraków 31-007, Poland
| | - Wei David Wei
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Zihua Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
69
|
Micro-nano particle formation and transformation mechanisms of broth in meat braised processing. Food Chem 2020; 342:128383. [PMID: 33097328 DOI: 10.1016/j.foodchem.2020.128383] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/25/2020] [Accepted: 10/10/2020] [Indexed: 11/23/2022]
Abstract
The formation and transformation mechanisms of micro-nano particles (MNPs) in broth during meat braising were systematically investigated through a sophisticated controlled process. Dynamic changes in the morphology, composition and spatial distribution of MNPs were comprehensively characterized, and subsequently the mechanisms were visually uncovered from microcosmic-spatial perspectives. MNPs formed as circular-shape colloidal systems with an aggrandizing tendency for particle number and size and gradually stabilize eventually. Specifically, the major MNPs gradually increased the size from <400 nm to ~1500 nm and accumulated triglycerides and glycoconjugates resulting from lipid oxidation, Maillard reaction, etc. Continuous formation of MNPs in broth progressively facilitated the spatial coalescence and self-assembly of free substances driven by intermolecular interactions, and consequently principal nutrients and flavor compounds further accumulated in the MNPs by the braising process. Hence, this work not only revealed the MNP formation and transformation mechanisms but offered a foundation for investigating MNP-dependent effect on broth flavor.
Collapse
|
70
|
Zhang T, Sun R, Ding M, Tao L, Liu L, Tao N, Wang X, Zhong J. Effect of extraction methods on the structural characteristics, functional properties, and emulsion stabilization ability of Tilapia skin gelatins. Food Chem 2020; 328:127114. [DOI: 10.1016/j.foodchem.2020.127114] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022]
|
71
|
Zhu Q, Li Y, Li S, Wang W. Fabrication and characterization of acid soluble collagen stabilized Pickering emulsions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105875] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
72
|
Wu D, Dai Y, Huang Y, Gao J, Liang H, Eid M, Deng Q, Zhou B. Metal-Phenolic Network Covering on Zein Nanoparticles as a Regulator on the Oil/Water Interface. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8471-8482. [PMID: 32663391 DOI: 10.1021/acs.jafc.0c02632] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Interfacial self-assembly has become a powerful force for regulating the amphipathy of Pickering emulsions on the oil/water interface. Herein, metal-phenolic supramolecular coatings, acting as a regulator on the oil/water interface, were fabricated on the surface of zein nanoparticles (NPs), as a consequence of which the prepared Pickering emulsions stabilized by the decorated zein NPs exhibited diverse properties, decided by different concentrations of zein, tannic acid (TA), and metal ions (Fe3+). Metal-phenolic network-decorated zein NPs named ZTFex NPs (ZTFe NPs represented zein/TA/Fe3+ NPs, and x represented different concentrations of compounds) exhibited increasing diameters of 100-110 nm. Three-phase contact angles also showed that the strong hydrophobicity of zein NPs could be decreased as a result of the formation of metal-phenolic networks. As for corresponding Pickering emulsions, the covering of TA-Fe3+ networks on zein NPs could enhance the stability of zein NP-based emulsion obviously, which might be due to the fact that ZTFex NPs revealed the ability to form strong films on the oil/water interfaces. ZTFe4 was selected as an optimal concentration because of its minimum size and excellent storage stability. Besides, it was also found that the diameter of ZTFe4-based emulsion enhanced with the increase in the oil phase. The rheological measurement results showed that both G' and G″ increased with the increase of x and the oil phase. In general, our paper not only highlighted a straightforward method for the interfacial nanofabrication of solid particles but also provided a novel and potential strategy in Pickering emulsion applications.
Collapse
Affiliation(s)
- Di Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yalei Dai
- Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrophilic Colloid Research Center, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, People's Republic of China
| | - Yunan Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Jin Gao
- Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrophilic Colloid Research Center, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, People's Republic of China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Mohamed Eid
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Department of Biochemistry, Faculty of Agriculture, Benha University, 13736 Moshtohor, Qaliuobia, Egypt
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430062, People's Republic of China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrophilic Colloid Research Center, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, People's Republic of China
| |
Collapse
|
73
|
Ding M, Liu L, Zhang T, Tao N, Wang X, Zhong J. Effect of interfacial layer number on the storage stability and in vitro digestion of fish oil-loaded multilayer emulsions consisting of gelatin particle and polysaccharides. Food Chem 2020; 336:127686. [PMID: 32763735 DOI: 10.1016/j.foodchem.2020.127686] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
The purpose of this study is to investigate the effects of the interfacial layer number on the storage stability and in vitro digestion of fish oil-loaded primary, secondary, tertiary, and quaternary multilayer emulsions stabilized by gelatin particle and polysaccharides (anionic alginate and cationic chitosan), prepared using a layer-by-layer electrostatic deposition technique. The results demonstrate that the emulsion creaming stability during the storage process and the emulsion droplet stability against the gastric phase are dependent on the interfacial layer number. But, the interfacial layer number in the multilayer emulsions has no obvious effects on the droplet stability against droplet coalescence during the storage process and against the small intestinal phases of gastrointestinal tract models. Moreover, it also has no obvious effect on the sustained free fatty acid release of multilayer emulsions. This study can advance the fundamental understanding of multilayer emulsions and promote their potential applications.
Collapse
Affiliation(s)
- Mengzhen Ding
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lijie Liu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ting Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ningping Tao
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
74
|
Rosdi MH, Ahmad Razali MA, Ku Ishak KM, Ariffin A. The Impact of Ethylene Glycol on Droplet Growth Inhibition in Ethylene Vinyl Acetate Emulsions. ACS OMEGA 2020; 5:14473-14480. [PMID: 32596585 PMCID: PMC7315604 DOI: 10.1021/acsomega.0c01114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Pour point depressant (PPD) emulsion has been gaining attention in crude oil transportation owing to its potential to solve solidification issues that arise in cold climate environments. An emulsion system provides a wide range of temperature application that combines good shelf life and tunable thermal properties to tackle this problem. These features can be achieved by incorporating an antifreeze agent into the emulsion. One of the most commonly used antifreeze agents is ethylene glycol (EG). Hence, this study focuses on the thermal properties and droplet size growth of PPD emulsions that were aged in variable concentrations of EG solution. EG50 exhibited the lowest freezing temperature of -44 °C, while EG25 demonstrated the lowest vitrification temperature of -68.7 °C. The particle size of the emulsions underwent a significant reduction from 332.3 to 228.9 nm upon the stepwise EG concentration increment to EG50. However, when the concentration was increased to EG75, a slight increase in the emulsion particle size was observed with a recorded value of 237.8 nm. Thus, it is concluded that EG50 represents the optimum concentration for delivering the best freezing protection and producing a smaller droplet particle size.
Collapse
|
75
|
Shen Y, Yao J, Son J, Zhu Z, Yu XY. Liquid ToF-SIMS revealing the oil, water, and surfactant interface evolution. Phys Chem Chem Phys 2020; 22:11771-11782. [PMID: 32227050 DOI: 10.1039/d0cp00528b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bilge water from ships is regarded as a major pollutant in the marine environment. Bilge water exists in a stable oil-in-water (O/W) emulsion form. However, little is known about the O/W liquid-liquid (l-l) interface. Traditional bulk characterization approaches are not capable of capturing the chemical changes at the O/W l-l interface. Although surfactants are deemed essential in droplet formation, their roles in bilge water stabilization have not been fully revealed. We have utilized novel in situ chemical imaging tools including in situ scanning electron microscopy (SEM) and in situ time-of-flight secondary ion mass spectrometry (ToF-SIMS) to study the evolving O/W interface using a NAVY bilge model for the first time. The droplet size distribution (DSD) does not change significantly without the addition of X-100 surfactants under static or rocking conditions. Both the oil components and the water clusters are shown to evolve over time at the O/W droplet interface by in situ liquid SIMS imaging. Of particular interest to droplet stabilization, the contribution of surfactants to the aged bilge droplets becomes more significant as the droplet size increases. The higher mass surfactant component does not appear on the droplet surface immediately while many lower mass surfactants are solvated inside the droplet. We have provided the first three-dimensional images of the evolving O/W interface and demonstrated that in situ surface chemical mapping is powerful enough to reveal the complex and dynamic l-l interface in the liquid state. Our observational insights suggest that surfactants are important in mediating droplet growth and facilitating effective separation of bilge water emulsion.
Collapse
Affiliation(s)
- Yanjie Shen
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Jenn Yao
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Jiyoung Son
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Zihua Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Xiao-Ying Yu
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
76
|
Commercial cold-water fish skin gelatin and bovine bone gelatin: Structural, functional, and emulsion stability differences. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109207] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
77
|
Zhang W, Qin Y, Chang S, Zhu H, Zhang Q. Influence of oil types on the formation and stability of nano-emulsions by D phase emulsification. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1737538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Wanping Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai, People’s Republic of China
| | - Yubo Qin
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai, People’s Republic of China
| | - Shaonian Chang
- Research and Development Department, Guangdong 3 INS Technology Co., Ltd, Guangdong, People’s Republic of China
| | - Haiyang Zhu
- Research and Development Department, Shanghai Ruxi Bio-Tech Co., Ltd, Shanghai, People’s Republic of China
| | - Qianjie Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai, People’s Republic of China
| |
Collapse
|
78
|
Ramaswamy HS, Arora JK, Vatankhah H, Rattan N. Effect of utilization of alternative hydrocolloid-based stabilizers on rheology of oil-in-water beverage emulsions. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00422-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|