51
|
Lin SY, Hsiao YH, Chen PA. Revealing the profound meaning of pan-firing of oolong tea - A decisive point in odor fate. Food Chem 2021; 375:131649. [PMID: 34848093 DOI: 10.1016/j.foodchem.2021.131649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022]
Abstract
The delicate aroma of Bao-chung tea comes from oxidation, followed by fixation in the pan-firing step. Traditionally, the timing of pan-firing has been based on odor perception by tea masters and lacks relevant scientific research. Pan-firing at three different green-note intensities and three stirring sequences was used to explore the relationship between the compositions of volatile organic compounds (VOCs) before pan-firing and in the finished tea. Pan-firing decreased green leaf volatiles and increased the ratio of terpenoid volatiles. The characteristic VOCs of the finished tea were highly related to VOCs before pan-firing (R2 = 0.97). Principal component analysis revealed that the traditional judgment of the pan-firing step is based on nonanal, β-linalool, and cis- and trans-linalool oxides. The timing of pan-firing is crucial for VOCs, and VOC composition before pan-firing can be used to predict desired tea aroma.
Collapse
Affiliation(s)
- Shu-Yen Lin
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Ya-Hsin Hsiao
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Po-An Chen
- Plant Technology Research Center, Agricultural Technology Research Institute, Hsinchu, Taiwan.
| |
Collapse
|
52
|
Ai Z, Zhang Y, Li X, Sun W, Liu Y. Widely Targeted Metabolomics Analysis to Reveal Transformation Mechanism of Cistanche Deserticola Active Compounds During Steaming and Drying Processes. Front Nutr 2021; 8:742511. [PMID: 34722610 PMCID: PMC8551385 DOI: 10.3389/fnut.2021.742511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Cistanche deserticola is one of the most precious plants, traditionally as Chinese medicine, and has recently been used in pharmaceutical and healthy food industries. Steaming and drying are two important steps in the processing of Cistanche deserticola. Unfortunately, a comprehensive understanding of the chemical composition changes of Cistanche deserticola during thermal processing is limited. In this study, ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)-based widely targeted metabolomics analysis was used to investigate the transformation mechanism of Cistanche deserticola active compounds during steaming and drying processes. A total of 776 metabolites were identified in Cistanche deserticola during thermal processing, among which, 77 metabolites were differentially regulated (p < 0.05) wherein 39 were upregulated (UR) and 38 were downregulated (DR). Forty-seven (17 UR, 30 DR) and 30 (22 UR, 8 DR) differential metabolites were identified during steaming and drying, respectively. The most variation of the chemicals was observed during the process of steaming. Metabolic pathway analysis indicated that phenylpropanoid, flavonoid biosynthesis, and alanine metabolism were observed during steaming, while glycine, serine, and threonine metabolism, thiamine metabolism, and unsaturated fatty acid biosynthesis were observed during drying. The possible mechanisms of the chemical alterations during thermal processing were also provided by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Furthermore, the blackening of the appearance of Cistanche deserticola mainly occurred in the steaming stage rather than the drying stage, which is associated with the metabolism of the amino acids. All results indicated that the formation of active compounds during the processing of Cistanche deserticola mainly occurred in the steaming stage.
Collapse
Affiliation(s)
- Ziping Ai
- College of Engineering, China Agricultural University, Beijing, China
| | - Yue Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - Xingyi Li
- College of Engineering, China Agricultural University, Beijing, China
| | - Wenling Sun
- College of Engineering, China Agricultural University, Beijing, China
| | - Yanhong Liu
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
53
|
Chen Y, Zhou B, Li J, Tang H, Zeng L, Chen Q, Cui Y, Liu J, Tang J. Effects of Long-Term Non-Pruning on Main Quality Constituents in 'Dancong' Tea ( Camellia sinensis) Leaves Based on Proteomics and Metabolomics Analysis. Foods 2021; 10:2649. [PMID: 34828929 PMCID: PMC8625003 DOI: 10.3390/foods10112649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023] Open
Abstract
'Dancong' tea is a famous traditional Oolong tea. In order to keep the original taste of "ancient tea trees", most of the 'Dancong' tea plants are planted in a single plant pattern without pruning. The objective of this study was to explore the effects of long-term non-pruning on main quality constituents in 'Dancong' tea. The results showed that the contents of free amino acids, chlorophylls, and floral-honey aromatic substances in tea leaves of unpruned tea plants were higher than those in every year pruned tea plants, while the catechin content in leaves of pruned tea plants was higher than that in leaves of unpruned tea plants. Quantitative proteomics analysis showed that most enzymes involved in biosynthesis of catechins were downregulated in leaves of unpruned tea plants. Five proteins involved in chlorophyll metabolism and 12 proteins related to photosynthesis were upregulated, and the results suggested that higher chlorophyll content and more efficient photosynthetic energy conversion may be important for the higher accumulation of special quality components in leaves of unpruned tea plants. The findings of this study will advance our understanding of the mechanism of formation of different metabolites in leaves of unpruned and pruned tea plants.
Collapse
Affiliation(s)
- Yiyong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China; (Y.C.); (B.Z.); (J.L.); (H.T.); (Y.C.); (J.L.)
| | - Bo Zhou
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China; (Y.C.); (B.Z.); (J.L.); (H.T.); (Y.C.); (J.L.)
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China; (Y.C.); (B.Z.); (J.L.); (H.T.); (Y.C.); (J.L.)
| | - Hao Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China; (Y.C.); (B.Z.); (J.L.); (H.T.); (Y.C.); (J.L.)
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China;
| | - Qin Chen
- Chaozhou Tea Science Research Center, Chaozhou 512000, China;
| | - Yingying Cui
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China; (Y.C.); (B.Z.); (J.L.); (H.T.); (Y.C.); (J.L.)
| | - Jiayu Liu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China; (Y.C.); (B.Z.); (J.L.); (H.T.); (Y.C.); (J.L.)
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China; (Y.C.); (B.Z.); (J.L.); (H.T.); (Y.C.); (J.L.)
| |
Collapse
|
54
|
Ni T, Xu S, Wei Y, Li T, Jin G, Deng WW, Ning J. Understanding the promotion of withering treatment on quality of postharvest tea leaves using UHPLC-orbitrap-MS metabolomics integrated with TMT-Based proteomics. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
55
|
Yang L, Fan W, Xu Y. GC × GC-TOF/MS and UPLC-Q-TOF/MS based untargeted metabolomics coupled with physicochemical properties to reveal the characteristics of different type daqus for making soy sauce aroma and flavor type baijiu. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111416] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
56
|
Liu X, Liu Y, Li P, Yang J, Wang F, Kim E, Wu Y, He P, Li B, Tu Y. Chemical characterization of Wuyi rock tea with different roasting degrees and their discrimination based on volatile profiles. RSC Adv 2021; 11:12074-12085. [PMID: 35423741 PMCID: PMC8696517 DOI: 10.1039/d0ra09703a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Wuyi rock tea is a typical and famous oolong tea in China and roasting is an important manufacturing procedure for its flavor formation. This work aimed to explore the effect of roasting on non-volatiles and volatiles of 12 Wuyi rock tea samples at three roasting levels (low, moderate and sufficient), made from four tea cultivars (Shuixian, Qizhong, Dahongpao, Rougui). Results show that different roasting had not caused significant difference on contents of soluble solids, total polyphenols, flavonoids, soluble sugar, thearubigins and theabrownins, while it slightly regulated caffeine, proteins and theaflavins, and remarkably reduced catechins and free amino acids. The ratio of polyphenol content/amino acid content, a negative-correlated indicator of fresh and brisk taste, significantly increased with the increase of roasting degree. High-level roasting not only decreased the fresh and brisk taste of the tea infusion, but also reduced the amount of bioactive ingredients including catechins and theanine. A total of 315 volatiles were detected and analyzed with OPLS-DA and HCA methods, in which 99 volatiles were found with variable importance in the projection (VIP) values greater than 1.00. Tea samples at different roasting degrees were successfully separated by this model of roasting-level discrimination. 'Naphthalene, 1,2,3,4-tetrahydro-1,6,8-trimethyl-', '1,1,5-trimethyl-1,2-dihydronaphthalene', 'p-Xylene', 'alpha.-methyl-.alpha.-[4-methyl-3-pentenyl]oxiranemethanol', 'hydrazinecarboxylic acid, phenylmethyl ester', and '3-buten-2-one, 4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-' might be key characteristic markers for the roasting process of Wuyi rock tea.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Tea Science, Zhejiang University Hangzhou 310058 China .,College of Tea Science, Guizhou University Guiyang 550025 China
| | - Yawen Liu
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Pan Li
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Jiangfan Yang
- College of Tea and Food Science, Wuyi University Wuyishan 354300 China
| | - Fang Wang
- College of Tea and Food Science, Wuyi University Wuyishan 354300 China
| | - Eunhye Kim
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Yuanyuan Wu
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Puming He
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Bo Li
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Youying Tu
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| |
Collapse
|
57
|
Shuai L, Liu H, Liao L, Lai T, Lai Z, Du X, Duan Z, Wu Z, Luo T. Widely targeted metabolic analysis revealed the changed pigmentation and bioactive compounds in the ripening Berchemia floribunda (Wall.) Brongn. fruit. Food Sci Nutr 2021; 9:1375-1387. [PMID: 33747452 PMCID: PMC7958575 DOI: 10.1002/fsn3.2093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/20/2020] [Accepted: 12/14/2020] [Indexed: 01/24/2023] Open
Abstract
Berchemia plants were important materials for Chinese traditional medicines due to their special secondary metabolites. Unlike the root, stem and leaf tissues, Berchemia floribunda (Wall.) Brongn. fruit was lacked of systematic metabolic investigation. Biochemical analysis found that the total flavonoid and total phenolic content of Berchemia fruit pulp showed a peak value at red ripe stage, and then decreased, but the total anthocyanin content sharply increased along with the coloration. By widely targeted metabolomic analysis, 644 metabolites were identified and categorized into 23 groups mainly including flavonoid, organic acids, amino acids, lipids, phenylpropanoid, nucleotides, alkaloids, carbohydrates, alcohols, anthocyanins & proanthocyanidins, vitamins, terpenes, polyphenols, phenolamides, quinones, indole derivatives, and sterides. Among them, 111 metabolites and 123 metabolites respectively showed up- and down-regulation from break stage to full mature. KEGG enrichment analysis indicated that active secondary metabolism such as biosynthesis of phenylpropanoids, flavonoid, and alkaloids happened during Berchemia fruit ripening. More importantly, Cyanidin-3-O-galactoside and other 3 cyanidins were found to be the predominant pigments in mature Berchemia fruit and increased cyanidins and pelargonidins but decreased anthocyanins might be contributed to the purple pigmentation of Berchemia fruit. Interestingly, 29 pharmaceutical compounds previously reported in other Berchemia tissues were also detected in ripening Berchemia fruit pulp: 8 flavonoid, 2 quinones & sucrose showed up-regulated accumulation while 6 polyphenols, 5 flavonoid, 3 phenylpropanoid, 2 organic acids, 1 quinones and β-sitosterol showed down-regulated accumulation In conclusion, our first comprehensive metabolic fingerprint will promote the further study of B. floribunda fruit and its medical and food application.
Collapse
Affiliation(s)
- Liang Shuai
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Huan Liu
- Sichuan Minzu CollegeKangdingChina
| | - Lingyan Liao
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Tingting Lai
- South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South ChinaCollege of HorticultureMinistry of EducationGuangzhouChina
| | - Ziying Lai
- South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South ChinaCollege of HorticultureMinistry of EducationGuangzhouChina
| | - Xinxin Du
- South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South ChinaCollege of HorticultureMinistry of EducationGuangzhouChina
| | - Zhenhua Duan
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Zhenxian Wu
- South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South ChinaCollege of HorticultureMinistry of EducationGuangzhouChina
| | - Tao Luo
- South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South ChinaCollege of HorticultureMinistry of EducationGuangzhouChina
| |
Collapse
|
58
|
Yin Q, Han X, Chen J, Han Z, Shen L, Sun W, Chen S. Identification of Specific Glycosyltransferases Involved in Flavonol Glucoside Biosynthesis in Ginseng Using Integrative Metabolite Profiles, DIA Proteomics, and Phylogenetic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1714-1726. [PMID: 33512142 DOI: 10.1021/acs.jafc.0c06989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ginseng contains a variety of flavonol glycosides that possess diverse biological activities; however, scant information of flavonoid glycosylation was reported in ginseng. We found that panasenoside and kaempferol 3-O-glucoside were commonly accumulated along with cultivation years in leaves. In order to explore the procedure of flavonol glycosylation in ginseng, 50 UDP-glycosyltransferases (UGTs) were screened out using differentiated data-independent acquisition (DIA) proteomics and phylogenetic analysis. UGT92A10 and UGT94Q4 were found contributing to the formation of kaempferol 3-O-glucoside. UGT73A18, UGT74T4, and UGT75W1 could catalyze galactosylation of kaempferol 3-O-glucoside. Ser278, Trp335, Gln338, and Val339 were found forming hydrogen bonds with UDP-galactose in UGT75W1 by docking. MeJA induced transcripts of UGT73A18 and UGT74T4 by over fourfold, consistent with the decrease of kaempferol 3-O-glucoside, which indicated that these genes may be related to resisting adversity stress in ginseng. These results highlight the significance of integrative metabolite profiles, proteomics, and phylogenetic analysis for exploring flavonol glycosylation in ginseng.
Collapse
Affiliation(s)
- Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoyan Han
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jingwang Chen
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zongxian Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liang Shen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Beijing Museum of Natural History, Beijing Academy of Science and Technology, Beijing 100050, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
59
|
Zheng Y, Hu Q, Yang Y, Wu Z, Wu L, Wang P, Deng H, Ye N, Sun Y. Architecture and Dynamics of the Wounding-Induced Gene Regulatory Network During the Oolong Tea Manufacturing Process ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2021; 12:788469. [PMID: 35154182 PMCID: PMC8829136 DOI: 10.3389/fpls.2021.788469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/20/2021] [Indexed: 04/14/2023]
Abstract
Understanding extensive transcriptional reprogramming events mediated by wounding during the oolong tea manufacturing process is essential for improving oolong tea quality. To improve our comprehension of the architecture of the wounding-induced gene regulatory network, we systematically analyzed the high-resolution transcriptomic and metabolomic data from wounding-treated (after turnover stage) tea leaves at 11 time points over a 220-min period. The results indicated that wounding activates a burst of transcriptional activity within 10 min and that the temporal expression patterns over time could be partitioned into 18 specific clusters with distinct biological processes. The transcription factor (TF) activity linked to the TF binding motif participated in specific biological processes within different clusters. A chronological model of the wounding-induced gene regulatory network provides insight into the dynamic transcriptional regulation event after wounding treatment (the turnover stage). Time series data of wounding-induced volatiles reveal the scientific significance of resting for a while after wounding treatment during the actual manufacturing process of oolong tea. Integrating information-rich expression data with information on volatiles allowed us to identify many high-confidence TFs participating in aroma formation regulation after wounding treatment by using weighted gene co-expression network analysis (WGCNA). Collectively, our research revealed the complexity of the wounding-induced gene regulatory network and described wounding-mediated dynamic transcriptional reprogramming events, serving as a valuable theoretical basis for the quality formation of oolong tea during the post-harvest manufacturing process.
Collapse
Affiliation(s)
- Yucheng Zheng
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingcai Hu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yun Yang
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zongjie Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangyu Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengjie Wang
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huili Deng
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Naixing Ye
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Naixing Ye,
| | - Yun Sun
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Yun Sun,
| |
Collapse
|
60
|
Zhu C, Zhang S, Zhou C, Chen L, Zaripov T, Zhan D, Weng J, Lin Y, Lai Z, Guo Y. Integrated Transcriptome, microRNA, and Phytochemical Analyses Reveal Roles of Phytohormone Signal Transduction and ABC Transporters in Flavor Formation of Oolong Tea ( Camellia sinensis) during Solar Withering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12749-12767. [PMID: 33112139 DOI: 10.1021/acs.jafc.0c05750] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The unique aroma and flavor of oolong tea develop during the withering stage of postharvest processing. We explored the roles of miRNA-related regulatory networks during tea withering and their effects on oolong tea quality. We conducted transcriptome and miRNA analyses to identify differentially expressed (DE) miRNAs and target genes among fresh leaves, indoor-withered leaves, and solar-withered leaves. We identified 32 DE-miRNAs and 41 target genes involved in phytohormone signal transduction and ABC transporters. Further analyses indicated that these two pathways regulated the accumulation of flavor-related metabolites during tea withering. Flavonoid accumulation was correlated with the miR167d_1-ARF-GH3, miR845-ABCC1-3/ABCC2, miR166d-5p_1-ABCC1-2, and miR319c_3-PIF-ARF modules. Terpenoid content was correlated with the miR171b-3p_2-DELLA-MYC2 and miR166d-5p_1-ABCG2-MYC2 modules. These modules inhibited flavonoid biosynthesis and enhanced terpenoid biosynthesis in solar-withered leaves. Low auxin and gibberellic acid contents and circRNA-related regulatory networks also regulated the accumulation of flavor compounds in solar-withered leaves. Our analyses reveal how solar withering produces high-quality oolong tea.
Collapse
Affiliation(s)
- Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuting Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Timur Zaripov
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Zhan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingjing Weng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
61
|
Wu LY, Lv YQ, Ye Y, Liang YR, Ye JH. Transcriptomic and Translatomic Analyses Reveal Insights into the Developmental Regulation of Secondary Metabolism in the Young Shoots of Tea Plants ( Camellia sinensis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10750-10762. [PMID: 32818378 DOI: 10.1021/acs.jafc.0c03341] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Accumulation of secondary metabolites in the young shoots of tea plants is developmentally modulated, especially flavonoids. Here, we investigate the developmental regulation mechanism of secondary metabolism in the developing leaves of tea plants using an integrated multiomic approach. For the pair of Leaf2/Bud, the correlation coefficient of the fold change of mRNA and RPFs abundances involved in flavonoid biosynthesis was 0.9359, being higher than that of RPFs and protein (R2 = 0.6941). These correlations were higher than the corresponding correlation coefficients for secondary metabolisms and genome-wide scale. Metabolomic analysis demonstrates that the developmental modulations of the structural genes for flavonoid biosynthesis-related pathways align with the concentration changes of catechin and flavonol glycoside groups. Relatively high translational efficiency (TE > 2) was observed in the four flavonoid structural genes (chalcone isomerase, dihydroflavonol 4-reductase, anthocyanidin synthase, and flavonol synthase). In addition, we originally provided the information on identified small open reading frames (small ORFs) and main ORFs in tea leaves and elaborated that the presence of upstream ORFs may have a repressive effect on the translation of downstream ORFs. Our data suggest that transcriptional regulation coordinates with translational regulation and may contribute to the elevation of translational efficiencies for the structural genes involved in the flavonoid biosynthesis pathways during tea leaf development.
Collapse
Affiliation(s)
- Liang-Yu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, China
| | - Yi-Qing Lv
- Tea Research Institute, Zhejiang University, Hangzhou 310013, China
| | - Ying Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310013, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310013, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310013, China
| |
Collapse
|
62
|
Yang L, Fan W, Xu Y. Metaproteomics insights into traditional fermented foods and beverages. Compr Rev Food Sci Food Saf 2020; 19:2506-2529. [PMID: 33336970 DOI: 10.1111/1541-4337.12601] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
Abstract
Traditional fermented foods and beverages (TFFB) are important dietary components. Multi-omics techniques have been applied to all aspects of TFFB research to clarify the composition and nutritional value of TFFB, and to reveal the microbial community, microbial interactions, fermentative kinetics, and metabolic profiles during the fermentation process of TFFB. Because of the advantages of metaproteomics in providing functional information, this technology has increasingly been used in research to assess the functional diversity of microbial communities. Metaproteomics is gradually gaining attention in the field of TFFB research because it can reveal the nature of microorganism function at the protein level. This paper reviews the common methods of metaproteomics applied in TFFB research; systematically summarizes the results of metaproteomics research on TFFB, such as sauces, wines, fermented tea, cheese, and fermented fish; and compares the differences in conclusions reached through metaproteomics versus other omics methods. Metaproteomics has great advantages in revealing the microbial functions in TFFB and the interaction between the materials and microbial community. In the future, metaproteomics should be further applied to the study of functional protein markers and protein interaction in TFFB; multi-omics technology requires further integration to reveal the molecular nature of TFFB fermentation.
Collapse
Affiliation(s)
- Liang Yang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenlai Fan
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
63
|
Huang X, Cao H, Guo Y, Liu J, Sun Y, Liu S, Lin J, Wei S, Wu L. The dynamic change of oolong tea constitutes during enzymatic‐catalysed process of manufacturing. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xujian Huang
- College of Horticulture Fujian Agriculture and Forestry University 15 Shangxiadian Road Fuzhou Fujian350002China
| | - Hongli Cao
- College of Horticulture Fujian Agriculture and Forestry University 15 Shangxiadian Road Fuzhou Fujian350002China
| | - Yaling Guo
- College of Horticulture Fujian Agriculture and Forestry University 15 Shangxiadian Road Fuzhou Fujian350002China
| | - Jianghong Liu
- College of Horticulture Fujian Agriculture and Forestry University 15 Shangxiadian Road Fuzhou Fujian350002China
| | - Yun Sun
- College of Horticulture Fujian Agriculture and Forestry University 15 Shangxiadian Road Fuzhou Fujian350002China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University 130 Changjiang Ave West Hefei Anhui230036China
| | - Jinke Lin
- College of Anxi Tea Fujian Agriculture and Forestry University Cannei Village Quanzhou Fujian362000China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University 130 Changjiang Ave West Hefei Anhui230036China
| | - Liangyu Wu
- College of Horticulture Fujian Agriculture and Forestry University 15 Shangxiadian Road Fuzhou Fujian350002China
| |
Collapse
|