51
|
Zhang K, Wen Q, Li T, Zhang Y, Huang J, Huang Q, Gao L. Effect of covalent conjugation with chlorogenic acid and luteolin on allergenicity and functional properties of wheat gliadin. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
52
|
Cheng C, Yu X, Geng F, Wang L, Yang J, Huang F, Deng Q. Review on the Regulation of Plant Polyphenols on the Stability of Polyunsaturated-Fatty-Acid-Enriched Emulsions: Partitioning Kinetic and Interfacial Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3569-3584. [PMID: 35306817 DOI: 10.1021/acs.jafc.1c05335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The plant polyphenols are normally presented as natural functional antioxidants, which also possess the potential ability to improve the physicochemical stability of polyunsaturated fatty acid (PUFA)-enriched emulsions by interface engineering. This review discussed the potential effects of polyphenols on the stability of PUFA-enriched emulsions from the perspective of the molecular thermodynamic antioxidative analysis, the kinetic of interfacial partitioning, and the covalent and non-covalent interactions with emulsifiers. Recently, research studies have proven that the interfacial structure of emulsions can be concurrently optimized via promoting interfacial partitioning of polyphenols and further increasing interfacial thickness and strength. Moreover, the applied limitations of polyphenols in PUFA-enriched emulsions were summarized, and then some valuable and constructive viewpoints were put forward in this review to provide guidance for the use of polyphenols in constructing PUFA-enriched emulsions.
Collapse
Affiliation(s)
- Chen Cheng
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xiao Yu
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, Sichuan 610106, People's Republic of China
| | - Lei Wang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Jing Yang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Fenghong Huang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Qianchun Deng
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
53
|
Du H, Zhang J, Wang S, Manyande A, Wang J. Effect of high-intensity ultrasonic treatment on the physicochemical, structural, rheological, behavioral, and foaming properties of pumpkin (Cucurbita moschata Duch.)-seed protein isolates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
54
|
Gao H, Liang H, Chen N, Shi B, Zeng W. Potential of phenolic compounds in
Ligustrum robustum
(Rxob.) Blume as antioxidant and lipase inhibitors: Multi‐spectroscopic methods and molecular docking. J Food Sci 2022; 87:651-663. [DOI: 10.1111/1750-3841.16020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 01/27/2023]
Affiliation(s)
- Hao‐Xiang Gao
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu People's Republic of China
| | - Heng‐Yu Liang
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu People's Republic of China
| | - Nan Chen
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education Sichuan University Chengdu People's Republic of China
| | - Bi Shi
- Department of Biomass and Leather Engineering Sichuan University Chengdu People's Republic of China
| | - Wei‐Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu People's Republic of China
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education Sichuan University Chengdu People's Republic of China
| |
Collapse
|
55
|
Simões MHS, Salles BCC, Duarte SMDS, Silva MAD, Viana ALM, Moraes GDOID, Figueiredo SA, Ferreira EB, Rodrigues MR, Paula FBDA. Leaf extract of Coffea arabica L. reduces lipid peroxidation and has anti-platelet effect in a rat dyslipidemia model. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
56
|
Liu J, Chen J, Liu X, Shao W, Mei X, Tang Z, Cao X. Binding mechanism of lipase with Lentinus edodes mycelia polysaccharide by multi-spectroscopic methods. J Mol Recognit 2021; 35:e2946. [PMID: 34918387 DOI: 10.1002/jmr.2946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/16/2021] [Accepted: 12/05/2021] [Indexed: 11/12/2022]
Abstract
It is an effective strategy to avoid obesity by inhibiting the activity of lipase. In this study, the binding mechanism of lipase and Lentinus edodes mycelia polysaccharide (LMP) were explored with multi-spectral methods, for example, three-dimensional (3D) fluorescence, Fourier-transformed infrared (FT-IR), and Raman spectra. At 290 K, the binding constant was 2.44 × 105 L/mol, there was only one binding site between LMP and lipase. Static quenching was the quenching mechanism. The major forces were hydrogen bonding and van der Waals force. The binding of LMP to lipase impacted the microenvironment around tyrosine and tryptophan residues. The polarity around these residues was decreased and hydrophobicity was enhanced. This study not only revealed the binding mechanism of LMP on lipase but also provided scientific evidence for expanding the application of LMP in functional food industries.
Collapse
Affiliation(s)
- Jianli Liu
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| | - Jiahe Chen
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| | - Xiangyang Liu
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| | - Wei Shao
- Biology Subject teaching, College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Xueying Mei
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| | - Zhipeng Tang
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| | - Xiangyu Cao
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| |
Collapse
|
57
|
Peng L, Wang Z, Zhu H, Zeng T, Zhou W, Yao S, Song H. Synthesis, physico-chemical properties of novel tropine-amino acid based ionic liquids and their effects on the lipase activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
58
|
Complex coacervation behavior and the mechanism between rice glutelin and gum arabic at pH 3.0 studied by turbidity, light scattering, fluorescence spectra and molecular docking. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
59
|
Sun F, Tao R, Liu Q, Wang H, Kong B. Effects of temperature and pH on the structure of a metalloprotease from Lactobacillus fermentum R6 isolated from Harbin dry sausages and molecular docking between protease and meat protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5016-5027. [PMID: 33548144 DOI: 10.1002/jsfa.11146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microbial protease can interact with meat protein in fermented meat products at a certain pH and temperature. To investigate the effects of various pH values and temperatures on the structural characteristics of Lactobacillus fermentum R6 protease, which was isolated from Harbin dry sausages, spectroscopy techniques and molecular dynamics were utilized to evaluate structural changes. RESULTS The protease exhibited a stable spatial structure at pH 7 and 40 °C, and the extension of the protease structure was also promoted. Although the structure of the protease could be changed or destroyed by pH 8 and 70 °C, it was mainly determined by the changes of secondary and tertiary structures such as α-helix, β-sheet, β-turn and random coil. In addition, carbonyl vibration, -NH vibration, C-H stretching vibration and disulphide bonds were present in L. fermentum R6 protease under various pH and temperature conditions. Molecular docking showed that the protease can interact with myosin light chain, myosin heavy chain, actin and myoglobin. CONCLUSION The protease can maintain stable structure and interact with meat protein, which reflected certain application prospects in the fermentation of Harbin dry sausages. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Ran Tao
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
60
|
Sun F, Wang H, Liu Q, Kong B, Chen Q. Effects of temperature and pH on the structure of a protease from Lactobacillus brevis R4 isolated from Harbin dry sausage and molecular docking of the protease to the meat proteins. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
61
|
Serina JJC, Castilho PCMF. Using polyphenols as a relevant therapy to diabetes and its complications, a review. Crit Rev Food Sci Nutr 2021; 62:8355-8387. [PMID: 34028316 DOI: 10.1080/10408398.2021.1927977] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is currently a worldwide health concern. Hyperglycemia, hypertension, obesity, and oxidative stress are the major risk factors that inevitably lead to all the complications from diabetes. These complications severely impact the quality of life of patients, and they can be managed, reduced, or even reverted by several polyphenols, plant extracts and foods rich in these compounds. The goal of this review is to approach diabetes not as a single condition but rather an interconnected combination of risk factors and complications. This work shows that polyphenols have multi target action and effects and they have been systematically proven to be relevant in the reduction of each risk factor and improvement of associated complication.
Collapse
|
62
|
Tao Y, Fan Y, Liu G, Zhang Y, Wang M, Wang X, Li L. Interaction study of astilbin, isoastilbin and neoastilbin toward CYP2D6 by multi-spectroscopy and molecular docking. LUMINESCENCE 2021; 36:1412-1421. [PMID: 33949102 DOI: 10.1002/bio.4065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022]
Abstract
Astilbin, isoastilbin and neoastilbin are the three flavonoid isomers prevalent in Rhizoma Smilax glabra. The interactions between human cytochrome P450 2D6 (CYP2D6) and the three isomers were investigated by multiple spectroscopic coupled with molecular docking. As a result, the fluorescence intensity of CYP2D6 was quenched statically by the three isomers. Meanwhile, astilbin had the strongest binding ability to CYP2D6, followed by isoastilbin and neoastilbin under the identical temperature. Synchronous fluorescence, three-dimensional fluorescence, ultraviolet-visible spectroscopy, circular dichroism and Fourier-transform infrared spectra confirmed that the conformation and micro-environment of CYP2D6 protein were changed after binding with the three isomers. As suggested from molecular docking, the three isomers had strong binding affinity to CYP2D6 via the bonding of hydrogen and van der Waals forces, and the results were in agreement with the fluorescence results. The findings here suggested that astilbin, isoastilbin and neoastilbin may cause the herb-drug interactions for their inhibition of CYP2D6 activity.
Collapse
Affiliation(s)
- Yanzhou Tao
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Guiming Liu
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yuhang Zhang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Xiaolin Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
63
|
Sun F, Wang H, Wang H, Xia X, Kong B. Impacts of pH and temperature on the conformation of a protease from Pediococcus pentosaceus R1 isolated from Harbin dry sausage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
64
|
Adiguzel R, Türkan F, Yildiko Ü, Aras A, Evren E, Onkol T. Synthesis and in silico studies of Novel Ru(II) complexes of Schiff base derivatives of 3-[(4-amino-5-thioxo-1,2,4-triazole-3-yl)methyl]-2(3H)-benzoxazolone compounds as potent Glutathione S-transferase and Cholinesterases Inhibitor. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
65
|
Chu S, He F, Yu H, Liu G, Wan J, Jing M, Li Y, Cui Z, Liu R. Evaluation of the binding of UFCB and Pb-UFCB to pepsin: Spectroscopic analysis and enzyme activity assay. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
66
|
Caffeic and Chlorogenic Acids Synergistically Activate Browning Program in Human Adipocytes: Implications of AMPK- and PPAR-Mediated Pathways. Int J Mol Sci 2020; 21:ijms21249740. [PMID: 33371201 PMCID: PMC7766967 DOI: 10.3390/ijms21249740] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Caffeic acid (CA) and chlorogenic acid (CGA) are phenolic compounds claimed to be responsible for the metabolic effects of coffee and tea consumption. Along with their structural similarities, they share common mechanisms such as activation of the AMP-activated protein kinase (AMPK) signaling. The present study aimed to investigate the anti-obesity potential of CA and CGA as co-treatment in human adipocytes. The molecular interactions of CA and CGA with key adipogenic transcription factors were simulated through an in silico molecular docking approach. The expression levels of white and brown adipocyte markers, as well as genes related to lipid metabolism, were analyzed by real-time quantitative PCR and Western blot analyses. Mechanistically, the CA/CGA combination induced lipolysis, upregulated AMPK and browning gene expression and downregulated peroxisome proliferator-activated receptor γ (PPARγ) at both transcriptional and protein levels. The gene expression profiles of the CA/CGA-co-treated adipocytes strongly resembled brown-like signatures. Major pathways identified included the AMPK- and PPAR-related signaling pathways. Collectively, these findings indicated that CA/CGA co-stimulation exerted a browning-inducing potential superior to that of either compound used alone which merits implementation in obesity management. Further, the obtained data provide additional insights on how CA and CGA modify adipocyte function, differentiation and lipid metabolism.
Collapse
|