51
|
Caballero S, Li YO, McClements DJ, Davidov-Pardo G. Encapsulation and delivery of bioactive citrus pomace polyphenols: a review. Crit Rev Food Sci Nutr 2021; 62:8028-8044. [PMID: 33983085 DOI: 10.1080/10408398.2021.1922873] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Citrus pomace consists of the peel, pulp, and membrane tissues remaining after juice expression. Globally, around one million tons of citrus pomace are generated annually, which contains a variety of bioactive constituents that could be used as value-added functional ingredients in foods. However, the polyphenols in citrus pomace are not currently being utilized to their full potential, even though they can be used as nutraceuticals in functional foods and beverages. Citrus phenolics face significant roadblocks to their successful incorporation into these products. In particular, they have poor water solubility, chemical stability, and bioavailability. This review describes the diverse range of colloidal systems that have been developed to encapsulate and deliver citrus phenolics. Examples of the application of these systems for the encapsulation, protection, and delivery of polyphenols from citrus pomace are given. The use of colloidal delivery systems has been shown to improve the stability, dispersibility, and bioaccessibility of encapsulated polyphenols from citrus pomace. The selection of an appropriate delivery system determines the handling, storage, shelf life, encapsulation efficiency, dispersibility, and gastrointestinal fate of the citrus polyphenols. Furthermore, the purity, solubility, and chemical structure of the polyphenols are key factors in delivery system selection.
Collapse
Affiliation(s)
- Sarah Caballero
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, California, USA
| | - Yao Olive Li
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, California, USA
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Gabriel Davidov-Pardo
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, California, USA
| |
Collapse
|
52
|
Custard Apple ( Annona squamosa L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Biological Activities. Biomolecules 2021; 11:biom11050614. [PMID: 33919068 PMCID: PMC8143160 DOI: 10.3390/biom11050614] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/16/2022] Open
Abstract
Annona squamosa L. (custard apple) belongs to the family Annonaceae and is an important tropical fruit cultivated in the West Indies, South and Central America, Ecuador, Peru, Brazil, India, Mexico, the Bahamas, Bermuda, and Egypt. Leaves of custard apple plants have been studied for their health benefits, which are attributed to a considerable diversity of phytochemicals. These compounds include phenol-based compounds, e.g., proanthocyanidins, comprising 18 different phenolic compounds, mainly alkaloids and flavonoids. Extracts from Annona squamosa leaves (ASLs) have been studied for their biological activities, including anticancer, antidiabetic, antioxidant, antimicrobial, antiobesity, lipid-lowering, and hepatoprotective functions. In the current article, we discussed the nutritional and phytochemical diversity of ASLs. Additionally, ASL extracts were discussed with respect to their biological activities, which were established by in vivo and in vitro experiments. A survey of the literature based on the phytochemical profile and health-promoting effects of ASLs showed that they can be used as potential ingredients for the development of pharmaceutical drugs and functional foods. Although there are sufficient findings available from in vitro and in vivo investigations, clinical trials are still needed to determine the exact effects of ASL extracts on human health.
Collapse
|
53
|
Kumar M, Tomar M, Amarowicz R, Saurabh V, Nair MS, Maheshwari C, Sasi M, Prajapati U, Hasan M, Singh S, Changan S, Prajapat RK, Berwal MK, Satankar V. Guava ( Psidium guajava L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities. Foods 2021; 10:752. [PMID: 33916183 PMCID: PMC8066327 DOI: 10.3390/foods10040752] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Psidium guajava (L.) belongs to the Myrtaceae family and it is an important fruit in tropical areas like India, Indonesia, Pakistan, Bangladesh, and South America. The leaves of the guava plant have been studied for their health benefits which are attributed to their plethora of phytochemicals, such as quercetin, avicularin, apigenin, guaijaverin, kaempferol, hyperin, myricetin, gallic acid, catechin, epicatechin, chlorogenic acid, epigallocatechin gallate, and caffeic acid. Extracts from guava leaves (GLs) have been studied for their biological activities, including anticancer, antidiabetic, antioxidant, antidiarrheal, antimicrobial, lipid-lowering, and hepatoprotection activities. In the present review, we comprehensively present the nutritional profile and phytochemical profile of GLs. Further, various bioactivities of the GL extracts are also discussed critically. Considering the phytochemical profile and beneficial effects of GLs, they can potentially be used as an ingredient in the development of functional foods and pharmaceuticals. More detailed clinical trials need to be conducted to establish the efficacy of the GL extracts.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India;
| | - Maharishi Tomar
- ICAR—Indian Grassland and Fodder Research Institute, Jhansi 284003, India;
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland
| | - Vivek Saurabh
- Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.S.); (U.P.)
| | - M. Sneha Nair
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad 121004, Haryana, India;
| | - Chirag Maheshwari
- Department of Agriculture Energy and Power, ICAR—Central Institute of Agricultural Engineering, Bhopal 462038, India;
| | - Minnu Sasi
- Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Uma Prajapati
- Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.S.); (U.P.)
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR—Central Institute of Agricultural Engineering, Bhopal 462038, India;
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India;
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR—Central Potato Research Institute, Shimla 171001, India;
| | - Rakesh Kumar Prajapat
- School of Agriculture, Suresh Gyan Vihar University, Jaipur 302017, Rajasthan, India;
| | - Mukesh K. Berwal
- Division of Crop improvement, ICAR—Central Institute for Arid Horticulture, Bikaner 334006, India;
| | - Varsha Satankar
- Ginning Training Centre, ICAR—Central Institute for Research on Cotton Technology, Nagpur 440023, India;
| |
Collapse
|
54
|
Yazdan-Bakhsh M, Nasr-Esfahani M, Esmaeilzadeh-Kenari R, Fazel-Najafabadi M. Evaluation of antioxidant properties of Heracleum Lasiopetalum extract in multilayer nanoemulsion with biopolymer coating to control oxidative stability of sunflower oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00691-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
55
|
Chanioti S, Katsouli M, Tzia C. Novel Processes for the Extraction of Phenolic Compounds from Olive Pomace and Their Protection by Encapsulation. Molecules 2021; 26:molecules26061781. [PMID: 33810031 PMCID: PMC8005142 DOI: 10.3390/molecules26061781] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Olive pomace, the solid by-product derived from olive oil production consists of a high concentration of bioactive compounds with antioxidant activity, such as phenolic compounds, and their recovery by applying innovative techniques is a great opportunity and challenge for the olive oil industry. This study aimed to point out a new approach for the integrated valorization of olive pomace by extracting the phenolic compounds and protecting them by encapsulation or incorporation in nanoemulsions. Innovative assisted extraction methods were evaluated such as microwave (MAE), homogenization (HAE), ultrasound (UAE), and high hydrostatic pressure (HHPAE) using various solvent systems including ethanol, methanol, and natural deep eutectic solvents (NADESs). The best extraction efficiency of phenolic compounds was achieved by using NADES as extraction solvent and in particular the mixture choline chloride-caffeic acid (CCA) and choline chloride-lactic acid (CLA); by HAE at 60 °C/12,000 rpm and UAE at 60 °C, the total phenolic content (TPC) of extracts was 34.08 mg gallic acid (GA)/g dw and 20.14 mg GA/g dw for CCA, and by MAE at 60 °C and HHPAE at 600 MPa/10 min, the TPC was 29.57 mg GA/g dw and 25.96 mg GA/g dw for CLA. HAE proved to be the best method for the extraction of phenolic compounds from olive pomace. Microencapsulation and nanoemulsion formulations were also reviewed for the protection of the phenolic compounds extracted from olive pomace. Both encapsulation techniques exhibited satisfactory results in terms of encapsulation stability. Thus, they can be proposed as an excellent technique to incorporate phenolic compounds into food products in order to enhance both their antioxidative stability and nutritional value.
Collapse
|
56
|
Kumar M, Dahuja A, Tiwari S, Punia S, Tak Y, Amarowicz R, Bhoite AG, Singh S, Joshi S, Panesar PS, Prakash Saini R, Pihlanto A, Tomar M, Sharifi-Rad J, Kaur C. Recent trends in extraction of plant bioactives using green technologies: A review. Food Chem 2021; 353:129431. [PMID: 33714109 DOI: 10.1016/j.foodchem.2021.129431] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022]
Abstract
Phenolic compounds from plant sources have significant health-promoting properties and are known to be an integral part of folk and herbal medicines. Consumption of phenolics is known to alleviate the risk of various lifestyle diseases including cancer, cardiovascular, diabetes, and Alzheimer's. In this context, numerous plant crops have been explored and characterized based on phenolic compounds for their use as supplements, nutraceutical, and pharmaceuticals. The present review highlights some important source of bioactive phenolic compounds and novel technologies for their efficient extraction. These techniques include the use of microwave, ultrasound, and supercritical methods. Besides, the review will also highlight the use of response surface methodology (RSM) as a statistical tool for optimizing the recoveries of the phenolic bioactives from plant-based matrices.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India; Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Anil Dahuja
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Sudha Tiwari
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India
| | - Sneh Punia
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, India; Department of Food, Nutrition, & Packaging Sciences, Clemson University, Clemson, SC 29634, United States
| | - Yamini Tak
- Department of Biochemistry, Agriculture University, Kota 324001, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Anilkumar G Bhoite
- Department of Agricultural Botany, RCSM College of Agriculture, Kolhapur 416004, Maharashtra, India
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Shourabh Joshi
- Department of Basic Sciences, College of Agriculture, Nagaur, Agricultural University, Jodhpur 341001, Rajasthan, India
| | - Parmjit S Panesar
- Department of Food Engg. & Technology, S.L. Institute of Engg. & Technology, Longowal 148 106, Punjab, India
| | - Ravi Prakash Saini
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 28400, India
| | - Anne Pihlanto
- Natural Resources Institute Finland, Myllytie, Finland
| | - Maharishi Tomar
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 28400, India
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Charanjit Kaur
- Division of Food Science and Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
57
|
Liu Q, Gao Y, Fu X, Chen W, Yang J, Chen Z, Wang Z, Zhuansun X, Feng J, Chen Y. Preparation of peppermint oil nanoemulsions: Investigation of stability, antibacterial mechanism and apoptosis effects. Colloids Surf B Biointerfaces 2021; 201:111626. [PMID: 33631642 DOI: 10.1016/j.colsurfb.2021.111626] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
Peppermint oil (PO) is one of the most popular and widely used essential oils. However, due to volatile and poor water solubility of volatile oil, its application in the fields of medicine and food is limited. In order to solve this problem, the high speed shearing technology was used to prepare the nanoemulsion from PO. By using a series of characterization methods, such as turbiscan scanning spectrum, dynamic light scattering (DLS), confocal laser scanning microscope (CLSM), the best nanoemulsion formula was identified as PO 10 %, surfactant 8 % (Tween-60: EL-20 = 3:1) and deionized water 82 % (w/w). The inhibition strength of nanoemulsion on bacteria was evaluated by detecting the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) treated with peppermint oil nanoemulsion (PON) and observing the morphology of bacteria with biological scanning electron microscope (SEM). The results showed that PON had strong inhibitory effect on E. coli. At the concentration range of 0.02 μg/μL-0.2 μg/μL, the apoptosis rate of BEAS-2B cells was less than 10 % compared with control cells. All in all, the PON prepared under this formula is stable, which provides a reference for further exploration of essential oil as natural antibacterial materials in the future.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses/Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Yuan Gao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses/Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xuan Fu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Wang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zixuan Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Xiangxun Zhuansun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yong Chen
- Functional Examination Department of Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
| |
Collapse
|