51
|
Kong Y, Zhou C, Zhang L, Tian H, Fu C, Li X, Zhang Y. Comparative analysis of taste components of three seasoning bases prepared via stir‐frying, enzymatic hydrolysis, and thermal reaction. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yan Kong
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University Beijing China
| | - Chenchen Zhou
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University Beijing China
| | - Lili Zhang
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University Beijing China
- College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Honglei Tian
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an China
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute Suzhou China
| | - Xuepeng Li
- College of Food Science and Engineering Bohai University Jinzhou China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University Beijing China
| |
Collapse
|
52
|
Yang R, Ma T, Shi L, Wang Q, Zhang L, Zhang F, Wang Z, Zhou Z. The formation of phycocyanin-EGCG complex for improving the color protection stability exposing to light. Food Chem 2021; 370:130985. [PMID: 34537426 DOI: 10.1016/j.foodchem.2021.130985] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022]
Abstract
Phycocyanin (PC) is a natural pigment-protein complex in food dye applications. In this study, a phycocyanin-epigallocatechin gallate (EGCG) complex (PE) was prepared and the effects of EGCG on the structure and color stability of PC were evaluated. The fluorescence results showed that the binding number n was 62.1 ± 3.41 (EGCG/PC) and the binding constant K was 4.39 (±0.2) × 105 M-1, indicating a weak-binding interaction. Fourier transform-infrared analysis showed that EGCG caused structural changes in PC by partially uncoiling α-helix and increasing β-sheet content. The EGCG induced a PC association at a reaction molar ratio above 40:1 (EGCG/PC). Moreover, EGCG protected phycocyanobilin against color fading, making PE more stable relative to PC under 8-days storage in light. This study provides a novel scheme to stabilize PC by forming a complex with polyphenols, which will facilitate the PC application as a natural blue pigment in food.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tianhua Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lina Shi
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qiaoe Wang
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Liqun Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Fenglu Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhiwei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhongkai Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
53
|
Novel extraction methods and potential applications of polyphenols in fruit waste: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00901-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
54
|
Meng DM, Sun SN, Shi LY, Cheng L, Fan ZC. Application of antimicrobial peptide mytichitin-CB in pork preservation during cold storage. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
55
|
Effect of Ginger on Chemical Composition, Physical and Sensory Characteristics of Chicken Soup. Foods 2021; 10:foods10071456. [PMID: 34201805 PMCID: PMC8307344 DOI: 10.3390/foods10071456] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023] Open
Abstract
In order to investigate the effect of ginger on taste components and sensory characteristics in chicken soup, the content of amino acids, organic acids, 5′-nucleotides, and mineral elements were determined in chicken soup sample. With the ginger added, free amino acids in chicken soup obviously increased and exceeded the total amounts in ginger soup and chicken soup. The content of glutamic acid (122.74 μg/mL) was the highest among 17 free amino acids in ginger chicken soup. Meanwhile, six organic acids detected in chicken soup all obviously increased, among which lactic acid (1523.58 μg/mL) and critic acid (4692.41 μg/mL) exceeded 1000 μg/mL. The content of 5′-nucleotides had no obvious difference between ginger chicken soup and chicken soup. Compared with chicken soup, ginger chicken soup had a smaller particle size (136.43 nm) and color difference (79.69), but a higher viscosity. With ginger added in chicken soup, the content of seven mineral elements was reduced, and the content of total sugar increased. Results from an electronic tongue indicated a difference in taste profiles among the soups. The taste components and sensory quality of chicken soup were obviously affected by adding the ginger.
Collapse
|
56
|
Wang X, Song X, Zhu L, Geng X, Zheng F, Zhao Q, Sun X, Zhao D, Feng S, Zhao M, Sun B. Unraveling the acetals as ageing markers of Chinese Highland Qingke Baijiu using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry combined with metabolomics approach. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
The ageing process has a significant impact on the aroma of Chinese Baijiu, which could strengthen the desirable flavor characteristics and reduce the undesirable ones. The aim of this study was to observe the initiation of meaningful changes in volatile fraction and locate the ageing markers during ageing storage of Chinese Highland Qingke Baijiu.
Materials and Methods
Samples of Chinese Qingke Baijiu were aged for 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 months before analysis. The samples were isolated by liquid–liquid extraction and then analyzed by comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. The acquired data were processed by untargeted and targeted metabolomics approach to locate the ageing markers.
Results
The untargeted metabolomics analysis (hierarchical clustering analysis, HCA) shows that the chemical composition of Qingke Baijiu presents a statistically significant deviation from the reference scenario after 5 months. Subsequently, supervised statistics analysis (orthogonal partial least squares discrimination analysis) was performed to locate the markers, which changed significantly during ageing. Fifteen markers were located, and seven of them were acetals. Notably, 1,1-diethoxy-propane, 1,1-diethoxy-butane, and 1,1-diethoxy-3-methyl-butane are important contributors to the flavor of Chinese Baijiu. The identified markers were applied for the untargeted metabolomics (HCA), and the results revealed that these markers could divide the Qingke Baijiu into two ageing stages, 0–5 months and 6–11 months.
Conclusion
The results suggest that it is a valuable tool for monitoring the changes of volatile compounds and locating the age markers in Chinese Baijiu.
Collapse
|
57
|
Zhu W, Luan H, Bu Y, Li X, Li J, Zhang Y. Identification, taste characterization and molecular docking study of novel umami peptides from the Chinese anchovy sauce. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3140-3155. [PMID: 33185275 DOI: 10.1002/jsfa.10943] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/31/2020] [Accepted: 11/13/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Fish sauce has a subtle flavor with prominent umami and salty taste, and is accompanied by a certain sweetness and bitterness. In order to identify a wider range of umami peptides, Chinese southern and northern anchovy sauce were selected for the study. RESULTS Seventeen peptides were obtained by separation and purification, and their taste activity was predicted. Through the taste characterization and descriptive analysis, it was found that the synthesized peptides were umami and umami-enhancing peptides. Seventeen umami peptides were simulated and embedded into the umami receptor T1R1/T1R3 by inserting into the Venus flytrap domain (VFTD) of the T1R3 subunit; the interaction forces were mainly hydrogen bonding, electrostatic interaction, van der Waals force and hydrophobic interaction. According to the docking interaction energies, long-chain peptides may be easier to bind to the receptor than short-chain peptides. Asp196, Glu128 and Glu197 were the main binding sites for docking, and could affect umami synergism. CONCLUSION For the first time, novel umami peptides in Chinese anchovy sauce have been reported. This study is helpful for discovering umami marine resource peptides, and can provide a basis for further understanding the flavor system of anchovy sauce. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhui Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Hongwei Luan
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
58
|
Meng D, Yang X, Sun X, Cheng L, Fan Z. Application of antimicrobial peptide Mytichitin‐A in pork preservation during refrigerated storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- De‐Mei Meng
- State Key Laboratory of Food Nutrition and Safety Institute of Health Biotechnology College of Food Science and Engineering Tianjin University of Science & Technology Tianjin People’s Republic of China
| | - Xiao‐Min Yang
- State Key Laboratory of Food Nutrition and Safety Institute of Health Biotechnology College of Food Science and Engineering Tianjin University of Science & Technology Tianjin People’s Republic of China
| | - Xue‐Qing Sun
- State Key Laboratory of Food Nutrition and Safety Institute of Health Biotechnology College of Food Science and Engineering Tianjin University of Science & Technology Tianjin People’s Republic of China
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business University (BTBU) Beijing People’s Republic of China
| | - Zhen‐Chuan Fan
- State Key Laboratory of Food Nutrition and Safety Institute of Health Biotechnology College of Food Science and Engineering Tianjin University of Science & Technology Tianjin People’s Republic of China
| |
Collapse
|
59
|
Guo Q. Understanding the oral processing of solid foods: Insights from food structure. Compr Rev Food Sci Food Saf 2021; 20:2941-2967. [PMID: 33884754 DOI: 10.1111/1541-4337.12745] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 01/25/2023]
Abstract
Understanding the relationship between the structure of solid foods and their oral processing is paramount for enhancing features such as texture and taste and for improving health-related factors such as management of body weight or dysphagia. This paper discusses the main aspects of the oral processing of solid foods across different categories: (1) oral physiology related to chewing, (2) in-mouth food transformation, (3) texture perception, and (4) taste perception, and emphasis is placed on unveiling the underlying mechanisms of how food structure influences the oral processing of solid foods; this is exemplified by comparing the chewing behaviors for a number of representative solid foods. It highlights that modification of the texture/taste of food based on food structure design opens up the possibility for the development of food products that can be applied in the management of health.
Collapse
Affiliation(s)
- Qing Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China.,Key Laboratory of Fruits and Vegetables Processing of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| |
Collapse
|
60
|
Xu X, Bi S, Lao F, Chen F, Liao X, Wu J. Induced changes in bioactive compounds of broccoli juices after fermented by animal- and plant-derived Pediococcus pentosaceus. Food Chem 2021; 357:129767. [PMID: 33892355 DOI: 10.1016/j.foodchem.2021.129767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 01/30/2021] [Accepted: 04/05/2021] [Indexed: 11/19/2022]
Abstract
To investigate the metabolism of bioactive compounds in broccoli juice fermented by animal- and plant-derived Pediococcus pentosaceus, levels of glucosinolates (GS), sulforaphane, and sulforaphane-nitrile; activity of myrosinase; and profiles of organic acids, vitamins, and amino acids were determined. Three aliphatic GS and four indolyl GS were identified. After fermentation by plant- and animal-derived P. pentosaceus, myrosinase activity, contents of total GS and sulforaphane nitrile, and levels of malic acid, acetic acid, ascorbic acid, and thiamine significantly decreased in pasteurized broccoli juice, whereas levels of sulforaphane, lactic acid, and citric acid significantly increased. Fermentation by plant-derived P. pentosaceus decreased levels of riboflavin and β-carotene and increased total levels of free amino acids, in contrast to the trends observed in broccoli juice after fermentation by animal-derived P. pentosaceus. This study indicates that P. pentosaceus may potentially be used in starter cultures to improve the nutritional and functional properties of fermented foods.
Collapse
Affiliation(s)
- Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, Shandong, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Shuang Bi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Fang Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
61
|
Characterization of the key taste compounds during bread oral processing by instrumental analysis and dynamic sensory evaluation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110641] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
62
|
A Review of the Discriminant Analysis Methods for Food Quality Based on Near-Infrared Spectroscopy and Pattern Recognition. Molecules 2021; 26:molecules26030749. [PMID: 33535494 PMCID: PMC7867108 DOI: 10.3390/molecules26030749] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/23/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) combined with pattern recognition technique has become an important type of non-destructive discriminant method. This review first introduces the basic structure of the qualitative analysis process based on near-infrared spectroscopy. Then, the main pretreatment methods of NIRS data processing are investigated. Principles and recent developments of traditional pattern recognition methods based on NIRS are introduced, including some shallow learning machines and clustering analysis methods. Moreover, the newly developed deep learning methods and their applications of food quality analysis are surveyed, including convolutional neural network (CNN), one-dimensional CNN, and two-dimensional CNN. Finally, several applications of these pattern recognition techniques based on NIRS are compared. The deficiencies of the existing pattern recognition methods and future research directions are also reviewed.
Collapse
|
63
|
Wang J, Ming Y, Li Y, Huang M, Luo S, Li H, Li H, Wu J, Sun X, Luo X. Characterization and comparative study of the key odorants in Caoyuanwang mild-flavor style Baijiu using gas chromatography-olfactometry and sensory approaches. Food Chem 2021; 347:129028. [PMID: 33503572 DOI: 10.1016/j.foodchem.2021.129028] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/19/2020] [Accepted: 01/02/2021] [Indexed: 01/22/2023]
Abstract
Caoyuanwang Baijiu (CYW), a mild-flavor style Baijiu (MSB), is popular in northern China. However, there is a lack of studies reporting its aroma-active components. The aroma compounds of five CYW samples were analyzed using gas chromatography-olfactory-mass spectrometry coupled with aroma extraction dilution analysis. Fifty-five aroma-active compounds were identified in CYW, of which 27 had odor activity values ≥ 1. Reconstituted models successfully simulated the aroma profiles of CYW. The omission tests elucidated that β-damascenone, dimethyl trisulfide, ethyl pentanoate, butanoic acid, ethyl acetate, 3-methylbutanal, ethyl lactate, hexanoic acid, γ-nonalactone, 3-hydroxy-2-butanone, ethyl butanoate, 1-propanol, 4-(ethoxymethyl)-2-methoxy-phenol, and vanillin were key odorants in CYW. The addition test confirmed the significant influence of dimethyl trisulfide on Chen-aroma note. Nine key odorants were identified as the differential quality-markers, and 85.71% key odorants were predicted using the partial least square regression (PLSR) analysis, indicating the applicability of PLSR in selecting the target compounds for omission tests.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuezhang Ming
- Inner Mongolia Taibus Banner Grassland Brewing Co. Ltd., Xilin Gol League 027000, China
| | - Youming Li
- Inner Mongolia Taibus Banner Grassland Brewing Co. Ltd., Xilin Gol League 027000, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Siqi Luo
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Huifeng Li
- Inner Mongolia Taibus Banner Grassland Brewing Co. Ltd., Xilin Gol League 027000, China.
| | - Hehe Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xiaotao Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xuelian Luo
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
64
|
Li Z, Jin R, Yang Z, Wang X, You G, Guo J, Zhang Y, Liu F, Pan S. Comparative study on physicochemical, nutritional and enzymatic properties of two Satsuma mandarin (Citrus unshiu Marc.) varieties from different regions. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
65
|
Zhang L, Sun Y, Pu D, Zhang Y, Sun B, Zhao Z. Kinetics of α‑dicarbonyl compounds formation in glucose-glutamic acid model of Maillard reaction. Food Sci Nutr 2021; 9:290-302. [PMID: 33473293 PMCID: PMC7802556 DOI: 10.1002/fsn3.1995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/25/2020] [Accepted: 10/25/2020] [Indexed: 01/16/2023] Open
Abstract
As a potential health hazard, α-dicarbonyl compounds have been detected in the thermally processed foods. In order to investigate the formation kinetics of α-dicarbonyl compounds, liquid chromatography-electrospray tandem mass spectrometry was employed to determine the content of α-dicarbonyl compounds in glucose-only and glucose-glutamic acid (glucose-Glu) thermal reaction models. The 3-deoxyglucosone content was significantly higher than 6 α-dicarbonyl compounds at 90-110℃, 0-6 hr in the two tested systems. The glutamic acid promoted the content accumulation of 1-deoxyglucosone, diacetyl, methylglyoxal, and glyoxal, whereas inhibited the content of 3-deoxyglucosone and 3,4-dideoxyglucosone. Three-fifths of the tested compounds content increased linearly with time increasing, but in glucose-only system, the 1-deoxyglucosone content increased logarithmically at 95-110℃ over reaction time. The formation of glucose (100-110℃, glucose-only and glucose-Glu), 5-hydroxymethylfurfural (100-110℃, glucose-only), 1-deoxyglucose (105-110℃, glucose-Glu), 3,4-dideoxyglucosone (110℃, glucose-Glu), glyoxal (95-110℃, glucose-Glu) and diacetyl (90-95℃, glucose-Glu) could be well fitted by exponential equation. Shortening the heating time and reducing heating temperature (except glyoxal in glucose-only system) were the effective methods to decrease α-dicarbonyl compounds content in the two tested systems. Additionally, high temperature could also reduce α-dicarbonyl compounds content, such as 3-deoxyglucosone (≥110℃, glucose-only), 1-deoxyglucosone (≥110℃, glucose-only), glucosone (≥110℃, glucose-only; ≥100℃, glucose-Glu), methyloxyl (≥110℃, glucose-only; ≥100℃, glucose-Glu), diacetyl (≥110℃, glucose-only), and glyoxal (≥100℃, glucose-Glu).
Collapse
Affiliation(s)
- Lili Zhang
- College of Food Science and EngineeringTianjin University of Science and TechnologyTianjinChina
- Beijing Key Laboratory of Flavor ChemistryBeijing Technology and Business UniversityBeijingChina
| | - Ying Sun
- Beijing Key Laboratory of Flavor ChemistryBeijing Technology and Business UniversityBeijingChina
| | - Dandan Pu
- Beijing Key Laboratory of Flavor ChemistryBeijing Technology and Business UniversityBeijingChina
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor ChemistryBeijing Technology and Business UniversityBeijingChina
| | - Baoguo Sun
- College of Food Science and EngineeringTianjin University of Science and TechnologyTianjinChina
- Beijing Key Laboratory of Flavor ChemistryBeijing Technology and Business UniversityBeijingChina
| | - Zhiyao Zhao
- School of Artificial IntelligenceBeijing Technology and Business UniversityBeijingChina
| |
Collapse
|
66
|
Huang Y, Duan W, Xiao J, Liu H, Zhou C, Zhang Y, Tang Y, Sun B, Li Z. Characterization of the taste compounds in 20 pungent spices by high-performance liquid chromatography. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00768-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AbstractHigh-performance liquid chromatography was used to determine the important taste compounds in 20 pungent spices commonly used in food, including seventeen free amino acids, four 5′-nucleotides and twelve organic acids. The equivalent umami concentration (EUC) and taste activity value (TAV) of the analyzed samples were calculated. The results showed that the content of total free amino acids ranged from 0.57 to 46.67 g/kg in 20 pungent spices. The content of total free amino acids in horseradish was the highest. The content of total 5′-nucleotides ranged from 0.80 to 4.30 g/kg, and chive contains the highest 5′-nucleotide content. Inosine 5′-monophosphate was detected in all 20 pungent spices. The content of total organic acids ranged from 9.37 to 339.58 g/kg. The total organic acids content of fieldmint was the highest (339.58 g/kg). Oxalic acid was detected in 18 pungent spices, except white pepper and chilli. The EUC of fieldmint (37.1 g MSG/100 g) was the highest in all 20 pungent spices, followed with peppermint (24.5 g MSG/100 g), and horseradish (18.4 g MSG/100 g). The TAVs of malic acid, lactic acid and 5′-AMP were higher than 1 in more than 10 spices. Lactic acid were higher than 1 in 13 spices, implying these compounds contributed greater to the flavor of pungent spices. The results of this work will provide references for the application value of pungent spices.
Collapse
|
67
|
Wan X, Li X, Liu D, Gao X, Chen Y, Chen Z, Fu C, Lin L, Liu B, Zhao C. Physicochemical characterization and antioxidant effects of green microalga Chlorella pyrenoidosa polysaccharide by regulation of microRNAs and gut microbiota in Caenorhabditis elegans. Int J Biol Macromol 2020; 168:152-162. [PMID: 33301848 DOI: 10.1016/j.ijbiomac.2020.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
A novel polysaccharide from Chlorella pyrenoidosa (CPP) was separated and purified with the average molecular weight 15.8 kDa. It was composed of seven monosaccharides including mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, and arabinose. FT-IR and NMR spectra analysis further revealed that CPP was an acidic polysaccharide consisting of β-L-Arap-(1→, →2)-α-L-Rhap-(1→, β-D-GlcpA-(1→, →4)-α-D-GalpA-(1→, →6)-β-D-Glcp-(1→, →3)-β-D-Manp-(1→, and →3, 6)-β-D-Galp-(1→. The CPP treatment could effectively prolong lifespan of Caenorhabditis elegans under the oxidative stress conditions and inhibit the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) as well as enhancing the level of superoxide dismutase (SOD). It could up-regulate the expressions of Daf-16 and Skn-1 genes via declining miR-48-3p, miR-48-5p, and miR-51-5p translocation. Moreover, 16S rRNA sequencing revealed that the CPP-enriched Faecalibacterium, Haemophilus, Vibrio, and Shewanella were strongly correlated with SOD, MDA, apoptosis, and ROS. These results indicated that CPP may be considered as a desired ingredient on regulating the aging and oxidative diseases.
Collapse
Affiliation(s)
- Xuzhi Wan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqing Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dan Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxiang Gao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yihan Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhengxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caili Fu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Luan Lin
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou 362000, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
68
|
Abstract
Bread and cheese have been a popular combination since early times. Indeed, the history of bread dates back to 8000 BC and that of cheese to 7200 BC. However, new types of breads and cheeses are increasingly popular for several reasons, such as allergies, lifestyles, economy and religion. The major challenge is that food manufacturers are offering new products most of which are not welcomed by consumers. Therefore, recently, researchers have placed importance on their relationships with consumers to boost the success of new products. This short review summarizes the backgrounds of recent trends, processes, and principles to manufacture new bread and cheese products, and discusses future perspectives. The development of additive-free, gluten-free rice bread we have recently done from basic research to commercialization of the products is highly focused in this review. Additionally, ongoing studies on plant-based cheeses are introduced from material selection to suggest future outlooks.
Collapse
|
69
|
Zhang L, Duan W, Huang Y, Zhang Y, Sun B, Pu D, Tang Y, Liu C. Sensory taste properties of chicken (Hy-Line brown) soup as prepared with five different parts of the chicken. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1828455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lili Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Wen Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Yan Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Yuyu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Dandan Pu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Yizhuang Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Chao Liu
- Biotech research department, DadHank (Chengdu) Biotech Corp., Chengdu, China
| |
Collapse
|