51
|
Patil PJ, Usman M, Zhang C, Mehmood A, Zhou M, Teng C, Li X. An updated review on food-derived bioactive peptides: Focus on the regulatory requirements, safety, and bioavailability. Compr Rev Food Sci Food Saf 2022; 21:1732-1776. [PMID: 35142435 DOI: 10.1111/1541-4337.12911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Food-derived bioactive peptides (BAPs) are recently utilized as functional food raw materials owing to their potential health benefits. Although there is a huge amount of scientific research about BAPs' identification, purification, characterization, and physiological functions, and subsequently, many BAPs have been marketed, there is a paucity of review on the regulatory requirements, bioavailability, and safety of BAPs. Thus, this review focuses on the toxic peptides that could arise from their primary proteins throughout protein extraction, protein pretreatment, and BAPs' formulation. Also, the influences of BAPs' length and administration dosage on safety are summarized. Lastly, the challenges and possibilities in BAPs' bioavailability and regulatory requirements in different countries were also presented. Results revealed that the human studies of BAPs are essential for approvals as healthy food and to prevent the consumers from misinformation and false promises. The BAPs that escape the gastrointestinal tract epithelium and move to the stomach are considered good peptides and get circulated into the blood using different pathways. In addition, the hydrophobicity, net charge, molecular size, length, amino acids composition/sequences, and structural characteristics of BAPs are critical for bioavailability, and appropriate food-grade carriers can enhance it. The abovementioned features are also vital to optimize the solubility, water holding capacity, emulsifying ability, and foaming property of BAPs in food products. In the case of safety, the possible allergenic and toxic peptides often exhibit physiological functions and could be produced during the hydrolysis of food proteins. It was also noted that the production of iso-peptides bonds and undesirable Maillard reaction might occur during protein extraction, sample pretreatments, and peptide synthesis.
Collapse
Affiliation(s)
- Prasanna J Patil
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Muhammad Usman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Mingchun Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
52
|
Zhao Q, Wei G, Li K, Duan S, Ye R, Huang A. Identification and molecular docking of novel α-glucosidase inhibitory peptides from hydrolysates of Binglangjiang buffalo casein. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
53
|
Devarajan A, Mudgil P, Aldhaheri F, Hamed F, Dhital S, Maqsood S. Camel milk-derived probiotic strains encapsulated in camel casein and gelatin complex microcapsules: Stability against thermal challenge and simulated gastrointestinal digestion conditions. J Dairy Sci 2022; 105:1862-1877. [PMID: 34998543 DOI: 10.3168/jds.2021-20745] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022]
Abstract
Probiotics have received increased attention due to their nutritional and health-promoting benefits. However, their viability is often impeded during food processing as well as during their gastrointestinal transit before reaching the colon. In this study, probiotic strains Lactobacillus rhamnosus MF00960, Pediococcus pentosaceus MF000967, and Lactobacillus paracasei DSM20258 were encapsulated within sodium alginate, camel casein (CC), camel skin gelatin (CSG) and CC:CSG (1:1 wt/wt) wall materials. All 3 strains in encapsulated form showed an enhanced survival rate upon simulated gastrointestinal digestion compared with free cells. Among the encapsulating matrices, probiotics embedded in CC showed higher viability and is attributed to less porous structure of CC that provided more protection to entrapped probiotics cells. Similarly, thermal tolerance at 50°C and 70°C of all 3 probiotic strains were significantly higher upon encapsulation in CC and CC:CSG. Scanning electron microscope micrographs showed probiotic strains embedded in the dense protein matrix of CC and CSG. Fourier-transform infrared spectroscopy showed that CC- and CSG-encapsulated probiotic strains exhibited the amide bands with varying intensity with no significant change in the structural conformation. Probiotic strains encapsulated in CC and CC:CSG showed higher retention of inhibitory properties against α-glucosidase, α-amylase, dipeptidyl peptidase-IV, pancreatic lipase, and cholesteryl esterase compared with free cells upon exposure to simulated gastrointestinal digestion conditions. Therefore, CC alone or in combination with CSG as wall materials provided effective protection to cells, retained their bioactive properties, which was comparable to sodium alginate as wall materials. Thus, CC and CC:CSG can be an efficient wall material for encapsulation of probiotics for food applications.
Collapse
Affiliation(s)
- Aarthi Devarajan
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Fatima Aldhaheri
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Fathala Hamed
- Department of Physics, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Sushil Dhital
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| |
Collapse
|
54
|
Mudgil P, AlMazroui M, Redha AA, Kilari BP, Srikumar S, Maqsood S. Cow and camel milk-derived whey and casein protein hydrolysates demonstrated effective antifungal properties against selected Candida species. J Dairy Sci 2021; 105:1878-1888. [PMID: 34955259 DOI: 10.3168/jds.2021-20944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023]
Abstract
Bioactive peptides derived from milk proteins are widely known to possess antibacterial activities. Even though the antibacterial effects of milk-derived peptides are widely characterized, not much focus is given to their antifungal characterization. Therefore, in this study, we investigated the antifungal properties of camel and cow whey and casein hydrolysates against various species of pathogenic Candida. The hydrolysates were produced using 2 enzymes (alcalase and protease) at differing hydrolysis durations (2, 4, and 6 h) and tested for their antifungal properties. The results showed that intact cow whey and casein proteins did not display any anti-Candida albicans properties, whereas the alcalase-derived 2 h camel casein hydrolysate (CA-C-A2) displayed a higher percentage of inhibition against Candida albicans (93.69 ± 0.26%) followed by the cow casein hydrolysate generated by protease-6 h (Co-C-P6; 81.66 ± 0.99%), which were significantly higher than that of fluconazole, a conventional antifungal agent (76.92 ± 4.72%). Interestingly, when tested again Candida krusei, camel casein alcalase 2 and 4 h (CA-C-A2 and CA-C-A4), and cow whey alcalase-6 h (CO-W-A6) hydrolysates showed higher antifungal potency than fluconazole. However, for Candida parapsilosis only camel casein alcalase-4 h (Ca-C-A4) and cow casein protease-6 h (Co-C-P6) hydrolysates were able to inhibit the growth of C. parapsilosis by 19.31 ± 0.84% and 23.82 ± 4.14%, respectively, which was lower than that shown by fluconazole (29.86 ± 1.11%). Overall, hydrolysis of milk proteins from both cow and camel enhanced their antifungal properties. Camel milk protein hydrolysates were more potent in inhibiting pathogenic Candida species as compared with cow milk protein hydrolysates. This is the first study that highlights the antifungal properties of camel milk protein hydrolysates.
Collapse
Affiliation(s)
- Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - May AlMazroui
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Ali Ali Redha
- Chemistry Department, School of Science, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Bhanu Priya Kilari
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Shabarinath Srikumar
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Zayed Centre of Health Sciences, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| |
Collapse
|
55
|
Ali Redha A, Valizadenia H, Siddiqui SA, Maqsood S. A state-of-art review on camel milk proteins as an emerging source of bioactive peptides with diverse nutraceutical properties. Food Chem 2021; 373:131444. [PMID: 34717085 DOI: 10.1016/j.foodchem.2021.131444] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
The generation of camel milk derived bioactive peptides (CM-BAPs) have started to grab keen interest of many researchers during the past decade. CM-BAPs have shown more significant bioactive properties in comparison to camel milk intact proteins. CM-BAPs can be obtained using enzyme hydrolysis to form hydrolysates, or by the fermentation process. In this systematic review, 46 research articles exploring the health-related bioactive properties of CM-BAPs through in-vitro and in-vivo studies have been included. CM-BAPs have been reported for their antioxidant, anti-diabetic, anti-obesity, antihypertensive, antibacterial, antibiofilm, anticancer, anti-inflammatory, anti-haemolytic, and anti-hyperpigmentation activities. The effects of factors such as molecular weight of peptides, type of enzyme, enzyme to substrate ratio, hydrolysis temperature and duration have been analysed. The in-vitro studies have provided enough evidence on certain aspects of the pharmacological actives of camel milk bioactive peptides. Nevertheless, the in-vivo studies are very limited, and no clinical studies on CM-BAPs have been reported.
Collapse
Affiliation(s)
- Ali Ali Redha
- Chemistry Department, School of Science, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| | - Hamidreza Valizadenia
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Semnan Province, Iran
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; DIL e.V. - German Institute of Food Technologies, D-Quakenbrück, Germany
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; Zayed Centre of Health Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
56
|
Amaranth proteins as potential source of bioactive peptides with enhanced inhibition of enzymatic markers linked with hypertension and diabetes. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
57
|
Mudgil P, Baba WN, Kamal H, FitzGerald RJ, Hassan HM, Ayoub MA, Gan CY, Maqsood S. A comparative investigation into novel cholesterol esterase and pancreatic lipase inhibitory peptides from cow and camel casein hydrolysates generated upon enzymatic hydrolysis and in-vitro digestion. Food Chem 2021; 367:130661. [PMID: 34348197 DOI: 10.1016/j.foodchem.2021.130661] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Cow (CwC) and camel casein (CaC) hydrolysates were generated using Alcalase™ (CwCA and CaCA) and Pronase-E (CwCP and CaCP) each for 3 and 6 h, and investigated for their potential to inhibit key lipid digesting enzymes i.e., pancreatic lipase (PL) and cholesteryl esterase (CE). Results revealed stronger PL and CE inhibition by CaC hydrolysates compared to CwC. Potent hydrolysates (CwCP-3 h and CaCA-6 h) upon simulated gastrointestinal digestion (SGID) showed significant improvement in inhibition of both PL and CE. However, both the SGID hydrolysates showed similar extent of PL and CE inhibition and were further sequenced for peptide identification. Peptides MMML, FDML, HLPGRG from CwC and AAGF, MSNYF, FLWPEYGAL from CaC hydrolysates were predicted to be most active PL inhibitory peptides. Peptide LP found in both CwC and CaC hydrolysates was predicted as active CE inhibitor. Thus, CwC and CaC could be potential source of peptides with promising CE and PL inhibitory properties.
Collapse
Affiliation(s)
- Priti Mudgil
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Waqas N Baba
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Hina Kamal
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | | | - Hassan M Hassan
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Sajid Maqsood
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|