51
|
He S, Liu J, He S, Liu A, Shao W. Double crosslinked polyvinyl alcohol/gelatin/silver sulfadiazine sponges with excellent antibacterial performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
52
|
Wang L, Wei Z, Xue C, Tang Q, Zhang T, Chang Y, Wang Y. Fucoxanthin-loaded nanoparticles composed of gliadin and chondroitin sulfate: Synthesis, characterization and stability. Food Chem 2022; 379:132163. [DOI: 10.1016/j.foodchem.2022.132163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 01/02/2023]
|
53
|
Dong Z, Du Z, Wu X, Zhai K, Wei Z, Rashed MMA. Fabrication and characterization of ZnO nanofilms using extracted pectin of Premna microphylla Turcz leaves and carboxymethyl cellulose. Int J Biol Macromol 2022; 209:525-532. [PMID: 35405155 DOI: 10.1016/j.ijbiomac.2022.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022]
Abstract
The current study sought to fabricate pectin nano-films from Premna microphylla Turcz (PMTP) leaves using a combination of ZnO-carboxymethyl cellulose. The rheological and physical properties of fabricated nano-ZnO films were studied. Spectroscopy FT-IR, microscopic study (SEM), thermogravimetry (TG), and XRD were applied to characterize the fabricated film. The antibacterial activity of the nanofilm was determined using the antibacterial circle method. The findings showed that the addition of PMTP can reduce the nanofilm color, water solubility/hydrophilicity, air permeability, and ultraviolet light permeability of the nanofilm. Treatment CPN0.5 achieved the optimized Tensile strength (TS) of 4.50 Mpa, significant differences compared to CPN2 (3.99 Mpa) and CPN1 (3.65 Mpa). In addition, treatment CPN1 achieved the lowest WVP value (29.35) compared to the highest value (41.62) achieved by CPN0.5 treatment with no significant differences with CPN3 (29.7) and CPN1 (30.98) treatments. Elongation (E%) at break was the best for each CP10 (74.9) and CPN0.5 (73.03). Moreover, ZnO can enhance the nanofilm activity and the nanofilm water swelling ratio. Furthermore, adding ZnO to the nano-formula improved the antibacterial activity of the fabricated film against Staphylococcus aureus. In sum, nanofilms fabricated of PMTP and ZnO possess promising prospects as antibacterial agents in packaging applications.
Collapse
Affiliation(s)
- Zeng Dong
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; Natural Products and Functional Food Engineering Technology Research Center of Suzhou, Suzhou University, Suzhou 234000, China
| | - Ziqing Du
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; Natural Products and Functional Food Engineering Technology Research Center of Suzhou, Suzhou University, Suzhou 234000, China
| | - Xingyue Wu
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; Natural Products and Functional Food Engineering Technology Research Center of Suzhou, Suzhou University, Suzhou 234000, China
| | - Kefeng Zhai
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; Natural Products and Functional Food Engineering Technology Research Center of Suzhou, Suzhou University, Suzhou 234000, China
| | - Zhaojun Wei
- School of Food and Biotechnology Engineering, Hefei University of Technology, Hefei 230009, China
| | - Marwan M A Rashed
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; Natural Products and Functional Food Engineering Technology Research Center of Suzhou, Suzhou University, Suzhou 234000, China.
| |
Collapse
|
54
|
Jin B, Liu X, Liang W, Li Q, Yan J, Han Z. Preparation, physicochemical characteristics and bioactivity evaluation of pitaya peel extract/soy protein nanocomposite film containing zinc oxide nanoparticles by photocatalysis. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bei Jin
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Xunqi Liu
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Wanying Liang
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Qiyong Li
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - JingKun Yan
- School of Chemical Engineering & Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Zhiping Han
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| |
Collapse
|
55
|
Tymczewska A, Furtado BU, Nowaczyk J, Hrynkiewicz K, Szydłowska-Czerniak A. Functional Properties of Gelatin/Polyvinyl Alcohol Films Containing Black Cumin Cake Extract and Zinc Oxide Nanoparticles Produced via Casting Technique. Int J Mol Sci 2022; 23:2734. [PMID: 35269873 PMCID: PMC8911258 DOI: 10.3390/ijms23052734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to develop and characterize gelatin/polyvinyl alcohol (G/PVA) films loaded with black cumin cake extract (BCCE) and zinc oxide nanoparticles (ZnONPs). The BCCE was also applied for the green synthesis of ZnONPs with an average size of less than 100 nm. The active films were produced by a solvent-casting technique, and their physicochemical and antibacterial properties were investigated. Supplementation of G/PVA film in ZnONPs decreased the tensile strength (TS) from 2.97 MPa to 1.69 MPa. The addition of BCCE and ZnONPs increased the elongation at the break (EAB) of the enriched film by about 3%. The G/PVA/BCCE/ZnONPs film revealed the lowest water vapor permeability (WVP = 1.14 × 10-9 g·mm·Pa-1·h-1·mm-2) and the highest opacity (3.41 mm-1). The QUick, Easy, New, CHEap and Reproducible (QUENCHER) methodologies using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6- sulfonic acid) (ABTS) and cupric ion reducing antioxidant capacity (CUPRAC) were applied to measure antioxidant capacity (AC) of the prepared films. The incorporation of BCCE and ZnONPs into G/PVA films enhanced the AC by 8-144%. The films containing ZnONPs and a mixture of BCCE and ZnONPs inhibited the growth of three Gram-positive bacterial strains. These nanocomposite films with desired functional properties can be recommended to inhibit microbial spoilage and oxidative rancidity of packaged food.
Collapse
Affiliation(s)
- Alicja Tymczewska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Bliss Ursula Furtado
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (B.U.F.); (K.H.)
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (B.U.F.); (K.H.)
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
56
|
Hu W, Zou Z, Li H, Zhang Z, Yu J, Tang Q. Fabrication of highly transparent and multifunctional polyvinyl alcohol/starch based nanocomposite films using zinc oxide nanoparticles as compatibilizers. Int J Biol Macromol 2022; 204:284-292. [PMID: 35149089 DOI: 10.1016/j.ijbiomac.2022.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/18/2022] [Accepted: 02/06/2022] [Indexed: 01/01/2023]
Abstract
This work explored biodegradable polyvinyl alcohol/starch (PVA/ST) film compatibilized by rod-like ZnO nanofillers as multifunctional food packaging materials. The influence of rod-like ZnO nanofillers on the microstructural, UV-shielding, antibacterial, mechanical, thermal, together with water barrier performances of PVA/ST composite films was fully studied. Results revealed that rod-like ZnO nanofillers could be uniformly distributed into the PVA/ST matrix, playing the role of compatibilizers to provide compact and dense nanocomposite films. The resulting nanocomposite films presented greatly improved mechanical and water vapor barrier properties as compared to virgin PVA/ST film. Moreover, the well distributed ZnO endowed PVA/ST film with excellent antimicrobial activity against both E. coli and S. aureus, together with outstanding UV-shielding capability meanwhile retaining highly optical transparency (approximately 90%). The developed PVA/ST/ZnO films were tested for packaging fresh-cut carrot slices to prevent microbial infection and prolong their shelf life. These results indicated that the developed highly transparent and multifunctional PVA/ST/ZnO nanocomposite films possess broad application prospects in active food packaging field.
Collapse
Affiliation(s)
- Wenkai Hu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhiming Zou
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Heping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Ziang Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Jingling Yu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Qun Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
57
|
Rangaraj VM, Devaraju S, Rambabu K, Banat F, Mittal V. Silver-sepiolite (Ag-Sep) hybrid reinforced active gelatin/date waste extract (DSWE) blend composite films for food packaging application. Food Chem 2022; 369:130983. [PMID: 34500208 DOI: 10.1016/j.foodchem.2021.130983] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 11/04/2022]
Abstract
In this study, date syrup waste extract (DSWE) (15 wt%) and different content of silver doped sepiolite hybrid (Ag-Sep, 0.25-3 wt%) were incorporated into gelatin matrix to develop a series of active composite packaging films. Incorporating 2 wt% of Ag-Sep increased the modulus of blend film by 98% compared to unmodified gelatin/DSWE blend film. The active gelatin composite film exhibited superior active compounds migration to aqueous food simulants. Besides, Ag-Sep provided a tortuous pathway to the composite film, resulting in high 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition efficiency (91%) and slow-release kinetics of active compounds to the food simulant. The Ag-Sep hybrid was improved the antimicrobial property of the gelatin/DSWE blend film against both gram-negative and gram-positive microbes. Thus, this study demonstrated that the Ag-Sep hybrid exhibits significant properties in the active gelatin composite films, implying that this hybrid could be an effective additive for various active packaging films.
Collapse
Affiliation(s)
- Vengatesan M Rangaraj
- Department of Chemical Engineering, SAN Campus, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Subramani Devaraju
- Division of Chemistry, Department of Sciences & Humanities, Vignan's Foundations for Science, Technology and Research, Andhra Pradesh, India
| | - K Rambabu
- Department of Chemical Engineering, SAN Campus, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, SAN Campus, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Vikas Mittal
- Department of Chemical Engineering, SAN Campus, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
58
|
Xie Y, Pan Y, Cai P. Cellulose-based antimicrobial films incroporated with ZnO nanopillars on surface as biodegradable and antimicrobial packaging. Food Chem 2022; 368:130784. [PMID: 34411864 DOI: 10.1016/j.foodchem.2021.130784] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 01/09/2023]
Abstract
Biodegradable and antimicrobial films without antibiotics are of great significance for the application associated with food packaging meanwhile minimizing the negative impact on environments. In this work, cellulose-based films with the surface tailor-constructed with ZnO nanopillars (ZnO NPs@Zn2+/Cel films) were prepared via chemical crosslinking in conjunction with a hydrothermal process for in-situ growth of ZnO NPs. As a packaging material, ZnO NPs@Zn2+/Cel films possess excellent mechanical properties, oxygen and water vapor barrier, food preservation, biodegradability and low Zn2+ migration. Moreover, ZnO NPs@Zn2+/Cel films show remarkable antimicrobial activity, especially for Staphylococcus aureus (gram-positive bacteria) and Escherichia coli (gram-negative bacteria). The antimicrobial mechanism of ZnO NPs@Zn2+/Cel films is studied using the controlled variable method, and results showed that the film without UV pretreatment killed bacterial cells mainly by mechanical rupture, while the film with UV pretreatment killed bacterial cells mainly via the synergistic effect of photocatalytic oxidation and mechanical rupture.
Collapse
Affiliation(s)
- Yuanjian Xie
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 China
| | - Yuanfeng Pan
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 China.
| | - Pingxiong Cai
- College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011 China
| |
Collapse
|
59
|
Karakuş S, Insel MA, Kahyaoğlu İM, Albayrak İ, Ustun-Alkan F. Characterization, optimization, and evaluation of preservative efficacy of carboxymethyl cellulose/hydromagnesite stromatolite bio-nanocomposite. CELLULOSE (LONDON, ENGLAND) 2022; 29:3871-3887. [PMID: 35342231 PMCID: PMC8938648 DOI: 10.1007/s10570-022-04522-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/02/2022] [Indexed: 05/02/2023]
Abstract
Currently, researchers are focusing on the development of nano-additive preservatives during the worldwide COVID-19 pandemic. This research aimed to constitute a small sized preservative nano-formulation which emerges from the biopolymer carboxymethyl cellulose (a green stabilizing agent) and hydromagnesite stromatolite (a fossilized natural additive). In this study, we investigated the optimization of the experimental design of carboxymethyl cellulose/hydromagnesite stromatolite (CMC/HS) bio-nanocomposites using a green and one-step sonochemical method at room temperature. In addition, we constructed a mathematical model which relates the intrinsic viscosity with all operating variables, and we carried out statistical error analysis to assess the validity of the proposed model. The characterization and chemical functional groups of CMC/HS bio-nanocomposites were determined by different advanced techniques such as SEM, HRTEM, DLS, FTIR, XRD, and BET. The challenge test was used to show the preservative efficacy of CMC/HS bio-nanocomposites against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, and Aspergillus brasiliensis. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltrazolium bromide (MTT) assay was performed on L929 cells to evaluate the in vitro cytotoxicity of CMC/HS bio-nanocomposites. According to the results, we showed that the synthesized CMC/HS bio-nanocomposites have no cytototoxic effects on L929 fibroblast cells and could be considered to be an alternative green nano-additive preservative against pathogenic microorganisms.
Collapse
Affiliation(s)
- Selcan Karakuş
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320 Avcilar, Istanbul, Turkey
| | - Mert Akın Insel
- Department of Chemical Engineering, Yıldız Technical University, 34210 Istanbul, Turkey
| | | | - İnci Albayrak
- Department of Mathematical Engineering, Yıldız Technical University, Istanbul, 34210 Turkey
| | - Fulya Ustun-Alkan
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
| |
Collapse
|
60
|
Peng L, Dai H, Wang H, Zhu H, Ma L, Yu Y, Fu Y, Feng X, Du J, Zhang Y. Effect of different dehydration methods on the properties of gelatin films. Food Chem 2021; 374:131814. [PMID: 34915373 DOI: 10.1016/j.foodchem.2021.131814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/24/2021] [Accepted: 12/05/2021] [Indexed: 12/11/2022]
Abstract
The properties of gelatin film fabricated by ethanol precipitation effect dehydration, Hofmeister effect dehydration and hot air drying dehydration were investigated. The results revealed that the mechanical properties were significantly improved by ethanol precipitation and Hofmeister effect. The tensile strength and elongation at break of the film prepared by ethanol precipitation were increased by 83.28% (20% gelatin concentration) and 122.42% (5% gelatin concentration) respectively compared with that of hot air-dried gelatin film. The water contact angle was increased and water solubility was reduced by ethanol precipitation, which could attribute to the formation of compact structure, more triple helix content, and non-covalent interactions. However, the water contact angle of Hofmeister effect fabricated films was decreased compared with that of hot air drying owing to the adhesion of ammonium sulfate. Moreover, ethanol precipitation effect improved the color difference and opacity due to the ethanol decolorization effect.
Collapse
Affiliation(s)
- Lin Peng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hankun Zhu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Yong Yu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xin Feng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jie Du
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
61
|
Rabbani M, Pezeshki A, Ahmadi R, Mohammadi M, Tabibiazar M, Ahmadzadeh Nobari Azar F, Ghorbani M. Phytosomal nanocarriers for encapsulation and delivery of resveratrol- Preparation, characterization, and application in mayonnaise. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
62
|
Daliri H, Ahmadi R, Pezeshki A, Hamishehkar H, Mohammadi M, Beyrami H, Khakbaz Heshmati M, Ghorbani M. Quinoa bioactive protein hydrolysate produced by pancreatin enzyme- functional and antioxidant properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
63
|
Babapour H, Jalali H, Mohammadi Nafchi A. The synergistic effects of zinc oxide nanoparticles and fennel essential oil on physicochemical, mechanical, and antibacterial properties of potato starch films. Food Sci Nutr 2021; 9:3893-3905. [PMID: 34262746 PMCID: PMC8269571 DOI: 10.1002/fsn3.2371] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to evaluate the effects of a combination of zinc oxide (ZnO-N) nanoparticles and fennel essential oil (FEO) on the functional and antimicrobial properties of potato starch films. Films based on potato starch containing a combination of ZnO-N (1, 3, and 5%(w/w)) and FEO (1, 2, and 3% (w/w)) produced by casting method and water solubility, water absorption capacity (WAC), barrier properties, mechanical properties, color indexes, and antimicrobial activity of the films against Staphylococcus aureus, Escherichia coli, and Aspergillus flavus were studied. The combination of ZnO-N and FEO had a significant decreasing effect on solubility, WAC, water vapor and oxygen permeability, elongation, and L* index. These additives had an increasing impact on tensile strength, Yang's modulus, and a* and b* indexes (p < .05). By increasing the concentration of ZnO-N and FEO, the antimicrobial activities of bionanocomposite films significantly increased (p < .05). Both ZnO-N and FEO had a significant effect in this respect, although the effects of ZnO-N were more significant. In conclusion, an excellent synergistic effect of ZnO-N and FEO was observed in potato starch films.
Collapse
Affiliation(s)
- Hamid Babapour
- Food Biopolymer Research GroupFood Science and Technology DepartmentIslamic Azad UniversityDamghanIran
| | - Hossein Jalali
- Food Biopolymer Research GroupFood Science and Technology DepartmentIslamic Azad UniversityDamghanIran
| | - Abdorreza Mohammadi Nafchi
- Food Biopolymer Research GroupFood Science and Technology DepartmentIslamic Azad UniversityDamghanIran
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| |
Collapse
|