51
|
Chen F, Zhou L, Zhou B, Zhang S, Ma X, Zhou H, Tuo X. Elucidation on the interaction between transferrin and ascorbic acid: A study based on spectroscopic analysis, molecular docking technology, and antioxidant evaluation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
52
|
Avwioroko OJ, Anigboro AA, Otuechere CA, Atanu FO, Dairo OF, Oyetunde TT, Ilesanmi OB, Apiamu A, Ejoh AS, Olorunnisola D, Alfred MO, Omorogie MO, Tonukari NJ. α-Amylase inhibition, anti-glycation property and characterization of the binding interaction of citric acid with α-amylase using multiple spectroscopic, kinetics and molecular docking approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
53
|
Xu Z, Cao Q, Manyande A, Xiong S, Du H. Analysis of the binding selectivity and inhibiting mechanism of chlorogenic acid isomers and their interaction with grass carp endogenous lipase using multi-spectroscopic, inhibition kinetics and modeling methods. Food Chem 2022; 382:132106. [PMID: 35240531 DOI: 10.1016/j.foodchem.2022.132106] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 11/19/2022]
Abstract
Polyphenols are inhibitors for lipase, but the binding selectivity and mechanism of polyphenol isomers and how they interact with lipase are not clear. Here, chlorogenic acid (CGA) isomers, neochlorogenic acid (NCGA) and cryptochlorogenic acid (CCGA) were used to explore the binding selectivity and mechanism of lipase. An inhibition assay indicated that both CGA isomers had dose-dependent inhibitory effects on lipase; however, the inhibitory effect of NCGA was better (IC50: 0.647 mg/mL) than that of CCGA (IC50: 0.677 mg/mL). NCGA and CCGA formed complexes with lipase at a molar ratio of 1:1, and the electrostatic interaction force plays a major role in the lipase-CCGA system. Molecular dynamics studies demonstrated that NCGA had a greater impact on the structure of lipase. The multi-spectroscopic and modeling results explained the effects of micro-structural changes on the binding site, the interaction force and the inhibition rate of the isomers when they combined with lipase.
Collapse
Affiliation(s)
- Zeru Xu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Qiongju Cao
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW8 9GA, UK
| | - Shanbai Xiong
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Hongying Du
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
54
|
Shi M, Lu Y, Wu J, Zheng Z, Lv C, Ye J, Qin S, Zeng C. Beneficial Effects of Theaflavins on Metabolic Syndrome: From Molecular Evidence to Gut Microbiome. Int J Mol Sci 2022; 23:7595. [PMID: 35886943 PMCID: PMC9317877 DOI: 10.3390/ijms23147595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many natural foods and herbs rich in phytochemicals have been proposed as health supplements for patients with metabolic syndrome (MetS). Theaflavins (TFs) are a polyphenol hydroxyl substance with the structure of diphenol ketone, and they have the potential to prevent and treat a wide range of MetS. However, the stability and bioavailability of TFs are poor. TFs have the marvelous ability to alleviate MetS through antiobesity and lipid-lowering (AMPK-FoxO3A-MnSOD, PPAR, AMPK, PI3K/Akt), hypoglycemic (IRS-1/Akt/GLUT4, Ca2+/CaMKK2-AMPK, SGLT1), and uric-acid-lowering (XO, GLUT9, OAT) effects, and the modulation of the gut microbiota (increasing beneficial gut microbiota such as Akkermansia and Prevotella). This paper summarizes and updates the bioavailability of TFs, and the available signaling pathways and molecular evidence on the functionalities of TFs against metabolic abnormalities in vitro and in vivo, representing a promising opportunity to prevent MetS in the future with the utilization of TFs.
Collapse
Affiliation(s)
- Meng Shi
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Yuting Lu
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Junling Wu
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Zhibing Zheng
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Chenghao Lv
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Jianhui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China;
| | - Si Qin
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Chaoxi Zeng
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| |
Collapse
|
55
|
Qin C, Lian L, Xu W, Jiang Z, Wen M, Han Z, Zhang L. Comparison of the chemical composition and antioxidant, anti-inflammatory, α-amylase and α-glycosidase inhibitory activities of the supernatant and cream from black tea infusion. Food Funct 2022; 13:6139-6151. [PMID: 35579412 DOI: 10.1039/d2fo00707j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tea cream is a kind of turbid substance commonly existing in tea infusion and tea beverage upon cooling. Herein, a comparative study was conducted on the supernatant and cream from black tea infusion in terms of antioxidant, anti-inflammatory and enzyme inhibitory activities, and chemical composition. Ultraviolet-visible (UV-vis) spectrometry and high-performance liquid chromatography (HPLC) analysis showed that the contents of protein, polyphenols, theaflavins, thearubigins, theabrownins, and caffeine in cream were significantly higher than those in the supernatant. The contents of Al, Ca, Cu, and Fe elements in cream were higher than those in the supernatant. However, higher levels of monosaccharides and free amino acids were detected in the supernatant compared with cream. The ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) based metabolomics analysis revealed that the main marker compounds between the supernatant and the cream were organic acids, phenolic acids, and flavan-3-ols and their oxidation products, flavonol glycosides and amino acids. The cream showed better antioxidant and anti-inflammatory, as well as α-amylase and α-glycosidase inhibitory activities than the supernatant, because it contained higher contents of polyphenols than the supernatant. The present study expanded the new vision towards the cream of black tea infusion.
Collapse
Affiliation(s)
- Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Li Lian
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Wen Xu
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Zisheng Han
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
56
|
Wang L, Zhang W, Shao Y, Zhang D, Guo G, Wang X. Analytical methods for obtaining binding parameters of drug–protein interactions: A review. Anal Chim Acta 2022; 1219:340012. [DOI: 10.1016/j.aca.2022.340012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
|
57
|
Hamedi F, Razavi SMA, Sharif A. Structural, morphological and rheological characterisation of bovine serum albumin–cress seed gum complex coacervate. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Fatemeh Hamedi
- Center of Excellence in Native Natural Hydrocolloids of Iran Ferdowsi University of Mashhad 91775‐1163 Mashhad Iran
| | - Seyed Mohammad Ali Razavi
- Center of Excellence in Native Natural Hydrocolloids of Iran Ferdowsi University of Mashhad 91775‐1163 Mashhad Iran
| | - Ali Sharif
- Department of Food Science and Technology Ferdowsi University of Mashhad 91775‐1163 Mashhad Iran
| |
Collapse
|
58
|
Zhou W, Peng C, Wang D, Li J, Tu Z, Zhang L. Interaction Mechanism between OVA and Flavonoids with Different Hydroxyl Groups on B-Ring and Effect on Antioxidant Activity. Foods 2022; 11:foods11091302. [PMID: 35564025 PMCID: PMC9099482 DOI: 10.3390/foods11091302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Ovalbumin (OVA) is a common carrier with high efficiency to deliver flavonoids. The aim of this study was to investigate the interaction mechanism of OVA and four flavonoids (quercetin (Que), myricetin (Myri), isorhamnetin (Ish), and kaempferol (Kaem)) with similar structures by fluorescence spectra, SDS−PAGE, FT−IR, and molecular docking analysis, and the effect on the antioxidant abilities of flavonoids was also evaluated. Results indicated that the antioxidant activity of flavonoids was positively correlated to the number of phenolic hydroxyl groups of on the B-ring, and weakened when the C-3′ position was replaced by a methoxy group. The addition of OVA enhanced the antioxidant activity of Que/Kaem, while it masked the antioxidant activity of Myri. The formation of Que/Myri/Ish/Kaem−OVA complexes was a spontaneous exothermic process driven mainly by hydrogen bond and van der Waals force, which could result in the change in OVA conformation and induce the transformation of α-helix to β-sheet. Among these, Kaem exhibited the strongest binding ability with OVA, and showed the greatest impact on the secondary and conformational structure of OVA, followed by Que. The hydroxylation of C-3′ and methoxylation of C-5′ weaken the interaction of Kaem with OVA. Molecular docking analysis suggested that Que, Myri, Ish, and Kaem formed six, three, five, and four hydrogen bonds with OVA, and the number of hydrogen bonds was not positively correlated with their binding constants. Our findings can provide a theoretical basis for the application of OVA on improving the antioxidant activity of flavonoids, and may help to explain the delivery efficiency of OVA on different bioactive constituents.
Collapse
Affiliation(s)
| | | | | | | | | | - Lu Zhang
- Correspondence: ; Tel.: +86-791-8812-0965
| |
Collapse
|
59
|
Wang T, Chen W, Shao Y, Liu J, Tu Z. Ultrasound Improved the Non-Covalent Interaction of β-Lactoglobulin with Luteolin: Regulating Human Intestinal Microbiota and Conformational Epitopes Reduced Allergy Risks. Foods 2022; 11:foods11070988. [PMID: 35407075 PMCID: PMC8997858 DOI: 10.3390/foods11070988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/27/2022] Open
Abstract
The present study aims to investigate the effects of ultrasound on the non-covalent interaction of β-lactoglobulin (β-LG) and luteolin (LUT) and to investigate the relationship between allergenicity and human intestinal microbiota. After treatment, the conformational structures of β-LG were changed, which reflected by the decrease in α-helix content, intrinsic fluorescence intensity and surface hydrophobicity, whereas the β-sheet content increased. Molecular docking studies revealed the non-covalent interaction of β-LG and LUT by hydrogen bond, van der Walls bond and hydrophobic bond. β-LG-LUT complex treated by ultrasound has a lower IgG/IgE binding ability and inhibits the allergic reaction of KU812 cells, depending on the changes in the conformational epitopes of β-LG. Meanwhile, the β-LG-LUT complex affected the composition of human intestinal microbiota, such as the relative abundance of Bifidobacterium and Prevotella. Therefore, ultrasound improved the non-covalent interaction of β-LG with LUT, and the reduction in allergenicity of β-LG depends on conformational epitopes and human intestinal microbiota changes.
Collapse
Affiliation(s)
- Titi Wang
- College of Life Science, National R & D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (T.W.); (W.C.); (Y.S.); (J.L.)
| | - Wenmei Chen
- College of Life Science, National R & D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (T.W.); (W.C.); (Y.S.); (J.L.)
| | - Yanhong Shao
- College of Life Science, National R & D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (T.W.); (W.C.); (Y.S.); (J.L.)
| | - Jun Liu
- College of Life Science, National R & D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (T.W.); (W.C.); (Y.S.); (J.L.)
| | - Zongcai Tu
- College of Life Science, National R & D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (T.W.); (W.C.); (Y.S.); (J.L.)
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Correspondence: ; Tel.: +86-791-8812-1868; Fax: +86-791-8830-5938
| |
Collapse
|
60
|
Preparation and evaluation of a double-hydrophilic interaction stationary phase based on bovine serum albumin and graphene quantum dots modified silica. J Chromatogr A 2022; 1669:462933. [DOI: 10.1016/j.chroma.2022.462933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 01/05/2023]
|
61
|
Molecular docking simulation combining with multi-spectroscopy techniques clarify how small molecule ligands bind to biomacromolecule: Myosin and aldehydes as a case study. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
62
|
Bovine serum albumin cold-set emulsion gel mediated by transglutaminase / glucono-δ-lactone coupling precursors: Fabrication, characteristics and embedding efficiency of hydrophobic bioactive components. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
63
|
Hu Y, Guo C, Lin Q, Hu J, Li X, Sang S, McClements DJ, Long J, Jin ZY, Wang J, Qiu C. Complexation of curcumin with cyclodextrins adjusts its binding to plasma proteins. Food Funct 2022; 13:8920-8929. [DOI: 10.1039/d2fo01531e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin shows poor bioaccessibility due to its poor water solubility that limiting its application in aqueous formulations, and the weak binding to plasma proteins that hindering its transportation to targeted...
Collapse
|