51
|
Varga C. FT-IR measurement as a simple tool for following formation of acidic functional groups in maleic anhydride containing polymers. MethodsX 2023; 11:102453. [PMID: 37920869 PMCID: PMC10618756 DOI: 10.1016/j.mex.2023.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
Titration is a measurement for maleic-anhydride containing polymers with significant chemicals consumption, time and human resource requirement meanwhile all the carbonyl groups have to be supposed to be in the cyclic form but it is not always the situation. Core of the FT-IR method has been determination of carbonyl groups in various chemical environments. The FT-IR method is developed to obtain more precise and prompt results about anhydride rings in the copolymer chain than with titration in the whole coupling number range with minimal chemicals consumption. Quantitatively apprising FT-IR results peaks of carbonyl groups have been considered since those yield well-isolated and high intensity peaks in the spectrum. Two distinct methods have been adopted for integration of areas under the selected stretching vibrations. Not all the anhydrides have been supposed to be in ring form in the copolymers but partially in acidic form that can be only taken into account by double counting during titration instead of the correctly single counting. FT-IR spectrum has been feasible for tracing that progress but titration isn't. Moreover, if difference between acid number from titration and FT-IR methods based on the chemical structure is high compatibilizing additive synthesis requires excess of reagents.•A method enabling the identification of carbonyl groups in maleic-anhydride containing polymers in various chemical environment without chemical consumption.•The method is based on the calculation of functional group ratios applying the integrated area of selected absorption peaks.
Collapse
Affiliation(s)
- Csilla Varga
- Sustainability Solutions Research Lab, University of Pannonia, 10. Egyetem str., Veszprém 8200, Hungary
| |
Collapse
|
52
|
Singh P, Pandey VK, Chakraborty S, Dash KK, Singh R, Mukarram shaikh A, Béla K. Ultrasound-assisted extraction of phytochemicals from green coconut shell: Optimization by integrated artificial neural network and particle swarm technique. Heliyon 2023; 9:e22438. [PMID: 38089994 PMCID: PMC10711024 DOI: 10.1016/j.heliyon.2023.e22438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 06/26/2024] Open
Abstract
This study employs artificial neural network (ANN) and particle swarm optimization (PSO) to maximize antioxidant and antimicrobial activity from green coconut shells. Phytochemical analysis was carried out on the extract obtained from ultrasound-assisted extraction performed at different combinations of time (10, 20, and 30 min), temperature (30, 35, and 40 °C ), and the ratio of solid-solvent (1:10, 1:20, and 1:30 g/ml). The presence of these bioactive compounds exhibits antimicrobial and antioxidant activities. Quantitative analysis showed that the total phenolic compounds ranged from 7.08 to 33.46 mg GAE/g, flavonoids ranged from 2.09 to 28.46 mg QE/g, tannins ranged from 70.5 to 141.09 mg TAE/g, and antioxidant activity of 49.98-66.1 %. The FTIR analysis detected the presence of C[bond, double bond]O, O-H, and C-H bonds. The optimized condition of ultrasound-assisted extraction (UAE) was compared with the optimized condition of the microwave. The result of ultrasound-assisted extraction was observed to be better than microwave-assisted extraction.
Collapse
Affiliation(s)
- Poornima Singh
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
- Division of Research & Innovation (DRI), School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Sourav Chakraborty
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET), Malda, West Bengal, 732141, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET), Malda, West Bengal, 732141, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Ayaz Mukarram shaikh
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| | - Kovács Béla
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| |
Collapse
|
53
|
Lan L, Yang T, Fan J, Sun G, Zhang H. Anti-inflammation activity of Zhizi Jinhua Pills and overall quality consistency evaluation based on integrated HPLC, DSC and electrochemistry fingerprints. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116442. [PMID: 37004746 DOI: 10.1016/j.jep.2023.116442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhizi Jinhua Pills (ZZJHP), a compound preparation composed of 8 traditional Chinese medicines (TCM), is widely used clinically to clearing heat, purging fire, cooling blood and detoxifying. However, the studies on its pharmacological activity and the determination of active compounds are relatively few. There is a lack of quality control methods that can reflect the effectiveness of the drug. AIM OF THE STUDY The objective was to construct fingerprint profiles, conduct a spectrum-effect relationship study and establish an overall quality control method for ZZJHP through anti-inflammatory and redox activity studies. MATERIALS AND METHODS Firstly, anti-inflammatory activity was tested using the xylene-induced ear edema model in mice. Then, Five-wavelength fusion HPLC fingerprint, electrochemical fingerprint, and Differential scanning calorimetry (DSC) profiling were established to evaluate ZZJHP more comprehensively, where Euclidean quantified fingerprint method (EQFM) was proposed for the similarity assessment of these three fingerprints. Moreover, the spectrum-activity relationship of HPLC-FP and DSC-FP with electrochemical activity helped explore the active components or ranges in the fingerprint. Finally, integrated analysis of HPLC, DSC and electrochemistry were used for the quality screen of samples from different manufacturers. RESULTS ZZJHP was found to significantly decrease the levels of both TNF-α and IL-6 in the mice. Qualitatively, the integrated similarity Sm of 21 samples were all greater than 0.9, indicating the great consistency in chemical composition. Quantitatively, 9 batches of samples were classified as Grade1∼4; 6 batches of samples were classified as Grade5∼7 due to higher PINT; 6 batches of samples were classified as Grade4∼5 due to lower PINT. EQFM can qualitatively and quantitatively characterize the fingerprint profile information from an overall perspective. CONCLUSIONS This strategy will contribute to the quantitative characterization of TCM and promote the application of fingerprint technology in the phytopharmacy field.
Collapse
Affiliation(s)
- Lili Lan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Ting Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Jiajia Fan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Hong Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
54
|
Sulejmanović J, Skopak E, Šehović E, Karadža A, Zahirović A, Smječanin N, Mahmutović O, Ansar S, Sher F. Surface engineered functional biomaterials for hazardous pollutants removal from aqueous environment. CHEMOSPHERE 2023:139205. [PMID: 37315864 DOI: 10.1016/j.chemosphere.2023.139205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
The issue of water contamination by heavy metal ions as highly persistent pollutants with harmful influence primarily on biological systems, even in trace levels, has become a great environmental concern globally. Therefore, there is a need for the use of highly sensitive techniques or preconcentration methods for the removal of heavy metal ions at trace levels. Thus, this research investigates a novel approach by examining the possibility of using pomegranate (Punica granatum) peel layered material for the simultaneous preconcentration of seven heavy metal ions; Cd(II), Co(II), Cr(III), Cu(II), Mn(II), Ni(II) and Pb(II) from aqueous solution and three river water samples. The quantification of the heavy metals was performed by the means of FAAS technique. The characterization of biomaterial was performed by SEM/EDS, FTIR analysis and pHpzc determination before and after the remediation process. The reusability study, as well as the influence of interfering ions (Ca, K, Mg, Na and Zn) were evaluated. The conditions of preconcentration by the column method included the optimization of solution pH (5); flow rate (1.5 mL/min), a dose of biosorbent (200 mg), type of the eluent (1 mol/L HNO3), sample volume (100 mL) and sorbent fraction (<0.25 mm). The biosorbent capacity ranged from 4.45 to 57.70 μmol/g for the investigated heavy metals. The practical relevance of this study is further extended by novel data regarding adsorbent cost analysis (17.49 $/mol). The Punica granatum sorbent represents a highly effective and economical biosorbent for the preconcentration of heavy metal ions for possible application in industrial sectors.
Collapse
Affiliation(s)
- Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Ena Skopak
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Amar Karadža
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Adnan Zahirović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Narcisa Smječanin
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Omer Mahmutović
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Educational Sciences, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
55
|
Xia J, Zhou J, Liu Y, Yan N, Hu X, Zhou L, Pu Q. Non-destructive distinction of single seed for Medicago sativa and Melilotus officinalis by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A 2023; 1704:464116. [PMID: 37290349 DOI: 10.1016/j.chroma.2023.464116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Flavonoids are a class of natural polyphenolic compounds with great health benefits, and the development of methods for their analysis is of continuing interest. In this work, apigenin, kaempferol and formononetin were selected as the typical representatives of flavone, flavonol and isoflavone, three subclasses of flavonoids. Fluorescence studies revealed that tetraborate complexation could significantly sensitize the weak intrinsic fluorescence of flavonoids in solution, with a maximum of 137-fold for kaempferol. Subsequently, an integrated strategy of derivatization and separation was proposed for the universal analysis of flavonoids by capillary electrophoresis (CE) with 405 nm laser-induced fluorescence (LIF) detection. Using a running buffer consisting of 20 mM sodium tetraborate, 10 mM SDS and 10% methanol (pH 8.5), the dynamic derivatization was realized in the capillary, and the baseline separation was achieved within 10 min, with the detection limits of 0.92-35.46 nM (S/N=3) for the total of 9 flavonoids. The developed CE-LIF method was employed to the quantitative analysis of some flavonoids in Medicago sativa (alfalfa) plants and granulated alfalfa with the recoveries of 80.55-94.25%. Combined with the principal component analysis, the developed method was successfully applied to the non-destructive distinction of single seed for alfalfa and Melilotus officinalis (sweet clover), two forage grass seeds with very similar apparent morphology. Furthermore, this method was used to continuously monitor the substance metabolism during the soaking process at the level of single seed.
Collapse
Affiliation(s)
- Jingtong Xia
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiahao Zhou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yanlong Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Na Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaowen Hu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Lei Zhou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Qiaosheng Pu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
56
|
Yin M, Xi Y, Shi Y, Qiu Z, Matsuoka R, Wang H, Xu C, Tao N, Zhang L, Wang X. Effects of temperature fluctuations on non-volatile taste compounds in tilapia fillets (Oreochromis niloticus). Food Chem 2023; 408:135227. [PMID: 36549164 DOI: 10.1016/j.foodchem.2022.135227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
In this study, the effect of temperature fluctuations on the taste quality of tilapia fillets during frozen storage was investigated. Major temperature-responsive factors included free amino acids (FAAs) and flavor nucleotides in fish fillets, which were identified using multidimensional infrared spectroscopy (MM-IR). The main FAA in tilapia fillets is a sweet amino acid (glycine). Compared with the control group, the umami FAAs and sweetness FAAs were significantly increased, and the total FAAs content increased to 1.30 times after the ninth fluctuation, reaching the highest level (611.16 ± 73.60 mg/100 g). Considering the equivalent umami intensity values, adenosine monophosphate and inosine monophosphate were retained during the first and second temperature fluctuations. In addition, the content of Na+, K+, and Ca2+ decreased (P < 0.05). Therefore, MM-IR is an effective method to identify taste components. With regard to taste quality, temperature fluctuations in the twofold range have an umami-enhancing effect.
Collapse
Affiliation(s)
- Mingyu Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, China
| | - Yinci Xi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yuyao Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, China
| | - Zehui Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, China
| | | | - Hongli Wang
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222301, China
| | - Changhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, China
| | - Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, China.
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, China.
| |
Collapse
|
57
|
Roszkowski S. Application of Polyphenols and Flavonoids in Oncological Therapy. Molecules 2023; 28:molecules28104080. [PMID: 37241819 DOI: 10.3390/molecules28104080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The use of naturally derived drugs in anti-cancer therapies has grown exponentially in recent years. Among natural compounds, polyphenols have shown potential therapeutic applications in treatment due to their protective functions in plants, their use as food additives, and their excellent antioxidant properties, resulting in beneficial effects on human health. Building more efficient cancer therapies with fewer side effects on human health can be achieved by combining natural compounds with conventional drugs, which are typically more aggressive than natural chemicals with polyphenols. This article reviews a wide variety of studies where polyphenolic compounds can play a key role as anticancer drugs, alone or in combination with other drugs. Moreover, the future directions of applications of various polyphenols in cancer therapy are shown.
Collapse
Affiliation(s)
- Szymon Roszkowski
- Department of Geriatrics, Collegium Medicum, Nicolaus Copernicus University, Debowa St. 3, 85-626 Bydgoszcz, Poland
| |
Collapse
|
58
|
Wang YQ, Liu GM, Hu LP, Zhao XZ, Zhang DS, He HJ. Prediction of Anthocyanidins Content in Purple Chinese Cabbage Based on Visible/Near Infrared Spectroscopy. Foods 2023; 12:foods12091922. [PMID: 37174459 PMCID: PMC10178596 DOI: 10.3390/foods12091922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Purple Chinese cabbage (PCC) has become a new breeding trend due to its attractive color and high nutritional quality since it contains abundant anthocyanidins. With the aim of rapid evaluation of PCC anthocyanidins contents and screening of breeding materials, a fast quantitative detection method for anthocyanidins in PCC was established using Near Infrared Spectroscopy (NIR). The PCC samples were scanned by NIR, and the spectral data combined with the chemometric results of anthocyanidins contents obtained by high-performance liquid chromatography were processed to establish the prediction models. The content of cyanidin varied from 93.5 mg/kg to 12,802.4 mg/kg in PCC, while the other anthocyanidins were much lower. The developed NIR prediction models on the basis of partial least square regression with the preprocessing of no-scattering mode and the first-order derivative showed the best prediction performance: for cyanidin, the external correlation coefficient (RSQ) and standard error of cross-validation (SECV) of the calibration set were 0.965 and 693.004, respectively; for total anthocyanidins, the RSQ and SECV of the calibration set were 0.966 and 685.994, respectively. The established models were effective, and this NIR method, with the advantages of timesaving and convenience, could be applied in purple vegetable breeding practice.
Collapse
Affiliation(s)
- Ya-Qin Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Guang-Min Liu
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Li-Ping Hu
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Xue-Zhi Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - De-Shuang Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hong-Ju He
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| |
Collapse
|
59
|
Zhuang WB, Li YH, Shu XC, Pu YT, Wang XJ, Wang T, Wang Z. The Classification, Molecular Structure and Biological Biosynthesis of Flavonoids, and Their Roles in Biotic and Abiotic Stresses. Molecules 2023; 28:molecules28083599. [PMID: 37110833 PMCID: PMC10147097 DOI: 10.3390/molecules28083599] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
With the climate constantly changing, plants suffer more frequently from various abiotic and biotic stresses. However, they have evolved biosynthetic machinery to survive in stressful environmental conditions. Flavonoids are involved in a variety of biological activities in plants, which can protect plants from different biotic (plant-parasitic nematodes, fungi and bacteria) and abiotic stresses (salt stress, drought stress, UV, higher and lower temperatures). Flavonoids contain several subgroups, including anthocyanidins, flavonols, flavones, flavanols, flavanones, chalcones, dihydrochalcones and dihydroflavonols, which are widely distributed in various plants. As the pathway of flavonoid biosynthesis has been well studied, many researchers have applied transgenic technologies in order to explore the molecular mechanism of genes associated with flavonoid biosynthesis; as such, many transgenic plants have shown a higher stress tolerance through the regulation of flavonoid content. In the present review, the classification, molecular structure and biological biosynthesis of flavonoids were summarized, and the roles of flavonoids under various forms of biotic and abiotic stress in plants were also included. In addition, the effect of applying genes associated with flavonoid biosynthesis on the enhancement of plant tolerance under various biotic and abiotic stresses was also discussed.
Collapse
Affiliation(s)
- Wei-Bing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu-Hang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xiao-Chun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu-Ting Pu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiao-Jing Wang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
60
|
Amorphous System of Hesperetin and Piperine-Improvement of Apparent Solubility, Permeability, and Biological Activities. Int J Mol Sci 2023; 24:ijms24054859. [PMID: 36902286 PMCID: PMC10002548 DOI: 10.3390/ijms24054859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The low bioaccessibility of hesperetin and piperine hampers their application as therapeutic agents. Piperine has the ability to improve the bioavailability of many compounds when co-administered. The aim of this paper was to prepare and characterize the amorphous dispersions of hesperetin and piperine, which could help to improve solubility and boost the bioavailability of both plant-origin active compounds. The amorphous systems were successfully obtained by means of ball milling, as confirmed by XRPD and DSC studies. What's more, the FT-IR-ATR study was used to investigate the presence of intermolecular interactions between the systems' components. Amorphization enhanced the dissolution rate as a supersaturation state was reached, as well as improving the apparent solubility of both compounds by 245-fold and 183-fold, respectively, for hesperetin and piperine. In the in vitro permeability studies simulating gastrointestinal tract and blood-brain barrier permeabilities, these increased by 775-fold and 257-fold for hesperetin, whereas they were 68-fold and 66-fold for piperine in the GIT and BBB PAMPA models, respectively. Enhanced solubility had an advantageous impact on antioxidant as well as anti-butyrylcholinesterase activities-the best system inhibited 90.62 ± 0.58% of DPPH radicals and 87.57 ± 1.02% butyrylcholinesterase activity. To sum up, amorphization considerably improved the dissolution rate, apparent solubility, permeability, and biological activities of hesperetin and piperine.
Collapse
|
61
|
The behavior and mechanism of a temperature-responsive ionic liquid and its applications in extracting geniposidic acid from Eucommia ulmoides male flowers. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
62
|
Yang L, Zhang F, Yan Y, Gu X, Zhou S, Su X, Ji B, Zhong H, Dong C. A Comprehensive Analysis to Elucidate the Effects of Spraying Mineral Elements on the Accumulation of Flavonoids in Epimedium sagittatum during the Harvesting Period. Metabolites 2023; 13:metabo13020294. [PMID: 36837913 PMCID: PMC9964673 DOI: 10.3390/metabo13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The harvesting period is a critical period for the accumulation of flavonoids in the leaves of the important medicinal plant Epimedium sagittatum. In this study, we conducted an experiment on E. sagittatum leaves sprayed with mineral elements with the aim of improving the quality of the herbal leafage during the harvesting period. We elucidated the changes in flavonoids (icariin, epimedin A, epimedin B, and epimedin C) in E. sagittatum leaves. The sum of main flavonoids content reached a maximum (11.74%) at 20 days after the high-concentration Fe2+ (2500 mg·L-1) treatment. We analyzed the FT-IR spectra characteristics of E. sagittatum leaf samples using the FT-IR technique, and constructed an OPLS-DA model and identified characteristic peaks to achieve differentiated identification of E. sagittatum. Further, widely untargeted metabolomic analysis identified different classes of metabolites. As the most important characteristic flavonoids, the relative contents of icariin, icaritin, icariside I, and icariside II were found to be up-regulated by high-Fe2+ treatment. Our experimental results demonstrate that high-concentration Fe2+ treatment is an effective measure to increase the flavonoids content in E. sagittatum leaves during the harvesting period, which can provide a scientific basis for the improvement of E. sagittatum leaf cultivation agronomic measures.
Collapse
Affiliation(s)
- Linlin Yang
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Correspondence: (L.Y.); (C.D.); Tel.: +86-131-8088-3352 (L.Y.); +86-135-9250-8163 (C.D.)
| | - Fei Zhang
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yueci Yan
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xupeng Gu
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shengwei Zhou
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiuhong Su
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Baoyu Ji
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hua Zhong
- Rural Agriculture Bureau of Pingyu County, Zhumadian 463499, China
| | - Chengming Dong
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Correspondence: (L.Y.); (C.D.); Tel.: +86-131-8088-3352 (L.Y.); +86-135-9250-8163 (C.D.)
| |
Collapse
|
63
|
Vítek P, Mishra KB, Mishra A, Veselá B, Findurová H, Svobodová K, Oravec M, Sahu PP, Klem K. Non-destructive insights into photosynthetic and photoprotective mechanisms in Arabidopsis thaliana grown under two light regimes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121531. [PMID: 35863186 DOI: 10.1016/j.saa.2022.121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Probing insights into understanding photosynthetic processes via non-invasive means has an added advantage when used in phenotyping or precision agriculture. We employed Raman spectroscopy and fluorescence-based methods to investigate both the changes in the photosynthetic processes and the underlying protective mechanisms on Arabidopsis thaliana wild-type (WT), and ros1, which is a mutant of a repressor of transcriptional gene silencing, both grown under low light (LL: 100 μmol m-2s-1) and high light (HL: 400 μmol m-2s-1) regimes. Raman imaging detected a lower carotenoid intensity after two weeks in those plants grown under HL, compared to those grown under the LL regime; we interpret this as the result of oxidative damage of β-carotene molecules. Further, the data revealed a significant depletion in carotenoids with enhanced phenolics around the midrib and tip of the WT leaves, but not in the ros1. On the contrary, small necrotic zones appeared after two weeks of HL in the ros1 mutant, pointing to the starting oxidative damage. The lower maximum quantum yield of the photochemistry (Fv/Fm) in the WT as well as in the ros1 mutant grown in HL (compared to those in the LL two weeks post-exposure), indicates the HL partially inactivated photosystems. Chlorophyll a fluorescence imaging further showed high non-photochemical quenching (NPQ) in the plants grown under the HL regime for both the WT and the ros1 mutant, but the spatial heterogeneity of NPQ images was much higher in the HL-grown ros1 mutant. Fluorescence screening methods revealed significantly high values of chlorophyll proxies in the WT as well as in the ros1 mutant two weeks after in the HL compared to those under LL. The data generally revealed an increased accumulation of phenolics under HL in both the WT and ros1 mutant plants, but the proxies of anthocyanin and flavonols were significantly lower in the ros1 mutant than in the WT. The comparatively low accumulation of anthocyanin in the ros1 mutant compared to the WT supports the Raman data. We conclude that integrated use of these techniques can be efficiently applied for a better understanding of insights into photosynthetic mechanisms.
Collapse
Affiliation(s)
- P Vítek
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - K B Mishra
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - A Mishra
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - B Veselá
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - H Findurová
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - K Svobodová
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - M Oravec
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - P P Sahu
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - K Klem
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| |
Collapse
|
64
|
Zou L, Li H, Ding X, Liu Z, He D, Kowah JAH, Wang L, Yuan M, Liu X. A Review of The Application of Spectroscopy to Flavonoids from Medicine and Food Homology Materials. Molecules 2022; 27:7766. [PMID: 36431869 PMCID: PMC9696260 DOI: 10.3390/molecules27227766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Medicinal and food homology materials are a group of drugs in herbal medicine that have nutritional value and can be used as functional food, with great potential for development and application. Flavonoids are one of the major groups of components in pharmaceutical and food materials that have been found to possess a variety of biological activities and pharmacological effects. More and more analytical techniques are being used in the study of flavonoid components of medicinal and food homology materials. Compared to traditional analytical methods, spectroscopic analysis has the advantages of being rapid, economical and free of chemical waste. It is therefore widely used for the identification and analysis of herbal components. This paper reviews the application of spectroscopic techniques in the study of flavonoid components in medicinal and food homology materials, including structure determination, content determination, quality identification, interaction studies, and the corresponding chemometrics. This review may provide some reference and assistance for future studies on the flavonoid composition of other medicinal and food homology materials.
Collapse
Affiliation(s)
- Lin Zou
- College of Medicine, Guangxi University, Nanning 530004, China
| | - Huijun Li
- College of Medicine, Guangxi University, Nanning 530004, China
| | - Xuejie Ding
- College of Medicine, Guangxi University, Nanning 530004, China
| | - Zifan Liu
- College of Medicine, Guangxi University, Nanning 530004, China
| | - Dongqiong He
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jamal A. H. Kowah
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Lisheng Wang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Mingqing Yuan
- College of Medicine, Guangxi University, Nanning 530004, China
| | - Xu Liu
- College of Medicine, Guangxi University, Nanning 530004, China
| |
Collapse
|
65
|
Dehelean CA, Coricovac D, Pinzaru I, Marcovici I, Macasoi IG, Semenescu A, Lazar G, Cinta Pinzaru S, Radulov I, Alexa E, Cretu O. Rutin bioconjugates as potential nutraceutical prodrugs: An in vitro and in ovo toxicological screening. Front Pharmacol 2022; 13:1000608. [PMID: 36210849 PMCID: PMC9538480 DOI: 10.3389/fphar.2022.1000608] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Rutin (RUT) is considered one the most attractive flavonoids from a therapeutic perspective due to its multispectral pharmacological activities including antiradical, anti-inflammatory, antiproliferative, and antimetastatic among others. Still, this compound presents a low bioavailability what narrows its clinical applications. To overcome this inconvenience, the current paper was focused on the synthesis, characterization, and toxicological assessment of two RUT bioconjugates obtained by enzymatic esterification with oleic acid (OA) and linoleic acid (LA)—rutin oleate (RUT-O) and rutin linoleate (RUT-L), as flavonoid precursors with improved physicochemical and biological properties. Following the enzymatic synthesis in the presence of Novozyme® 435, the two bioconjugates were obtained, their formation being confirmed by RAMAN and FT-IR spectroscopy. The in vitro and in ovo toxicological assessment of RUT bioconjugates (1–100 µM) was performed using 2D consecrated cell lines (cardiomyoblasts - H9c2(2-1), hepatocytes—HepaRG, and keratinocytes—HaCaT), 3D reconstructed human epidermis tissue (EpiDerm™), and chick chorioallantoic membranes, respectively. The results obtained were test compound, concentration—and cell-type dependent, as follows: RUT-O reduced the viability of H9c2(2-1), HepaRG, and HaCaT cells at 100 µM (to 77.53%, 83.17%, and 78.32%, respectively), and induced cell rounding and floating, as well as apoptotic-like features in the nuclei of all cell lines, whereas RUT-L exerted no signs of cytotoxicity in all cell lines in terms of cell viability, morphology, and nuclear integrity. Both RUT esters impaired the migration of HepaRG cells (at 25 µM) and lack irritative potential (at 100 µM) in vitro (tissue viability >50%) and in ovo (irritation scores of 0.70 for RUT-O, and 0.49 for RUT-L, respectively). Computational predictions revealed an increased lipophilicity, and reduced solubility, drug-likeness and drug score of RUT-O and RUT-L compared to their parent compounds—RUT, OA, and LA. In conclusion, we report a favorable toxicological profile for RUT-L, while RUT-O is dosage-limited since at high concentrations were noticed cytotoxic effects.
Collapse
Affiliation(s)
- Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Faculty of Food Engineering, Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of România”, Timişoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- *Correspondence: Iulia Pinzaru,
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Ioana Gabriela Macasoi
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Alexandra Semenescu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Geza Lazar
- ”Ioan Ursu” Institute of the Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Simona Cinta Pinzaru
- ”Ioan Ursu” Institute of the Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Isidora Radulov
- Faculty of Agriculture, Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of România”, Timişoara, Romania
| | - Ersilia Alexa
- Faculty of Food Engineering, Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of România”, Timişoara, Romania
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|