51
|
Liu Z, Wei W, Tremblay PL, Zhang T. Electrostimulation of fibroblast proliferation by an electrospun poly (lactide-co-glycolide)/polydopamine/chitosan membrane in a humid environment. Colloids Surf B Biointerfaces 2022; 220:112902. [DOI: 10.1016/j.colsurfb.2022.112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/29/2022] [Accepted: 10/02/2022] [Indexed: 11/18/2022]
|
52
|
Green silver nanoparticles functionalised gelatin nanocomposite film for wound healing: Construction and characterization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
53
|
Gholizadeh M, Tahvildari K, Nozari M. Physical, Rheological and Antibacterial Properties of New Edible Packaging Films Based on the Sturgeon Fish Waste Gelatin and its Compounds with Chitosan. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2132842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mehrnaz Gholizadeh
- Faculty of Chemistry, North Branch of Tehran, Islamic Azad University, Tehran, Iran
| | - Kambiz Tahvildari
- Faculty of Chemistry, North Branch of Tehran, Islamic Azad University, Tehran, Iran
| | - Maryam Nozari
- Faculty of Chemistry, North Branch of Tehran, Islamic Azad University, Tehran, Iran
| |
Collapse
|
54
|
Process optimization and characterization of composite biopolymer films obtained from fish scale gelatin, agar and chitosan using response surface methodology. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
55
|
Wai SN, How YH, Saleena LAK, Degraeve P, Oulahal N, Pui LP. Chitosan-Sodium Caseinate Composite Edible Film Incorporated with Probiotic Limosilactobacillus fermentum: Physical Properties, Viability, and Antibacterial Properties. Foods 2022; 11:foods11223583. [PMID: 36429174 PMCID: PMC9689195 DOI: 10.3390/foods11223583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
Single-use synthetic plastics that are used as food packaging is one of the major contributors to environmental pollution. Hence, this study aimed to develop a biodegradable edible film incorporated with Limosilactobacillus fermentum. Investigation of the physical and mechanical properties of chitosan (CS), sodium caseinate (NaCas), and chitosan/sodium caseinate (CS/NaCas) composite films allowed us to determine that CS/NaCas composite films displayed higher opacity (7.40 A/mm), lower water solubility (27.6%), and higher Young's modulus (0.27 MPa) compared with pure CS and NaCas films. Therefore, Lb. fermentum bacteria were only incorporated in CS/NaCas composite films. Comparison of the physical and mechanical properties of CS/NaCas composite films incorporated with bacteria with those of control CS/NaCas composite films allowed us to observe that they were not affected by the addition of probiotics, except for the flexibility of films, which was improved. The Lb. fermentum incorporated composite films had a 0.11 mm thickness, 17.9% moisture content, 30.8% water solubility, 8.69 A/mm opacity, 25 MPa tensile strength, and 88.80% elongation at break. The viability of Lb. fermentum after drying the films and the antibacterial properties of films against Escherichia coli O157:H7 and Staphylococcus aureus ATCC 29213 were also evaluated after the addition of Lb. fermentum in the composite films. Dried Lb. fermentum composite films with 6.65 log10 CFU/g showed an inhibitory effect against E. coli and S. aureus (0.67 mm and 0.80 mm inhibition zone diameters, respectively). This shows that the Lb.-fermentum-incorporated CS/NaCas composite film is a potential bioactive packaging material for perishable food product preservation.
Collapse
Affiliation(s)
- Seat Ni Wai
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Yu Hsuan How
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Lejaniya Abdul Kalam Saleena
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Pascal Degraeve
- BioDyMIA Research Unit, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01 000 Bourg en Bresse, France
| | - Nadia Oulahal
- BioDyMIA Research Unit, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01 000 Bourg en Bresse, France
| | - Liew Phing Pui
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
- Correspondence: ; Tel.: +60-3-9101-8880
| |
Collapse
|
56
|
Tagrida M, Nilsuwan K, Gulzar S, Prodpran T, Benjakul S. Fish gelatin/chitosan blend films incorporated with betel (Piper betle L.) leaf ethanolic extracts: Characteristics, antioxidant and antimicrobial properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
57
|
Dai H, Peng L, Wang H, Feng X, Ma L, Chen H, Yu Y, Zhu H, Zhang Y. Improved properties of gelatin films involving transglutaminase cross-linking and ethanol dehydration: The self-assembly role of chitosan and montmorillonite. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
58
|
Hydrogels, Oleogels and Bigels as Edible Coatings of Sardine Fillets and Delivery Systems of Rosemary Extract. Gels 2022; 8:gels8100660. [PMID: 36286161 PMCID: PMC9602297 DOI: 10.3390/gels8100660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Edible coatings provide an alternative way to reduce packaging requirements and extend the shelf life of foods by delaying oxidation and microbial spoilage. Hydrogels, oleogels and bigels were applied as coatings on fresh sardine fillets. The effectiveness of these coatings as delivery systems of rosemary extract (RE) was also evaluated. Three groups of sardine fillet treatments were prepared: (i) the control (C), which comprised sardine fillets without coating, (ii) sardine fillets with plain hydrogel (H), oleogel (O) or bigel (BG) coatings, and (iii) sardine fillets with RE incorporated into the H, O and BG coatings. The different treatments were evaluated for lipid oxidation (TBA test), total volatile basic nitrogen (TVB-N) and microbiological growth during cold storage at 4 °C. Results showed that hydrogel, oleogel and bigel coatings delayed oxidation. The incorporation of RE into coatings significantly retarded lipid oxidation but did not affect the proliferation of microorganisms during storage. When RE was incorporated in the oleogel phase of the bigel coating, it produced significantly lower TVB-N values compared to the control and BG treatments. The incorporation of RE into the oleogel phase of the bigel coating may be a promising method of maintaining the storage quality of the sardine fillets stored at refrigerated temperatures.
Collapse
|
59
|
Ulu A, Aygün T, Birhanlı E, Ateş B. Preparation, characterization, and evaluation of multi–biofunctional properties of a novel chitosan–carboxymethylcellulose–Pluronic P123 hydrogel membranes loaded with tetracycline hydrochloride. Int J Biol Macromol 2022; 222:2670-2682. [DOI: 10.1016/j.ijbiomac.2022.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
60
|
Chitosan-Gelatin Films: Plasticizers/Nanofillers Affect Chain Interactions and Material Properties in Different Ways. Polymers (Basel) 2022; 14:polym14183797. [PMID: 36145942 PMCID: PMC9505206 DOI: 10.3390/polym14183797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Biopolymers, which are biodegradable and inherently functional, have high potential for specialized applications (e.g., disposable and transient systems and biomedical treatment). For this, it is important to create composite materials with precisely defined chain interactions and tailored properties. This work shows that for a chitosan–gelatin material, both glycerol and isosorbide are effective plasticizers, but isosorbide could additionally disrupt the polyelectrolyte complexation (PEC) between the two biopolymers, which greatly impacts the glass transition temperature (Tg), mechanical properties, and water absorption. While glycerol-plasticized samples without nanofiller or with graphene oxide (GO) showed minimal water uptake, the addition of isosorbide and/or montmorillonite (MMT) made the materials hydrolytically unstable, likely due to disrupted PEC. However, these samples showed an opposite trend in surface hydrophilicity, which means surface chemistry is controlled differently from chain structure. This work highlights different mechanisms that control the different properties of dual-biopolymer systems and provides an updated definition of biopolymer plasticization, and thus could provide important knowledge for the future design of biopolymer composite materials with tailored surface hydrophilicity, overall hygroscopicity, and mechanical properties that meet specific application needs.
Collapse
|
61
|
Ferreira AC, Bomfim MRQ, da Costa Sobrinho CHDB, Boaz DTL, Da Silva Lira R, Fontes VC, Arruda MO, Zago PMW, Filho CAAD, Dias CJM, da Rocha Borges MO, Ribeiro RM, Bezerra CWB, Penha RS. Characterization, antimicrobial and cytotoxic activity of polymer blends based on chitosan and fish collagen. AMB Express 2022; 12:102. [PMID: 35925495 PMCID: PMC9352841 DOI: 10.1186/s13568-022-01433-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
This study aims to produce, characterize, and assess the antimicrobial activity and cytotoxicity of polymer blends based on chitosan (CT) and fish collagen (COL) produced by different precipitation methods. Polymer blends were obtained in alkaline (NaOH), saline (NaCl), and alkaline/saline (NaOH/NaCl) solutions with different CT:COL concentration ratios (20:80, 50:50, and 80:20). The polymer blends were characterized by various physicochemical methods and subsequently evaluated in terms of their in vitro antimicrobial and cytotoxicity activity. In this study, the degree of chitosan deacetylation was 82%. The total hydroxyproline and collagen content in the fish matrix was 47.56 mg. g-1 and 394.75 mg. g-1, respectively. The highest yield was 44% and was obtained for a CT:COL (80:20) blend prepared by precipitation in NaOH. High concentrations of hydroxyproline and collagen in the blends were observed when NaOH precipitation was used. Microbiological analysis revealed that the strains used in this work were sensitive to the biomaterial; this sensitivity was dose-dependent and increased with increasing chitosan concentration in the products. The biocompatibility test showed that the blends did not reduce the viability of fibroblast cells after 48 h of culture. An analysis of the microbiological activity of the all-polymer blends showed a decrease in the values of minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) for S. aureus and P. aeruginosa. The blends showed biocompatibility with NIH-3T3 murine fibroblast cells and demonstrated their potential for use in biomedical applications such as wound healing, implants, and scaffolds.
Collapse
Affiliation(s)
- Andressa Coelho Ferreira
- Programa de Doutorado em Biotecnologia (RENORBIO), Universidade Federal do Maranhão (UFMA), São Luís, Brazil
| | - Maria Rosa Quaresma Bomfim
- Programa de Doutorado em Biotecnologia (RENORBIO), Universidade Federal do Maranhão (UFMA), São Luís, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | - Rosiane Silva Penha
- Instituto Federal de Educação, Ciência e Tecnologia do Maranhão (IFMA), S/N, Residencial Val paraíso, Sapucaia, Rosario, 65143-000, Brazil.
| |
Collapse
|
62
|
Tuned Gum ghatti and pectin for green synthesis of novel wound dressing material: Engineering aspects and in vivo study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
63
|
Soltanzadeh M, Peighambardoust SH, Ghanbarzadeh B, Amjadi S, Mohammadi M, Lorenzo JM, Hamishehkar H. Active gelatin/cress seed gum-based films reinforced with chitosan nanoparticles encapsulating pomegranate peel extract: Preparation and characterization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
64
|
Preparation and characterization of polyvinyl alcohol-piperic acid composite film for potential food packaging applications. Prog Biomater 2022; 11:281-295. [PMID: 35895189 DOI: 10.1007/s40204-022-00195-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/19/2022] [Indexed: 10/16/2022] Open
Abstract
Piperic acid, a natural product-based derivative, has been used with polyvinyl alcohol for the first time to form polymer composite films for its suitable modification in physicochemical and antimicrobial properties. Initially, piperic acid was synthesized from piperine, a natural alkaloid extracted from black pepper (Piper nigrum). The solvent casting method was used for the synthesis of PVA-piperic acid composite films. The films were characterized by various spectral and microscopic techniques like UV-visible spectroscopy, FT-IR, SEM, XRD, and TGA. The antibacterial activity was shown by these polymer composites of piperic acid against Gram-positive Staphylococcus aureus (S. aureus-ATCC8738P) and Gram-negative Escherichia coli (E. coli-ATCC8739) was worthwhile. The antifungal activity of the composite films was evaluated by the food poisoning technique. Percentage mycelial growth inhibition was found maximum against Fusarium solani than Aspergillus and Penicillium. The water vapour and oxygen barrier properties are enhanced with the incorporation of increased content of piperic acid. Also, enhancement in the tensile strength of PVA/PA composite film was observed, while elongation at break shows decreased trend with the addition of piperic acid. The surface properties of polymer composite films were determined by contact angle measurements. Contact angle shows a considerable increase in these films when compared to virgin PVA film. It was increased by 56.1° in 15 mL composite film containing a higher concentration of piperic acid than virgin PVA.
Collapse
|
65
|
Sutharsan J, Zhao J. Physicochemical and Biological Properties of Chitosan Based Edible Films. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2100416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jenani Sutharsan
- Food and Health Cluster, School of Chemical Engineering, UNSW, Sydney, NSW, Australia
| | - Jian Zhao
- Food and Health Cluster, School of Chemical Engineering, UNSW, Sydney, NSW, Australia
| |
Collapse
|
66
|
Bhagath YB, Lee SY, Kola M, Sharma TSK, Beulah AM, Reddy YVM, Park TJ, Park JP, Sahukari R, Madhavi G. Effect of Sulfamerazine on Structural Characteristics of Sodium Alginate Biopolymeric Films. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
67
|
|
68
|
Pirnia M, Shirani K, Tabatabaee Yazdi F, Moratazavi SA, Mohebbi M. Characterization of antioxidant active biopolymer bilayer film based on gelatin-frankincense incorporated with ascorbic acid and Hyssopus officinalis essential oil. Food Chem X 2022; 14:100300. [PMID: 35434601 PMCID: PMC9011010 DOI: 10.1016/j.fochx.2022.100300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022] Open
Abstract
In this study, a bio-based bilayer edible film based on gelatin/frankincense, with the incorporation of different concentrations of Ascorbic acid (AA) (0, 1, 2%) into the inner layer (gelatin) and Hyssopus officinalis (HO) (0, 0.75, 1.5%) essential oil in the outer layer (frankincense) was prepared. A significant increase (p < 0.05) in b* and a remarkable decrease in whiteness and lightness of the films were seen via increasing the HO ascribed to the Total Phenolic Content of HO and non-enzymatic browning. Although there was a significant decrease (p < 0.05) in Tensile Strength with the addition of HO, Elongation at Break was increased significantly as a function of HO, which is correlated with a dense and compact network in SEM images. The maximum thickness of film emulsified with 1.5%HO + 2%AA ascribed to the accumulation of solid content. The improvement in Water Contact Angle (℃) and a reduction in Water Vapor Permeability (gr/s mPa) have occurred due to the hydrophobic nature of HO.
Collapse
Affiliation(s)
- Motahare Pirnia
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khatereh Shirani
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farideh Tabatabaee Yazdi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Ali Moratazavi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohebbat Mohebbi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
69
|
Kumar L, Deshmukh RK, Gaikwad KK. Antimicrobial packaging film from cactus (Cylindropuntia fulgida) mucilage and gelatine. Int J Biol Macromol 2022; 215:596-605. [PMID: 35777505 DOI: 10.1016/j.ijbiomac.2022.06.162] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/14/2022] [Accepted: 06/25/2022] [Indexed: 11/05/2022]
Abstract
Gelatine is an excellent substitute for biodegradable packaging materials; nevertheless, it is necessary to mix it with other polymers due to its poor mechanical and high hydrophilicity. In the present study, we used Cylindropuntia fulgida mucilage (CF) as main constituent and gelatine (GTN). The Euphorbia caducifolia extract (ECE) was incorporated in concentrations of 0, 1, 5, 10, 20 %, and its influence on the film's morphological, thermal, mechanical, and water vapor barrier properties was assessed. The surface of fabricated CF/GTN/ECE biocomposite films was more homogeneous and smoother with the high concentration of in ECE. The elongation at break improved from 2 to 60.59 %, and WVP enhanced from 3.34 to 2.59 10-4 g mm/mm2 day kPa and highest antimicrobial activity of 3.62 ± 0.71 Log CFU g-1 when CF/GTN was incorporated with 20 % ECE. Incorporating CF and ECE 10 to 20 % makes these films a good substitute for the packaging of food products.
Collapse
Affiliation(s)
- Lokesh Kumar
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kirtiraj K Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
70
|
The effects of tannic and caffeic acid as cross-linking agents on the physicochemical, barrier, and mechanical characteristics of cold-water fish gelatin films. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01495-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
71
|
Wang H, Xue T, Wang S, Jia X, Cao S, Niu B, Guo R, Yan H. Preparation, characterization and food packaging application of nano ZnO@Xylan/quaternized xylan/polyvinyl alcohol composite films. Int J Biol Macromol 2022; 215:635-645. [PMID: 35777507 DOI: 10.1016/j.ijbiomac.2022.06.157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Xylan could be considered as a good potential candidate for food packaging film because of the vast source and biodegradability, however, its application was restricted by the drawbacks of poor film-forming property, humidity sensitivity, weak mechanical strength and poor antibacterial property. In this paper, xylan was firstly modified by quaternization to improve the film-forming property, then ZnO nanoparticles encapsulated by xylan (nano ZnO@Xylan) was prepared by nanoprecipitation method, finally a series of biodegradable composite films were prepared using quaternized xylan and polyvinyl alcohol with incorporation of nano ZnO@Xylan. The surface morphology, molecular structure and crystallography structure of the films were characterized. The addition of nano ZnO@Xylan decreased water vapor permeability and solubility, meanwhile obviously increased the ultraviolet shielding performance as well as the antibacterial properties of the films. The bacteriostasis rate of the films against E. coli and S. aureus reached up to 99 %. Furthermore, the preservation time of cherry tomatoes covered with ZnO@Xylan/QX/PVA films was extended to at least 21 days. In conclusion, all the results ensure that the fabricated composite films have considerable promising application in the food packaging industry.
Collapse
Affiliation(s)
- Huifang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Tianren Xue
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Shuo Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiaoli Jia
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Shenghui Cao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Baolong Niu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Ruijie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Hong Yan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
72
|
Adarsh RK, Das EC, Gopan GV, Rajan RK, Komath M. Quaternised chitosan composites with in situ precipitated nano calcium phosphate for making bioactive and degradable tissue engineering scaffolds. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
73
|
Mathew S, Arumainathan S. Crosslinked Chitosan-Gelatin Biocompatible Nanocomposite as a Neuro Drug Carrier. ACS OMEGA 2022; 7:18732-18744. [PMID: 35694506 PMCID: PMC9178715 DOI: 10.1021/acsomega.2c01443] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/06/2022] [Indexed: 05/04/2023]
Abstract
The polymers, chitosan, a polysaccharide, and gelatin, a protein, are crosslinked in different ratios without the aid of a crosslinking agent. Facile chemical reactions were followed to synthesize a chitosan/gelatin nanocomposite in three different ratios (1:1, 1:3, and 3:1). The solubility of chitosan and the stability of gelatin were improved due to the crosslinking. Both the polymers have excellent biodegradability, biocompatibility, adhesion, and absorption properties in a biological environment. The properties of the composite were favorable to be used in drug delivery applications, and the drug dopamine was encapsulated in the composite for all three ratios. The properties of the chitosan/gelatin nanocomposite and dopamine-loaded chitosan/gelatin nanocomposite were examined using XRD, FTIR, SEM, UV, TGA, TEM, and DLS techniques, and the crosslinking was confirmed. Higuchi kinetic release was seen with a cumulative release of 93% within 24 h for the 1:3 nanocomposite in a neutral medium. The peaks at 9 and 20° in the XRD spectrum confirmed the encapsulation of dopamine with the increase in the crystallinity of chitosan, which is also evident from the SAED image. The dopamine functional groups were confirmed from the IR peaks between 500 and 1500 cm-1 and the wide UV absorption maxima between 250 and 290 nm. The particle size of the drug-loaded composite in the ratios 1:1, 1:3, and 3:1 were calculated to be 275, 405, and 355 nm, respectively. The nanocomposite also showed favorable DPPH antioxidant and antibacterial activity againstStaphylococcus aureus. Sustained release of dopamine in a neutral medium using crosslinked chitosan and gelatin without the presence of a crosslinker is the highlight of the work.
Collapse
|
74
|
Alias A, Wan MK, Sarbon N. Emerging materials and technologies of multi-layer film for food packaging application: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
75
|
Physico-chemical, biological properties of chitosan/gelatin-based films with Finger Millet bran extract. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01406-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
76
|
Effect of a chitosan-based nanocomposite containing ZnO and Zataria multiflora essential oil on quality properties of Asian sea bass ( Lates calcarifer) fillet. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:869-878. [PMID: 35153319 PMCID: PMC8814131 DOI: 10.1007/s13197-021-05082-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/19/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
This research aimed to estimate the effects of chitosan (CH) coating in combination with zinc oxide nanoparticles (ZnONPS) and Zataria multiflora essential oil (ZEO) on the bacterial and biochemical properties of the Asian sea bass (Lates calcarifer) fillets during refrigeration storage (4 ± 1 °C). The fillets were randomly divided into five treatments (CH, CH-ZnONPS, CH-ZEO, CH-ZnONPs-ZEO, and control). Then, the treated fillets were kept at 4 °C and quality analysis was performed on days 0, 4, 8, 12, and 16. The results revealed that the combination of ZnONPs and ZEO with CH coating is an active coating with antimicrobial effects. Also, the coated fillets improved the biochemical properties (such as FFA, TBA, TVBN, pH) as well as color properties during refrigeration storage. The highest rate of FFA (3.59 ± 0.08%oleic acid), TBA (1.43 ± 0.00 mg MDA/kg), TVBN (30.82 ± 0.30 mg/N100g), and pH (7.38 ± 0.03) was recorded in control fillets while the lowest rate of FFA (2.19 ± 0.00%oleic acid), TBA (0.61 ± 0.00 mg MDA/kg), TVBN (19.60 ± 0.20 mg/N100g), and pH (6.99 ± 0.04) was recorded in CH-ZnONPs-ZEO coated fillets (p < 0.05) on day 16. The sensory acceptance score was better than that of the control treatment on days 8 and 12 in Sea bass fillet coated with CH-ZnONPs, and CH-ZnONPS/CH-ZEO, respectively, and it was lower the critical score for fishery products. The combination of nanoparticles or essential oils (individually or in combination together) with edible coatings (chitosan) could increase and optimize the storage time of refrigerated seafood.
Collapse
|
77
|
Herrera-Vázquez SE, Dublán-García O, Arizmendi-Cotero D, Gómez-Oliván LM, Islas-Flores H, Hernández-Navarro MD, Ramírez-Durán N. Optimization of the Physical, Optical and Mechanical Properties of Composite Edible Films of Gelatin, Whey Protein and Chitosan. Molecules 2022; 27:molecules27030869. [PMID: 35164126 PMCID: PMC8839785 DOI: 10.3390/molecules27030869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this work was to evaluate the effect of the concentration of gelatin (G) (3–6 g), whey protein (W) (2.5–7.5 g) and chitosan (C) (0.5–2.5 g) on the physical, optical and mechanical properties of composite edible films (CEFs) using the response surface methodology (RSM), as well as optimizing the formulation for the packaging of foods. The results of the study were evaluated via first- and second-order multiple regression analysis to obtain the determination coefficient values with a good fit (R ˃ 0.90) for each of the response variables, except for the values of solubility and b*. The individual linear effect of the independent variables (the concentrations of gelatin, whey protein and chitosan) significantly affected (p ≤ 0.05) the water vapor permeability (WVP), strength and solubility of the edible films. The WVP of the edible films varied from 0.90 to 1.62 × 10−11 g.m/Pa.s.m2, the resistance to traction varied from 0.47 MPa to 3.03 MPa and the solubility varied from 51.06% to 87%. The optimized values indicated that the CEF prepared with a quantity of 4 g, 5 g and 3 g of gelatin, whey protein and chitosan, respectively, provided the CEF with a smooth, continuous and transparent surface, with L values that resulted in a light-yellow hue, a lower WVP, a maximum strength (resistance to traction) and a lower solubility. The results revealed that the optimized formulation of the CEF of G–W–C allowed a good validation of the prediction model and could be applied, in an effective manner, to the food packaging industry, which could help in mitigating the environmental issues associated with synthetic packaging materials.
Collapse
Affiliation(s)
- Selene Elizabeth Herrera-Vázquez
- Laboratorio de Alimentos y Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca 50120, Estado de México, Mexico; (S.E.H.-V.); (L.M.G.-O.); (H.I.-F.); (M.D.H.-N.)
| | - Octavio Dublán-García
- Laboratorio de Alimentos y Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca 50120, Estado de México, Mexico; (S.E.H.-V.); (L.M.G.-O.); (H.I.-F.); (M.D.H.-N.)
- Correspondence:
| | - Daniel Arizmendi-Cotero
- Departamento de Ingeniería Industrial, Facultad de Ingeniería, Campus Toluca, Universidad Tecnológica de México (UNITEC), Toluca 50160, Estado de México, Mexico;
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Alimentos y Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca 50120, Estado de México, Mexico; (S.E.H.-V.); (L.M.G.-O.); (H.I.-F.); (M.D.H.-N.)
| | - Hariz Islas-Flores
- Laboratorio de Alimentos y Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca 50120, Estado de México, Mexico; (S.E.H.-V.); (L.M.G.-O.); (H.I.-F.); (M.D.H.-N.)
| | - María Dolores Hernández-Navarro
- Laboratorio de Alimentos y Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca 50120, Estado de México, Mexico; (S.E.H.-V.); (L.M.G.-O.); (H.I.-F.); (M.D.H.-N.)
| | - Ninfa Ramírez-Durán
- Laboratorio de Microbiología Medica y Ambiental, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan intersección Jesús Carranza s/n, Toluca 50120, Estado de México, Mexico;
| |
Collapse
|
78
|
Strategies to Improve the Barrier and Mechanical Properties of Pectin Films for Food Packaging: Comparing Nanocomposites with Bilayers. COATINGS 2022. [DOI: 10.3390/coatings12020108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional food packaging systems help reduce food wastage, but they also produce environmental impacts when not properly disposed of. Bio-based polymers are a promising solution to overcome these impacts, but they have poor barrier and mechanical properties. This work evaluates two strategies to improve these properties in pectin films: the incorporation of cellulose nanocrystals (CNC) or sodium montmorillonite (MMT) nanoparticles, and an additional layer of chitosan (i.e., a bilayer film). The bionanocomposites and bilayer films were characterized in terms of optical, morphological, hygroscopic, mechanical and barrier properties. The inclusion of the nanofillers in the polymer reduced the water vapor permeability and the hydrophilicity of the films without compromising their visual properties (i.e., their transparency). However, the nanoparticles did not substantially improve the mechanical properties of the bionanocomposites. Regarding the bilayer films, FTIR and contact angle studies revealed no surface and/or chemical modifications, confirming only physical coating/lamination between the two polymers. These bilayer films exhibited a dense homogenous structure, with intermediate optical and hygroscopic properties. An additional layer of chitosan did not improve the mechanical, water vapor and oxygen barrier properties of the pectin films. However, this additional layer made the material more hydrophobic, which may play an important role in the application of pectin as a food packaging material.
Collapse
|
79
|
Mousavi Z, Babaei S, Naseri M, Hosseini SMH, Shekarforoush SS. Utilization in situ of biodegradable films produced with chitosan, and functionalized with ε-poly-l-lysine: an effective approach for super antibacterial application. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
80
|
Sánchez-Machado DI, López-Cervantes J, Martínez-Ibarra DM, Escárcega-Galaz AA, Vega-Cázarez CA. The use of chitosan as a skin-regeneration agent in burns injuries: A review. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Chitosan is an amino-polysaccharide, traditionally obtained by the partial deacetylation of chitin from exoskeletons of crustaceans. Properties such as biocompatibility, hemostasis, and the ability to absorb physiological fluids are attributed to this biopolymer. Chitosan’s biological properties are regulated by its origin, polymerization degree, and molecular weight. In addition, it possesses antibacterial and antifungal activities. It also has been used to prepare films, hydrogels, coatings, nanofibers, and absorbent sponges, all utilized for the healing of skin wounds. In in vivo studies with second-degree burns, healing has been achieved in at least 80% of the cases between the ninth and twelfth day of treatment with chitosan coatings. The crucial steps in the treatment of severe burns are the early excision of damaged tissue and adequate coverage to minimize the risk of infection. So far, partial-thickness autografting is considered the gold standard for the treatment of full-thickness burns. However, the limitations of donor sites have led to the development of skin substitutes. Therefore, the need for an appropriate dermal equivalent that functions as a regeneration template for the growth and deposition of new skin tissue has been recognized. This review describes the properties of chitosan that validate its potential in the treatment of skin burns.
Collapse
Affiliation(s)
- Dalia I. Sánchez-Machado
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora , MX 85000 Ciudad Obregón , Sonora , Mexico
| | - Jaime López-Cervantes
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora , MX 85000 Ciudad Obregón , Sonora , Mexico
| | - Diana M. Martínez-Ibarra
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora , MX 85000 Ciudad Obregón , Sonora , Mexico
| | - Ana A. Escárcega-Galaz
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora , MX 85000 Ciudad Obregón , Sonora , Mexico
| | - Claudia A. Vega-Cázarez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora , MX 85000 Ciudad Obregón , Sonora , Mexico
| |
Collapse
|
81
|
Walid Y, Malgorzata N, Katarzyna R, Piotr B, Ewa O, Izabela B, Wissem A, Majdi H, Slim J, Karima H, Dorota W, Moufida S. Effect of rosemary essential oil and ethanol extract on physicochemical and antibacterial properties of optimized gelatin–chitosan film using mixture design. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Yeddes Walid
- Laboratory of Aromatic and Medicinal Plants Borj Cedria Biotechnology Center Hammam‐Lif Tunisia
- Faculty of Science of Bizerte University of Carthage Jarzouna Tunisia
| | - Nowacka Malgorzata
- Department of Food Engineering and Process Management Institute of Food Sciences Warsaw University of Life Sciences – SGGW Warsaw Poland
| | - Rybak Katarzyna
- Department of Food Engineering and Process Management Institute of Food Sciences Warsaw University of Life Sciences – SGGW Warsaw Poland
| | - Boruszewski Piotr
- Institute of Wood Sciences and Furniture Warsaw University of Life Sciences Warsaw Poland
| | - Ostrowska‐Ligeza Ewa
- Department of Chemistry Institute of Food Sciences Warsaw University of Life Sciences – SGGW Warsaw Poland
| | - Betlej Izabela
- Institute of Wood Sciences and Furniture Warsaw University of Life Sciences Warsaw Poland
| | - Aidi‐Wannes Wissem
- Laboratory of Aromatic and Medicinal Plants Borj Cedria Biotechnology Center Hammam‐Lif Tunisia
| | - Hammami Majdi
- Laboratory of Aromatic and Medicinal Plants Borj Cedria Biotechnology Center Hammam‐Lif Tunisia
| | - Jallouli Slim
- Laboratory of Bioactive Substances Borj Cedria Biotechnology Center Hammam‐Lif Tunisia
| | - Horchani‐Naifer Karima
- Laboratory of Physico‐Chemistry of Mineral Materials and their Applications National Center for Research in Materials Science Soliman Tunisia
| | - Witrowa‐Rajchert Dorota
- Department of Food Engineering and Process Management Institute of Food Sciences Warsaw University of Life Sciences – SGGW Warsaw Poland
| | - Saidani‐Tounsi Moufida
- Laboratory of Aromatic and Medicinal Plants Borj Cedria Biotechnology Center Hammam‐Lif Tunisia
| |
Collapse
|
82
|
Performance of Gelatin Films Reinforced with Cloisite Na + and Black Pepper Essential Oil Loaded Nanoemulsion. Polymers (Basel) 2021; 13:polym13244298. [PMID: 34960849 PMCID: PMC8703369 DOI: 10.3390/polym13244298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022] Open
Abstract
The concern about consuming eco-friendly products has motivated research in the development of new materials. Therefore, films based on natural polymers have been used to replace traditional polymers. This study consists of a production of films based on gelatin reinforced with black pepper essential oil-loaded nanoemulsions and Cloisite Na+. The films were characterized by water vapor permeability, mechanical and thermal properties, surface contact angle, X-ray diffraction and scanning electron microscopy. It was observed that the films containing the nanoemulsion have higher permeability values and an increase in their mechanical resistance. The addition of nanoclay contributed to an increase in the surface hydrophobicity of the film and an increase in the tensile strength, at break, by about 150%. The addition of essential oil nanoemulsions led to an increase in thermal stability. The presence of clay dispersion contributed to the formation of a surface that was slightly rougher and grainier. The addition of the black pepper essential oil nanoemulsion resulted in an increase in porosity of the gelatin matrix. Through X-ray diffraction analysis, it was possible to conclude that both the polymeric gelatin matrix and the essential oils nanoemulsion are intercalated with the clay dispersion.
Collapse
|
83
|
Daza LD, Eim VS, Váquiro HA. Influence of Ulluco Starch Concentration on the Physicochemical Properties of Starch-Chitosan Biocomposite Films. Polymers (Basel) 2021; 13:polym13234232. [PMID: 34883736 PMCID: PMC8659859 DOI: 10.3390/polym13234232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/05/2022] Open
Abstract
This work aimed to prepare ulluco starch (US)/chitosan (Ch) edible films and evaluate the effect of the concentration of US on their physicochemical properties. The use of edible films is a means of adding value to the ulluco crop and evaluating the viability of using new sources to produce packaging materials. Different samples were prepared at different US concentrations (2%, 3%, 4%, and 5% w/v) and a fixed chitosan concentration (1.5% w/v); then, samples were analyzed, considering their physical, mechanical, and thermal properties. The US/Ch edible films showed an increase in solubility from 17.5% to 21.7%, swelling power (SP) from 38.9% to 267%, tensile strength (TS) from 3.69 MPa to 10.7 MPa, Young modulus (YM) from 18.0 Pa to 652 Pa, and thermal stability as the US concentration increased. However, samples with low US concentrations showed higher elongation at break (EB) (36.6%) and better barrier properties (WVP) (5.61 × 10−11 g/m s Pa). The films evaluated in this work presented good physical, mechanical, and barrier properties, revealing their potential as packaging material ensuring food security, and demonstrating the technological potential of US.
Collapse
Affiliation(s)
- Luis Daniel Daza
- Departamento de Química, Universidad de las Islas Baleares, 07122 Palma de Mallorca, Spain;
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, Ibagué 730006, Colombia
| | - Valeria Soledad Eim
- Departamento de Química, Universidad de las Islas Baleares, 07122 Palma de Mallorca, Spain;
- Correspondence: (V.S.E.); (H.A.V.)
| | - Henry Alexander Váquiro
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, Ibagué 730006, Colombia
- Correspondence: (V.S.E.); (H.A.V.)
| |
Collapse
|
84
|
Luo Y, Wu Y, Wang Y, Yu L(L. Active and Robust Composite Films Based on Gelatin and Gallic Acid Integrated with Microfibrillated Cellulose. Foods 2021; 10:foods10112831. [PMID: 34829113 PMCID: PMC8619323 DOI: 10.3390/foods10112831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Gelatin is a renewable, biodegradable, and inexpensive food polymer. The insufficient mechanical and functional properties of gelatin-based films (GBF) restrict their commercial application in food packaging. This work proposed a facile strategy to prepare an active and robust GBF that has the potential to be used in food packaging. METHODS A strong and active GBF was prepared based on the principle of supramolecular chemistry via the incorporation of gallic acid (GA) as an active crosslinking agent and of microfibrillated cellulose (MFC) as a reinforcing agent. RESULTS Under the appropriate concentration (1.0 wt%), MFC was evenly dispersed in a gelatin matrix to endow the film with low surface roughness and compact structure. Compared with the GF, the tensile strength and elongation at break of the resultant film reached 6.09 MPa and 213.4%, respectively, representing the corresponding improvement of 12.8% and 27.6%. Besides, a significantly improved water vapor barrier (from 3.985 × 10-8 to 3.894 × 10-8 g·m-1·Pa-1·s-1) and antioxidant activity (from 54.6% to 86.4% for ABTS radical scavenging activity; from 6.0% to 89.1% for DPPH radical scavenging activity) of GBFs were also observed after introducing the aromatic structure of GA and nano-/microfibrils in MFC. Moreover, the UV blocking performance and thermal stability of GGF and GGCFs were also enhanced. CONCLUSIONS this work paves a promising way toward facile preparation of multifunctional GBFs that have great potential to be used in fabricating active and safe food packaging materials for food preservation.
Collapse
Affiliation(s)
- Yinghua Luo
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China;
| | - Yanbei Wu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.W.)
- Correspondence:
| | - Yali Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.W.)
| | - Liangli (Lucy) Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
85
|
Chen Y, Duan Q, Yu L, Xie F. Thermomechanically processed chitosan:gelatin films being transparent, mechanically robust and less hygroscopic. Carbohydr Polym 2021; 272:118522. [PMID: 34420758 DOI: 10.1016/j.carbpol.2021.118522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 08/01/2021] [Indexed: 12/21/2022]
Abstract
Chitosan and gelatin are attractive polymeric feedstocks for developing environmentally benign, bio-safe, and functional materials. However, cost-effective methods to achieve advantageous materials properties and tailor their functionality are still lacking, but interesting. Herein, we found that physically mixing chitosan and gelatin at 1:1 (w/w) ratio resulted in materials with properties (higher Young's modulus (603.8 MPa) and tensile strength (33.6 MPa), and reduced water uptake (45%) after 6 h of water soaking) better than those of the materials based on mainly chitosan or gelatin. We attribute this synergy to the ionic and hydrogen-bonding interactions between the two biopolymers enabled by high-viscosity thermomechanical processing. Despite the lowest hygroscopicity, the 1:1 chitosan:gelatin films displayed the highest surface hydrophilicity. Besides, addition of gelatin to chitosan led to films being brighter, more transparent and amorphous. Thus, this work has generated new understanding to enhance the application of biopolymers for e.g. packaging, coating, and biomedical applications.
Collapse
Affiliation(s)
- Ying Chen
- Collage of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Department of Food Science and Technology, National University of Singapore, Science Drive 2, 117542, Singapore
| | - Qingfei Duan
- Collage of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Long Yu
- Collage of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fengwei Xie
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
86
|
Active packaging nanocomposite gelatin-based films as a carrier of nano TiO2 and cumin essential oil: the effect on quality parameters of fresh chicken. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01169-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
87
|
Gelatin Reinforced with CNCs as Nanocomposite Matrix for Trichoderma harzianum KUEN 1585 Spores in Seed Coatings. Molecules 2021; 26:molecules26195755. [PMID: 34641299 PMCID: PMC8510327 DOI: 10.3390/molecules26195755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Increasing interest on sustainable agriculture has led to the development of new materials which can be used as seed coating agents. In this study, a new material was developed based on gelatin film reinforced with cellulose nanocrystals (CNC) which was further used as nanocomposite matrix for Trichoderma harzianum KUEN 1585 spores. The nanocomposite films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), showing the formation of new hydrogen bonds between the components with a good compatibility between them. Measurements of water contact angles and tests of water vapor sorption and swelling degree revealed an improvement in the water vapor absorption properties of the films as a result of their reinforcement with CNC. Furthermore, by adding the Trichoderma harzianum KUEN 1585 spp. in the seed coating material, the germination percentage, speed of germination and roots length of the corn seeds improved. The polymeric coating did not inhibit the growth of T. harzianum KUEN 1585, with this material being a good candidate in modern agriculture.
Collapse
|
88
|
Tessaro L, Lourenço RV, Martelli-Tosi M, do Amaral Sobral PJ. Gelatin/chitosan based films loaded with nanocellulose from soybean straw and activated with "Pitanga" (Eugenia uniflora L.) leaf hydroethanolic extract in W/O/W emulsion. Int J Biol Macromol 2021; 186:328-340. [PMID: 34246680 DOI: 10.1016/j.ijbiomac.2021.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/10/2021] [Accepted: 07/04/2021] [Indexed: 11/26/2022]
Abstract
Mechanical properties of biopolymer films can be a limitation for their application as packaging. Soybean straw crystalline nanocelluloses (NC) can act as reinforcement load to improve these material properties, and W/O/W double emulsion (DE) as encapsulating bioactive agents can contribute to produce active packaging. DE droplets were loaded with pitanga leaf (Eugenia uniflora L.) hydroethanolic extract. The mechanical, physicochemical, and barrier properties, and the microstructure of gelatin and/or chitosan films incorporated with NC or NC/DE were determined by classical methods. Film antioxidant activities were determined by ABTS and DPPH methods. The incorporation of NC/DE in gelatin and/or chitosan films (NC/DE films) changed the morphology of these films, which presented more heterogeneous air-side surfaces and cross-sections. They presented rougher topographies, notably greater resistance and stiffness, higher barrier properties to UV/Vis light and higher antioxidant activity than the NC films. Moisture content, solubility in water and water vapor permeability decreased due to the presence of DE. Overall, the NC/DE films improved all properties, when compared to the properties of NC films or those of films with only DE, from a previously published study. In spite of not having antimicrobial activity against the studied bacteria, NC/DE films did display a great antioxidant activity.
Collapse
Affiliation(s)
- Larissa Tessaro
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil.
| | - Rodrigo Vinícius Lourenço
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil
| | - Milena Martelli-Tosi
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil; Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-industrial building, block C, 05508-080 São Paulo, SP, Brazil
| |
Collapse
|
89
|
Tyuftin AA, Kerry JP. Gelatin films: Study review of barrier properties and implications for future studies employing biopolymer films. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
90
|
R R, Philip E, Madhavan A, Sindhu R, Pugazhendhi A, Binod P, Sirohi R, Awasthi MK, Tarafdar A, Pandey A. Advanced biomaterials for sustainable applications in the food industry: Updates and challenges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117071. [PMID: 33866219 DOI: 10.1016/j.envpol.2021.117071] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Maintaining the safety and quality of food are major concerns while developing biomaterial based food packaging. It offers a longer shelf-life as well as protection and quality control to the food based on international standards. Nano-biotechnology contributes to a far extent to make advanced packaging by developing multifunctional biomaterials for potential applications providing smarter materials to consumers. Applications of nano-biocomposites may thus help to deliver enhanced barrier, mechanical strength, antimicrobial and antioxidant properties to novel food packaging materials. Starch derived bioplastics, polylactic acid and polyhydroxybutyrate are examples of active bioplastics currently in the food packaging sector. This review discusses the various types of biomaterials that could be used to improve future smarter food packaging, as well as biomaterials' potential applications as food stabilizers, pathogen control agents, sensors, and edible packaging materials. The regulatory concerns related to the use of biomaterials in food packaging and commercially available biomaterials in different fields are also discussed. Development of novel biomaterials for different food packaging applications can therefore guarantee active food packaging in future.
Collapse
Affiliation(s)
- Reshmy R
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690 110, Kerala, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690 110, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, 695 014, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136713, 11, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West A & F University, Yangling, Shaanxi, 712 100, China
| | - Ayon Tarafdar
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
91
|
Pereira DGM, Vieira JM, Vicente AA, Cruz RMS. Development and Characterization of Pectin Films with Salicornia ramosissima: Biodegradation in Soil and Seawater. Polymers (Basel) 2021; 13:polym13162632. [PMID: 34451172 PMCID: PMC8398948 DOI: 10.3390/polym13162632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Pectin films were developed by incorporating a halophyte plant Salicornia ramosissima (dry powder from stem parts) to modify the film’s properties. The films’ physicomechanical properties, Fourier-transform infrared spectroscopy (FTIR), and microstructure, as well as their biodegradation capacity in soil and seawater, were evaluated. The inclusion of S. ramosissima significantly increased the thickness (0.25 ± 0.01 mm; control 0.18 ± 0.01 mm), color parameters a* (4.96 ± 0.30; control 3.29 ± 0.16) and b* (28.62 ± 0.51; control 12.74 ± 0.75), water vapor permeability (1.62 × 10−9 ± 1.09 × 10−10 (g/m·s·Pa); control 1.24 × 10−9 ± 6.58 × 10−11 (g/m·s·Pa)), water solubility (50.50 ± 5.00%; control 11.56 ± 5.56%), and elongation at break (5.89 ± 0.29%; control 3.91 ± 0.62%). On the other hand, L* (48.84 ± 1.60), tensile strength (0.13 ± 0.02 MPa), and Young’s modulus (0.01 ± 0 MPa) presented lower values compared with the control (L* 81.20 ± 1.60; 4.19 ± 0.82 MPa; 0.93 ± 0.12 MPa), while the moisture content varied between 30% and 45%, for the film with S. ramosissima and the control film, respectively. The addition of S. ramosissima led to opaque films with relatively heterogeneous microstructures. The films showed also good biodegradation capacity—after 21 days in soil (around 90%), and after 30 days in seawater (fully fragmented). These results show that pectin films with S. ramosissima may have great potential to be used in the future as an eco-friendly food packaging material.
Collapse
Affiliation(s)
- Daniela G. M. Pereira
- Department of Food Engineering, Institute of Engineering, Campus da Penha, Universidade do Algarve, 8005-139 Faro, Portugal;
| | - Jorge M. Vieira
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.M.V.); (A.A.V.)
| | - António A. Vicente
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.M.V.); (A.A.V.)
| | - Rui M. S. Cruz
- Department of Food Engineering, Institute of Engineering, Campus da Penha, Universidade do Algarve, 8005-139 Faro, Portugal;
- MED—Mediterranean Institute for Agriculture, Environment and Development, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence:
| |
Collapse
|
92
|
Yan J, Li M, Wang H, Lian X, Fan Y, Xie Z, Niu B, Li W. Preparation and property studies of chitosan-PVA biodegradable antibacterial multilayer films doped with Cu2O and nano-chitosan composites. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
93
|
Tamimi N, Mohammadi Nafchi A, Hashemi‐Moghaddam H, Baghaie H. The effects of nano-zinc oxide morphology on functional and antibacterial properties of tapioca starch bionanocomposite. Food Sci Nutr 2021; 9:4497-4508. [PMID: 34401097 PMCID: PMC8358367 DOI: 10.1002/fsn3.2426] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 01/31/2023] Open
Abstract
The purpose of this study was to evaluate the effect of nano-zinc oxide (ZnO-N) morphology on the functional and antimicrobial properties of tapioca starch films. For this reason, nanosphere (ZnO-ns), nanorod (ZnO-nr), and nanoparticle of ZnO (ZnO-np) at 0.5%, 1.0%, and 2.0% were added to the starch film. Then, physicochemical, mechanical, and barrier properties were evaluated. Also, UV-visible and Fourier transform infrared spectroscopy (FTIR) spectra and antibacterial activity of prepared nanocomposite films against Escherichia coli were examined. The results revealed that the ZnO-ns had the most effects on mechanical, physicochemical, and barrier properties. The highest values of the tensile strength (14.15 MPa) and Young's modulus (32.74 MPa) and the lowest values of elongation at break (10.40%) were obtained in the films containing 2% of ZnO nanosphere. In terms of UV transmission, ZnO-nr showed the most significant impact morphology. FTIR spectra indicated that interactions for all morphologies were physical interaction, and there are no chemical reactions between starch structure and nanoparticles. The antibacterial effect of the ZnO-ns was higher than that of other morphologies. In summary, ZnO-ns was the best morphology for using ZnO-N in starch-based nanocomposite films.
Collapse
Affiliation(s)
- Naser Tamimi
- Chemical Engineering DepartmentDamghan BranchIslamic Azad UniversityDamghanIran
| | - Abdorreza Mohammadi Nafchi
- Food Science and Technology DepartmentDamghan BranchIslamic Azad UniversityDamghanIran
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaUSMPenangMalaysia
| | | | - Homa Baghaie
- Food Science and Technology DepartmentDamghan BranchIslamic Azad UniversityDamghanIran
| |
Collapse
|
94
|
Tufail S, Siddique MI, Sarfraz M, Sohail MF, Shahid MN, Omer MO, Katas H, Rasool F. Simvastatin nanoparticles loaded polymeric film as a potential strategy for diabetic wound healing: in vitro and in vivo evaluation. Curr Drug Deliv 2021; 19:534-546. [PMID: 34288836 DOI: 10.2174/1567201818666210720150929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The pleiotropic effects of statins are recently explored for wound healing through angiogenesis and lymph-angiogenesis that could be of great importance in diabetic wounds. AIM Aim of the present study is to fabricate nanofilm embedded with simvastatin loaded chitosan nanoparticles (CS-SIM-NPs) has been reported herein to explore the efficacy of SIM in diabetic wound healing. METHODS The NPs, prepared via ionic gelation, were 173nm ± 2.645 in size with a zeta potential -0.299 ± 0.009 and PDI 0.051 ± 0.088 with excellent encapsulation efficiency (99.97%). The optimized formulation (CS: TPP, 1:1) that exhibited the highest drug release (91.64%) was incorporated into polymeric nanofilm (HPMC, Sodium alginate, PVA), followed by in vitro characterization. The optimized nanofilm was applied to the wound created on the back of diabetes-induced (with alloxan injection 120 mg/kg) albino rats. RESULTS The results showed significant (p < 0.05) improvement in the wound healing process compared to the diabetes-induced non-treated group. The results highlighted the importance of nanofilms loaded with SIM-NPs in diabetic wound healing through angiogenesis promotion at the wound site. CONCLUSION Thus, CS-SIM-NPs loaded polymeric nanofilms could be an emerging diabetic wound healing agent in the industry of nanomedicines.
Collapse
Affiliation(s)
- Saima Tufail
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Muhammad Irfan Siddique
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain , postal code 64141, United Arab Emirates
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore, Pakistan
| | - Muhammad Nabeel Shahid
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Muhammad Ovais Omer
- Pharmacology and Toxicology Department, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Haliza Katas
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Fatima Rasool
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
95
|
Mujtaba M, Fernández-Marín R, Robles E, Labidi J, Yilmaz BA, Nefzi H. Understanding the effects of copolymerized cellulose nanofibers and diatomite nanocomposite on blend chitosan films. Carbohydr Polym 2021; 271:118424. [PMID: 34364565 DOI: 10.1016/j.carbpol.2021.118424] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/20/2021] [Accepted: 07/07/2021] [Indexed: 01/11/2023]
Abstract
Chitosan films lack various important physicochemical properties and need to be supplemented with reinforcing agents to bridge the gap. Herein, we have produced chitosan composite films supplemented with copolymerized (with polyacrylonitrile monomers) cellulose nanofibers and diatomite nanocomposite at different concentrations. The incorporation of CNFs and diatomite enhanced the physicochemical properties of the films. The mechanical characteristics and hydrophobicity of the films were observed to be improved after incorporating the copolymerized CNFs/diatomite composite at different concentrations (CNFs: 1%, 2% and 5%; diatomite: 10% and 30%). The antioxidant activity gradually increased with an increasing concentration (1-5% and 10-30%) of copolymerized CNFs/diatomite composite in the chitosan matrix. Moreover, the water solubility decreased from 30% for chitosan control film (CH-0) to 21.06% for films containing 30% diatomite and 5% CNFs (CNFs-D30-5). The scanning electron micrographs showed an overall uniform distribution of copolymerized CNFs/diatomite composite in the chitosan matrix with punctual agglomerations.
Collapse
Affiliation(s)
- Muhammad Mujtaba
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Institute of Biotechnology, Ankara University, Ankara 06110, Turkey; Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Rut Fernández-Marín
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Eduardo Robles
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain; University of Pau and the Adour Region, E2S UPPA, CNRS, Institute of Analytical and Physicochemical Sciences for the Environment and Materials (IPREM-UMR 5254), 371 Rue du Ruisseau, 40004 Mont de Marsan, France
| | - Jalel Labidi
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Bahar Akyuz Yilmaz
- Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Houwaida Nefzi
- Laboratory of Materials, Molecules and Applications, IPEST, Preparatory Institute of Scientific and Technical Studies of Tunis, Tunisia
| |
Collapse
|
96
|
Gelatin-Based Film Integrated with Copper Sulfide Nanoparticles for Active Packaging Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146307] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gelatin-based multifunctional composite films were prepared by reinforcing various amounts of copper sulfide nanoparticles (CuSNP, 0.0, 0.5, 1.0, and 2.0 wt %), and the effect of CuSNP on the film was evaluated by analyzing its physical and antibacterial properties. CuSNP makes a compatible film with gelatin. The inclusion of CuSNP significantly enhanced the UV blocking, mechanical strength, and water vapor barrier properties of the gelatin film. The inclusion of CuSNP of 1.0 wt % or less did not affect the transparency of the gelatin film. When 2.0 wt % of CuSNP was mixed, the hydrophilicity of the gelatin film did not change noticeably, but its thermal properties slightly increased. Moreover, the gelatin/CuSNP composite film presented effective antibacterial activity against E. coli and some activity against L. monocytogenes. Gelatin/CuSNP composite films with better functional and physical properties can be used for food packaging or biomedical applications.
Collapse
|
97
|
Incorporation of salmon bone gelatine with chitosan, gallic acid and clove oil as edible coating for the cold storage of fresh salmon fillet. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
98
|
Iqbal MW, Riaz T, Yasmin I, Leghari AA, Amin S, Bilal M, Qi X. Chitosan‐Based Materials as Edible Coating of Cheese: A Review. STARCH-STARKE 2021. [DOI: 10.1002/star.202100088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Muhammad Waheed Iqbal
- School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China
- Riphah College of Rehabilitation and Allied Health Sciences Riphah International University Faisalabad 38000 Pakistan
| | - Tahreem Riaz
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Iqra Yasmin
- Center of Excellence for Olive Research and Training Barani Agricultural Research Institute Chakwal 48800 Pakistan
- Department of Food Science and Technology Government College Women University Faisalabad 38000 Pakistan
| | - Ali Ahmad Leghari
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Sabahat Amin
- National Institute of Food Science & Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering Huaiyin Institute of Technology Huaian 223003 China
| | - Xianghui Qi
- School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China
| |
Collapse
|
99
|
Said N, Howell NK, Sarbon N. A Review on Potential Use of Gelatin-based Film as Active and Smart Biodegradable Films for Food Packaging Application. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- N.S. Said
- School of Food Science and Technology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Nazlin K. Howell
- Department of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - N.M Sarbon
- School of Food Science and Technology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| |
Collapse
|
100
|
Kurek M, Benbettaieb N, Ščetar M, Chaudy E, Elez-Garofulić I, Repajić M, Klepac D, Valić S, Debeaufort F, Galić K. Novel functional chitosan and pectin bio-based packaging films with encapsulated Opuntia-ficus indica waste. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|