51
|
Liang X, Cheng W, Liang Z, Zhan Y, McClements DJ, Hu K. Co-Encapsulation of Tannic Acid and Resveratrol in Zein/Pectin Nanoparticles: Stability, Antioxidant Activity, and Bioaccessibility. Foods 2022; 11:3478. [PMID: 36360091 PMCID: PMC9656218 DOI: 10.3390/foods11213478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 09/10/2023] Open
Abstract
Hydrophilic tannic acid and hydrophobic resveratrol were successfully co-encapsulated in zein nanoparticles prepared using antisolvent precipitation and then coated with pectin by electrostatic deposition. The encapsulation efficiencies of the tannic acid and resveratrol were 51.5 ± 1.9% and 77.2 ± 3.2%, respectively. The co-encapsulated nanoparticles were stable against aggregation at the investigated pH range of 2.0 to 8.0 when heated at 80 °C for 2 h and when the NaCl concentration was below 50 mM. The co-encapsulated tannic acid and resveratrol exhibited stronger in vitro antioxidant activity than ascorbic acid, as determined by 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH·) and 2,2'-azinobis (3-ethylberizothiazoline-6-sulfonic acid) radical cation (ABTS+·) scavenging assays. The polyphenols-loaded nanoparticles significantly decreased the malondialdehyde (MDA) concentration and increased the superoxide dismutase (SOD) and catalase (CAT) activities in peroxide-treated human hepatoma cells (HepG2). An in vitro digestion model was used to study the gastrointestinal fate of the nanoparticles. In the stomach, encapsulation inhibited tannic acid release, but promoted resveratrol release. However, in the small intestine, it led to a relatively high bioaccessibility of 76% and 100% for resveratrol and tannic acid, respectively. These results suggest that pectin-coated zein nanoparticles have the potential for the co-encapsulation of both polar and nonpolar nutraceuticals or drugs.
Collapse
Affiliation(s)
- Xiao Liang
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
- Clinical Medicine Department, Guangdong Maoming Health Vocational College, Maoming 525400, China
| | - Wanting Cheng
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Zhanhong Liang
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yiling Zhan
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | | | - Kun Hu
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| |
Collapse
|
52
|
Zhong W, Zhi Z, Zhao J, Li D, Yu S, Duan M, Xu J, Tong C, Pang J, Wu C. Oxidized Chitin Nanocrystals Greatly Strengthen the Stability of Resveratrol-Loaded Gliadin Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13778-13786. [PMID: 36196864 DOI: 10.1021/acs.jafc.2c04174] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Resveratrol (RES) is a natural polyphenol with a variety of health beneficial properties, but its application is greatly limited due to low aqueous solubility and poor bioavailability. This study aims to address these issues via gliadin nanoparticles stabilized with oxidized chitin nanocrystals (O-ChNCs) as a delivery system for RES. RES-loaded gliadin nanoparticles (GRNPs) were fabricated by an antisolvent method, and their formation mechanism was elucidated using zeta-potential, FTIR, XRD, and TEM. Furthermore, the effect of O-ChNCs on the colloidal stability and bioactiveness of GRNPs was discussed. The results demonstrate that O-ChNCs are adsorbed onto the surface of GRNPs through hydrogen bonding and electrostatic interactions, leading to the enhanced absolute potential and the improved hydrophobicity of the particles, which in turn facilitates the stability of the GRNPs. Furthermore, the changes in the release profile and antioxidant activity of RES in the simulated gastric and intestinal tracts indicate that the adsorption of O-ChNCs not only delays the release of RES but also has a protective effect on the antioxidant capacity of RES. This study provides significant implications for developing stable gliadin nanoparticles as delivery vehicles for bioactive substances.
Collapse
Affiliation(s)
- Weiquan Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent9000, Belgium
| | - Jianbo Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Danjie Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Shan Yu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Mengxia Duan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Jingting Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Cailing Tong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| |
Collapse
|
53
|
Mir SA, Hamid L, Bader GN, Shoaib A, Rahamathulla M, Alshahrani MY, Alam P, Shakeel F. Role of Nanotechnology in Overcoming the Multidrug Resistance in Cancer Therapy: A Review. Molecules 2022; 27:6608. [PMID: 36235145 PMCID: PMC9571152 DOI: 10.3390/molecules27196608] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality around the globe and is likely to become the major cause of global death in the coming years. As per World Health Organization (WHO) report, every year there are over 10 and 9 million new cases and deaths from this disease. Chemotherapy, radiotherapy, and surgery are the three basic approaches to treating cancer. These approaches are aiming at eradicating all cancer cells with minimum off-target effects on other cell types. Most drugs have serious adverse effects due to the lack of target selectivity. On the other hand, resistance to already available drugs has emerged as a major obstacle in cancer chemotherapy, allowing cancer to proliferate irrespective of the chemotherapeutic agent. Consequently, it leads to multidrug resistance (MDR), a growing concern in the scientific community. To overcome this problem, in recent years, nanotechnology-based drug therapies have been explored and have shown great promise in overcoming resistance, with most nano-based drugs being explored at the clinical level. Through this review, we try to explain various mechanisms involved in multidrug resistance in cancer and the role nanotechnology has played in overcoming or reversing this resistance.
Collapse
Affiliation(s)
- Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Laraibah Hamid
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Ambreen Shoaib
- Department of Pharmacy Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
54
|
Xia Y, Wang Y, Lou S, Wen M, Ni X. Fabrication and characterization of zein-encapsulated Litsea cubeba oil nanoparticles and its effect on the quality of fresh pork. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
55
|
Fabrication of chitosan colloidal gels via pH-mediated self-association. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
56
|
In Vitro Evaluation of Kaempferol-Loaded Hydrogel as pH-Sensitive Drug Delivery Systems. Polymers (Basel) 2022; 14:polym14153205. [PMID: 35956719 PMCID: PMC9370943 DOI: 10.3390/polym14153205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to prepare and evaluate kaempferol-loaded carbopol polymer (acrylic acid) hydrogel, investigate its antioxidant activity in vitro, and compare the effects on drug release under different pH conditions. Drug release studies were conducted in three different pH media (pH 3.4, 5.4, and 7.4). The kaempferol-loaded hydrogel was prepared by using carbopol 934 as the hydrogel matrix. The morphology and viscosity of the preparation were tested to understand the fluidity of the hydrogel. The antioxidant activity of the preparation was studied by scavenging hydrogen peroxide and 2,2-diphenyl-1-picrilhidrazil (DPPH) radicals in vitro and inhibiting the production of malondialdehyde in mouse tissues. The results showed that kaempferol and its preparations had high antioxidant activity. In vitro release studies showed that the drug release at pH 3.4, 5.4, and 7.4 was 27.32 ± 3.49%, 70.89 ± 8.91%, and 87.9 ± 10.13%, respectively. Kaempferol-loaded carbopol hydrogel displayed greater swelling and drug release at higher pH values (pH 7.4).
Collapse
|
57
|
|
58
|
Liu Q, Qin Y, Jiang B, Chen J, Zhang T. Development of self-assembled zein-fucoidan complex nanoparticles as a delivery system for resveratrol. Colloids Surf B Biointerfaces 2022; 216:112529. [PMID: 35561636 DOI: 10.1016/j.colsurfb.2022.112529] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
Abstract
Resveratrol is a well-studied dietary polyphenol with diverse health-promoting bioactivities. However, the aqueous insolubility and chemical instability of resveratrol hamper its practical application. This study set out to address these limitations by constructing zein-fucoidan composite nanoparticles as a delivery system of resveratrol. The optimized resveratrol-loaded zein-fucoidan particles (RE-ZFP) were obtained at zein-to-fucoidan ratio of 2:1 (w/w) and zein-to-resveratrol ratio of 10:1 (w/w), and RE-ZFP showed evenly distributed and smoothly spherical microstructures, mean particle size of 121 nm, ζ-potential of - 41 mV, encapsulation efficiency for resveratrol of 95.4%. Electrostatic, steric, hydrophobic, and hydrogen-bonding interactions were major forces required to form RE-ZFP. In addition, RE-ZFP exhibited greater photostability and colloidal stability (including pH, ionic, and storage stabilities) than resveratrol-loaded zein particles (RE-ZP). Particularly, RE-ZFP showed fairly good pH stability. Moreover, zein-fucoidan-based delivery system exhibited a controlled release of resveratrol under in vitro digestion. Finally, zein-fucoidan nanocarriers presented extremely low cytotoxicity to HIEC-6 cells. All the findings demonstrate that the zein-fucoidan nanoparticles developed in the current work will be a prospective strategy for loading resveratrol and other hydrophobic bioactive ingredients and thus extending their application in nutraceuticals or pharmaceuticals.
Collapse
Affiliation(s)
- Qianyuan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
59
|
|
60
|
Sabaghi M, Tavasoli S, Hoseyni SZ, Mozafari M, Degraeve P, Katouzian I. A critical review on approaches to regulate the release rate of bioactive compounds from biopolymeric matrices. Food Chem 2022; 382:132411. [DOI: 10.1016/j.foodchem.2022.132411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 01/20/2023]
|
61
|
Sani MA, Tavassoli M, Azizi-Lalabadi M, Mohammadi K, McClements DJ. Nano-enabled plant-based colloidal delivery systems for bioactive agents in foods: Design, formulation, and application. Adv Colloid Interface Sci 2022; 305:102709. [PMID: 35640316 DOI: 10.1016/j.cis.2022.102709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/21/2022]
Abstract
Consumers are becoming increasingly aware of the impact of their dietary choices on the environment, animal welfare, and health, which is causing many of them to adopt more plant-based diets. For this reason, many sectors of the food industry are reformulating their products to contain more plant-based ingredients. This article describes recent research on the formation and application of nano-enabled colloidal delivery systems formulated from plant-based ingredients, such as polysaccharides, proteins, lipids, and phospholipids. These delivery systems include nanoemulsions, solid lipid nanoparticles, nanoliposomes, nanophytosomes, and biopolymer nanoparticles. The composition, size, structure, and charge of the particles in these delivery systems can be manipulated to create novel or improved functionalities, such as improved robustness, higher optical clarity, controlled release, and increased bioavailability. There have been major advances in the design, assembly, and application of plant-based edible nanoparticles within the food industry over the past decade or so. As a result, there are now a wide range of different options available for creating delivery systems for specific applications. In the future, it will be important to establish whether these formulations can be produced using economically viable methods and provide the desired functionality in real-life applications.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Tavassoli
- Student's Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
62
|
Xing M, Zhao H, Ahmed R, Wang X, Liu J, Wang J, Guo A, Wang M. Fabrication of Resveratrol-loaded Zein Nanoparticles based on Flash Nanoprecipitation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
63
|
Fu J, Fu D, Zhang G, Sun C, Tang Y, Shao Z, Xu X, Song L. Fabrication, physicochemical stability and gastrointestinal fate of curcumin‐loaded nanoemulsions stabilized by bovine serum albumin‐glucose conjugates with different degree of glycation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing‐jing Fu
- School of Food Science and Technology, Dalian Polytechnic University No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
| | - Dong‐wen Fu
- School of Food Science and Technology, Dalian Polytechnic University No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
| | - Guang‐yao Zhang
- School of Food Science and Technology, Dalian Polytechnic University No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
| | - Cong Sun
- School of Food Science and Technology, Dalian Polytechnic University No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
| | - Yue Tang
- School of Food Science and Technology, Dalian Polytechnic University No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
- National Engineering Research Center of Seafood No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
| | - Zhen‐wen Shao
- Qingdao Seawit Life Science Co., Ltd. Qingdao 370200 PR China
| | - Xian‐bing Xu
- School of Food Science and Technology, Dalian Polytechnic University No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
- National Engineering Research Center of Seafood No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
- National Engineering Research Center of Seafood No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
| |
Collapse
|
64
|
Jayari A, Donsì F, Ferrari G, Maaroufi A. Nanoencapsulation of Thyme Essential Oils: Formulation, Characterization, Storage Stability, and Biological Activity. Foods 2022; 11:foods11131858. [PMID: 35804672 PMCID: PMC9265609 DOI: 10.3390/foods11131858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to improve the effectiveness of Thymus capitatus and Thymus algeriensis essential oils (EOs), as food preservatives, through their encapsulation in different delivery systems (DSs), namely nanoemulsions and biopolymeric nanoparticles. DSs’ preparation is tailored to enhance not only physical stability but also resulting Eos’ antioxidant and antibacterial activities through different fabrication methods (high-pressure homogenization emulsification or antisolvent precipitation) and using different emulsifiers and stabilizers. DSs are characterized in terms of droplet size distribution, ζ-potential, and stability over time, as well as antioxidant and antibacterial activities of encapsulated EOs. The antioxidant activity was studied by the FRAP assay; the antibacterial activity was evaluated by the well diffusion method. EOs of different compositions were tested, namely two EOs extracted from Thymus capitatus, harvested from Tunisia during different periods of the year (TC1 and TC2), and one EO extracted from Thymus algeriensis (TA). The composition of TC1 was significantly richer in carvacrol than TC2 and TA. The most stable formulation was the zein-based nanoparticles prepared with TC1 and stabilized with maltodextrins, which exhibit droplet size, polydispersity index, ζ-potential, and encapsulation efficiency of 74.7 nm, 0.14, 38.7 mV, and 99.66%, respectively. This formulation led also to an improvement in the resulting antioxidant (60.69 µg/mg vs. 57.67 µg/mg for non-encapsulated TC1) and antibacterial (inhibition diameters varying between 12 and 33 mm vs. a range between 12 and 28 mm for non-encapsulated TC1) activities of EO. This formulation offers a promising option for the effective use of natural antibacterial bioactive molecules in the food industry against pathogenic and spoilage bacteria.
Collapse
Affiliation(s)
- Asma Jayari
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia; (A.J.); (A.M.)
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
- Correspondence: ; Tel.: +39-089-964-135
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Abderrazak Maaroufi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia; (A.J.); (A.M.)
| |
Collapse
|
65
|
Zhong M, Sun Y, Sun Y, Fang L, Wang Q, Qi B, Li Y. Soy lipophilic protein self-assembled by pH-shift combined with heat treatment: Structure, hydrophobic resveratrol encapsulation, emulsification, and digestion. Food Chem 2022; 394:133514. [PMID: 35728470 DOI: 10.1016/j.foodchem.2022.133514] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 05/22/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
This study evaluates the effect of pH (pH 3 and 11) and heat treatment (60 °C) in modifying the soybean lipophilic protein (LP) for the development of an encapsulation system to co-deliver resveratrol (Res) and vitamin D3. The structural and functional properties of LP after the modification will change to varying degrees. Meanwhile, Res was loaded into the hydrophobic core of LP, and the resulting Res-loaded structures have a uniform particle size distribution and a high encapsulation efficiency (78%). When the amount of Res encapsulation increases, the emulsification and oxidation resistance of the Pickering emulsion increased; the interfacial tension and interfacial protein adsorption increased to 11.21 mN/m and 97.34%, respectively. During simulated gastrointestinal digestion, the Pickering emulsion prepared with LP-Res nanoparticles at pH 11, 60 °C (pH 11, 60 °C-LP-Res) effectively protected Res and vitamin D3 from degradation or precipitation, indicating a significant increase in bioavailability.
Collapse
Affiliation(s)
- Mingming Zhong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yufan Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuanda Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lin Fang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qi Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; National Research Center of Soybean Engineering and Technology, Harbin 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; National Research Center of Soybean Engineering and Technology, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| |
Collapse
|
66
|
Solid Dispersions Incorporated into PVP Films for the Controlled Release of Trans-Resveratrol: Development, Physicochemical and In Vitro Characterizations and In Vivo Cutaneous Anti-Inflammatory Evaluation. Pharmaceutics 2022; 14:pharmaceutics14061149. [PMID: 35745722 PMCID: PMC9230924 DOI: 10.3390/pharmaceutics14061149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 02/05/2023] Open
Abstract
Trans-resveratrol can promote various dermatological effects. However, its high crystallinity decreases its solubility and bioavailability. Therefore, solid dispersions have been developed to promote its amorphization; even so, they present as powders, making cutaneous controlled drug delivery unfeasible and an alternative necessary for their incorporation into other systems. Thus, polyvinylpyrrolidone (PVP) films were chosen with the aim of developing a controlled delivery system to treat inflammation and bacterial infections associated with atopic dermatitis. Four formulations were developed: two with solid dispersions (and trans-resveratrol) and two as controls. The films presented with uniformity, as well as bioadhesive and good barrier properties. X-ray diffraction showed that trans-resveratrol did not recrystallize. Fourier-transform infrared spectroscopy (FT-IR) and thermal analysis evidenced good chemical compatibilities. The in vitro release assay showed release values from 82.27 ± 2.60 to 92.81 ± 2.50% (being a prolonged release). In the in vitro retention assay, trans-resveratrol was retained in the skin, over 24 h, from 42.88 to 53.28%. They also had low cytotoxicity over fibroblasts. The in vivo assay showed a reduction in inflammation up to 66%. The films also avoided Staphylococcus aureus’s growth, which worsens atopic dermatitis. According to the results, the developed system is suitable for drug delivery and capable of simultaneously treating inflammation and infections related to atopic dermatitis.
Collapse
|
67
|
Li J, Chen Z. Fabrication of heat-treated soybean protein isolate-EGCG complex nanoparticle as a functional carrier for curcumin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
68
|
Cheng C, Yu X, Geng F, Wang L, Yang J, Huang F, Deng Q. Review on the Regulation of Plant Polyphenols on the Stability of Polyunsaturated-Fatty-Acid-Enriched Emulsions: Partitioning Kinetic and Interfacial Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3569-3584. [PMID: 35306817 DOI: 10.1021/acs.jafc.1c05335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The plant polyphenols are normally presented as natural functional antioxidants, which also possess the potential ability to improve the physicochemical stability of polyunsaturated fatty acid (PUFA)-enriched emulsions by interface engineering. This review discussed the potential effects of polyphenols on the stability of PUFA-enriched emulsions from the perspective of the molecular thermodynamic antioxidative analysis, the kinetic of interfacial partitioning, and the covalent and non-covalent interactions with emulsifiers. Recently, research studies have proven that the interfacial structure of emulsions can be concurrently optimized via promoting interfacial partitioning of polyphenols and further increasing interfacial thickness and strength. Moreover, the applied limitations of polyphenols in PUFA-enriched emulsions were summarized, and then some valuable and constructive viewpoints were put forward in this review to provide guidance for the use of polyphenols in constructing PUFA-enriched emulsions.
Collapse
Affiliation(s)
- Chen Cheng
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xiao Yu
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, Sichuan 610106, People's Republic of China
| | - Lei Wang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Jing Yang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Fenghong Huang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Qianchun Deng
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
69
|
Yuan Y, Ma M, Wang D, Xu Y. A review of factors affecting the stability of zein-based nanoparticles loaded with bioactive compounds: from construction to application. Crit Rev Food Sci Nutr 2022; 63:7529-7545. [PMID: 35253532 DOI: 10.1080/10408398.2022.2047881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Zein-based nanoparticles loaded with bioactive compounds have positive prospects in the food industry, but an important limiting factor for development is colloidal instability. Currently, extensive researches are focused on solving the instability of zein nanoparticles, but since the beginning of the studies, there has not been a summary of the factors affecting the stability of zein-based nanoparticles. In the present work, the factors were reviewed comprehensively from the perspective of carrier construction and application evaluation. The former mainly includes type, quantity, and characteristics of biopolymer, the mass ratio of biopolymer/bioactive compound to zein, blending sequence of biopolymer, and location of encapsulated bioactive compounds. The latter mainly includes pH, heating, ionic strength, storage, freeze-drying, and gastrointestinal digestion. The former is the prerequisite for the success of the latter. The challenge is that stability research is limited to the laboratory level, and it is difficult to ensure that the stability results are suitable for commercial food matrices due to their complexity. At the laboratory level, the future trends are the influence of external energy and the cross-complexity and uniformity of stability research. The review is expected to provide systematic understanding and guidance for the development of zein-based nanoparticles stability.
Collapse
Affiliation(s)
- Yongkai Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Mengjie Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
70
|
Leena MM, Anukiruthika T, Moses J, Anandharamakrishnan C. Co-delivery of curcumin and resveratrol through electrosprayed core-shell nanoparticles in 3D printed hydrogel. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
71
|
Maillard-Type Protein-Polysaccharide Conjugates and Electrostatic Protein-Polysaccharide Complexes as Delivery Vehicles for Food Bioactive Ingredients: Formation, Types, and Applications. Gels 2022; 8:gels8020135. [PMID: 35200516 PMCID: PMC8871776 DOI: 10.3390/gels8020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Due to their combination of featured properties, protein and polysaccharide-based carriers show promising potential in food bioactive ingredient encapsulation, protection, and delivery. The formation of protein–polysaccharide complexes and conjugates involves non-covalent interactions and covalent interaction, respectively. The common types of protein–polysaccharide complex/conjugate-based bioactive ingredient delivery systems include emulsion (conventional emulsion, nanoemulsion, multiple emulsion, multilayered emulsion, and Pickering emulsion), microcapsule, hydrogel, and nanoparticle-based delivery systems. This review highlights the applications of protein–polysaccharide-based delivery vehicles in common bioactive ingredients including polyphenols, food proteins, bioactive peptides, carotenoids, vitamins, and minerals. The loaded food bioactive ingredients exhibited enhanced physicochemical stability, bioaccessibility, and sustained release in simulated gastrointestinal digestion. However, limited research has been conducted in determining the in vivo oral bioavailability of encapsulated bioactive compounds. An in vitro simulated gastrointestinal digestion model incorporating gut microbiota and a mucus layer is suggested for future studies.
Collapse
|
72
|
Mohammadzadeh M, Hamishehkar H, Vatanparast M, Akhavan Sales ZH, Nabi A, Mazaheri F, Mohseni F, Talebi AR. The effect of testosterone and antioxidants nanoliposomes on gene expressions and sperm parameters in asthenospermic individuals. Drug Dev Ind Pharm 2022; 47:1733-1743. [PMID: 35156468 DOI: 10.1080/03639045.2022.2042552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND antioxidants that used for the infertility treatment cannot have their complete effectiveness, because of their instability in the culture medium. SIGNIFICANCE one of the most advances, in the drug delivery systems, is nanoliposomes-loaded, as biodegradable and bioavailable carriers. Hormonal and antioxidant agents encapsulating inside the nanoliposomes were used, to increase the effectiveness of antioxidants in the sperm culture medium. MATERIALS Semen sample from 15 asthenospermia were divided into 10 equal parts. After preparation, the sperms were incubated with free form of drugs and nanocarriers contained resveratrol, catalase, resveratrol-catalase and testosterone for 45 min. All sperm parameters, sperm DNA and gene expressions were evaluated before and after freezing. RESULTS Before freezing, all nanocarriers and free testosterone showed higher sperm motility compared to free drugs (P=.000). Free Testosterone and free resveratrol-catalase had higher DNA damage compared to nanocarriers (P=.000). Before freezing, the blank nanoliposome and testosterone nanoliposomes had the lowest HSP70 gene expression respectively (P = 0.005) (P = 0.001). After freezing, a significant reduction in sperm motility was observed in the free resveratrol-catalase group (P=.003). Also, a significant increase in sperm viability was observed in the free testosterone and nanoliposomes of blank and testosterone (P > 0.05). The least DNA damage was related to catalase nanoliposomes (P=.000). All nanoliposomes, especially catalase, had the highest percentage of class I morphology compared to the control group (P=.000). CONCLUSIONS Nanoliposomes could improve the sperm parameters and DNA integrity before and after freezing, by increasing the effectiveness of antioxidants. So, it can be recommended in the ART lab.
Collapse
Affiliation(s)
- Masoomeh Mohammadzadeh
- Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Research and Clinical Center for Infertility, and Research committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R, Iran
| | - Mahboubeh Vatanparast
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - ZHima Akhavan Sales
- Department of immunology, international campus, shahid sadoughi universirt of medical sciences, yazd, iran
| | - Ali Nabi
- Andrology research center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fahimeh Mazaheri
- Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Mohseni
- Department of Medical Education, Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Talebi
- Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
73
|
Zhong M, Sun Y, Sun Y, Song H, Zhang S, Qi B, Li Y. Sodium Dodecyl Sulfate-Dependent Disassembly and Reassembly of Soybean Lipophilic Protein Nanoparticles: An Environmentally Friendly Nanocarrier for Resveratrol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1640-1651. [PMID: 35023729 DOI: 10.1021/acs.jafc.1c06622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of protein-based nanocarriers to improve the water solubility, stability, and bioavailability of hydrophobic or poorly soluble bioactive molecules has attracted increasing interest in the food and pharmaceutical industries. In this study, a network-like nanostructure of soybean lipophilic protein (LP) was obtained through sodium dodecyl sulfate (SDS)-dependent decomposition and recombination. This nanostructure served as an excellent nanocarrier for resveratrol (Res), a poorly soluble biologically active molecule. The structure of LP gradually decomposed into its independent subunits at SDS concentrations ≤5% (w/v). After the removal of SDS, the dissociated subunits partially reassembled into a fibrous network-like nanostructure in which the Res molecules were encapsulated, and they preferentially interacted with the hydrophobic subunits (α and α' subunits and the 24 kDa subunit) of the protein. This system exhibited a high encapsulation efficiency (95.93%), high water solubility (85.29%), extraordinary oxidation resistance (DPPH radical scavenging activity of 67.1%), and improved Res digestibility (78.7%).
Collapse
Affiliation(s)
- Mingming Zhong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yufan Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuanda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hanyu Song
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
- National Research Center of Soybean Engineering and Technology, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
- National Research Center of Soybean Engineering and Technology, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| |
Collapse
|
74
|
Smruthi MR, Nallamuthu I, Anand T. A comparative study of optimized naringenin nanoformulations using nano-carriers (PLA/PVA and zein/pectin) for improvement of bioavailability. Food Chem 2022; 369:130950. [PMID: 34474288 DOI: 10.1016/j.foodchem.2021.130950] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
Naringenin, a lipophilic flavanone of citrus fruits, was encapsulated for enhanced bioavailability using biodegradable polymers of polylactic acid/polyvinyl alcohol (PLA/PVA) as well as zein/pectin as P/P-Nar-NPs and Z/P-Nar-NPs, respectively. The formulation variables were optimized using response surface methodology to achieve smaller particle size with higher surface charge and encapsulation efficiencies. The optimized formulations were physically characterized by SEM, FTIR, TGA and XRD techniques. Compared to Z/P-Nar-NPs, the P/P-Nar-NPs had better encapsulation efficiency and sustained release of naringenin under simulated gastrointestinal conditions. Furthermore, the oral administration of single dose of free and nanoforms of naringenin in rats (90 mg/kg b.wt) showed higher efficacy of PLA/PVA in improving the relative bioavailability of naringenin (4.7-fold) as compared to the zein/pectin polymer (1.9-fold). Overall, the present study provides insights into the formulation performance of the encapsulated bioactive compound under different polymeric matrices.
Collapse
Affiliation(s)
- M R Smruthi
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| | - Ilaiyaraja Nallamuthu
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India.
| | - T Anand
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| |
Collapse
|
75
|
Surface coating of zein nanoparticles to improve the application of bioactive compounds: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
76
|
Sarma S, Agarwal S, Bhuyan P, Hazarika J, Ganguly M. Resveratrol-loaded chitosan-pectin core-shell nanoparticles as novel drug delivery vehicle for sustained release and improved antioxidant activities. ROYAL SOCIETY OPEN SCIENCE 2022; 9:210784. [PMID: 35127111 PMCID: PMC8808105 DOI: 10.1098/rsos.210784] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/05/2022] [Indexed: 05/05/2023]
Abstract
Resveratrol, chemically known as 3,5,4'-trihydroxy-trans-stilbene, is a natural polyphenol with promising multi-targeted health benefits. The optimal therapeutic uses of resveratrol are limited due to its poor solubility, rapid metabolism and low bioavailability. To address the issues, we have encapsulated resveratrol inside the nanosized core made of chitosan and coated this core with pectin-shell in order to fabricate a drug delivery vehicle which can entrap resveratrol for a longer period of time. The core-shell nanoparticles fabricated in this way were characterized with the help of Fourier transform infrared spectrometer, field-emission scanning electron microscope, field-emission transmission electron microscopy/selected area electron diffraction, high-resolution transmission electron microscope, dynamic light scattering and zeta potential measurements. In vitro drug release study showed the ability of the core-shell nanoparticles to provide sustained release of resveratrol for almost 30 h. The release efficiency of the drug was found to be pH dependent, and a sequential control over drug release can be obtained by varying the shell thickness. The resveratrol encapsulated in a nanocarrier was found to have a better in vitro antioxidant activity than free resveratrol as determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. This work finally offers a novel nano-based drug delivery system.
Collapse
Affiliation(s)
- Shruti Sarma
- Cotton University, Guwahati 781001, Assam, India
| | | | | | | | | |
Collapse
|
77
|
Fu JJ, Zhang GY, Zhang ZH, Shao ZW, Xu XB, Song L. Formation mechanism of nanocomplex of resveratrol and glycated bovine serum albumin and their glycation-enhanced stability showing glycation extent. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
78
|
Chen Y, Gao X, Liu S, Cai Q, Wu L, Sun Y, Xia G, Wang Y. Establishment and Characterization of Stable Zein/Glycosylated Lactoferrin Nanoparticles to Enhance the Storage Stability and in vitro Bioaccessibility of 7,8-Dihydroxyflavone. Front Nutr 2022; 8:806623. [PMID: 35047548 PMCID: PMC8763018 DOI: 10.3389/fnut.2021.806623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
In this work, the lactoferrin (LF) was glycosylated by dextran (molecular weight 10, 40, and 70 kDa, LF 10K, LF 40K, and LF 70K) via Maillard reaction as a stabilizer to establish zein/glycosylated LF nanoparticles and encapsulate 7,8-dihydroxyflavone (7,8-DHF). Three zein/glycosylated LF nanoparticles (79.27–87.24 nm) with low turbidity (<0.220) and polydispersity index (PDI) (<0.230) were successfully established by hydrophobic interactions and hydrogen bonding. Compared with zein/LF nanoparticles, zein/glycosylated LF nanoparticles further increased stability to ionic strength (0–500 mM NaCl) at low pH conditions. Zein/glycosylated LF nanoparticles had nanoscale spherical shape and glycosylated LF changed surface morphology of zein nanoparticles. Besides, encapsulated 7,8-DHF exhibited an amorphous state inside zein/glycosylated LF nanoparticles. Most importantly, zein/glycosylated LF nanoparticles had good water redispersibility, high encapsulation efficiency (above 98.50%), favorable storage stability, and bioaccessibility for 7,8-DHF, particularly LF 40K. Collectively, the above research provides a theoretical reference for the application of zein-based delivery systems.
Collapse
Affiliation(s)
- Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xiaojing Gao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Qiuxing Cai
- College of Food Engineering, Beibu Gulf University, Qinzhou, China
| | - Lijun Wu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Yi Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Guobin Xia
- Department of Pediatrics Section of Neonatology, Texas Children's Hospital, Houston, TX, United States
| | - Yueqi Wang
- College of Food Engineering, Beibu Gulf University, Qinzhou, China.,Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
79
|
Enhancing bioaccessibility of resveratrol by loading in natural porous starch microparticles. Int J Biol Macromol 2022; 194:982-992. [PMID: 34852260 DOI: 10.1016/j.ijbiomac.2021.11.157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 01/26/2023]
Abstract
Resveratrol (RSV) is a lipophilic polyphenol susceptible to photo- and thermal degradation, and strategies are to be studied to enable its distribution in food matrices, prevent its degradation during storage, and increase its bioaccessibility during digestion. In this study, the porous matrix of natural starch, in the form of milled freeze-dried potato microparticles (FDPMs), was studied as an absorbent to load RSV. The binary solvent of ethanol and polyethylene glycol 400 (40:60 v/v) was used to dissolve 30% w/v RSV for diffusion into FDPMs. After ethanol was evaporated, the loading capacity was 112 mg RSV/g FDPMs and was maintained at 104 mg RSV/g FDPMs (92.9% retention) after 110-day ambient storage. The RSV stability under UV irradiation at 253 nm was improved by 32% due to shielding effect of FDPMs, and the ferric reducing power was 25% higher than the pristine RSV. The release of RSV in FDPMs was significantly higher than pristine RSV during simulated gastric and intestinal digestions (82.3% vs 51.4% bioaccessibility). The increased reducing power and bioaccessibility were supported by the amorphous state of RSV in FDPMs. The present study illustrates the potential of porous vegetable microparticles as natural matrices to load lipophilic bioactive compounds in functional foods.
Collapse
|
80
|
He JR, Zhu JJ, Yin SW, Yang XQ. Bioaccessibility and intracellular antioxidant activity of phloretin embodied by gliadin/sodium carboxymethyl cellulose nanoparticles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
81
|
Gagliardi A, Voci S, Bonacci S, Iriti G, Procopio A, Fresta M, Cosco D. SCLAREIN (SCLAREol contained in zeIN) nanoparticles: Development and characterization of an innovative natural nanoformulation. Int J Biol Macromol 2021; 193:713-720. [PMID: 34717977 DOI: 10.1016/j.ijbiomac.2021.10.184] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/14/2021] [Accepted: 10/24/2021] [Indexed: 01/08/2023]
Abstract
Sclareol is a labdane diterpene which carries on a broad range of biological activities. However, its poor water solubility and bioavailability are the foremost drawbacks that limit its application in therapeutics. The purpose of this investigation was to develop a natural nanoformulation made up of a biopolymer i.e. zein and sclareol in order to address this issue and to enhance the pharmacological efficacy of the drug. The sclarein nanoparticles (sclareol-loaded zein nanosystems) showed a typical monomodal pattern, characterized by a mean diameter of ~120 nm, a narrow size distribution and a surface charge of ~-30 mV. The evaluation of the entrapment efficiency and the drug-loading capacity of the nanosystems demonstrated the noteworthy ability of the protein matrix to hold sclareol while allowing a gradual release of the compound over time. The nanosystems increased the cytotoxicity of sclareol at a drug concentration of ≥5 μM with respect to the free compound after just 24 h incubation against various cancer cell lines. Indeed, the interaction of tritiated sclarein formulations with cells showed a time-dependent cell uptake of the nanosystems commencing as early as 1 h from the onset of incubation, favouring a significant decrease of the efficacious concentration of the drug.
Collapse
Affiliation(s)
- Agnese Gagliardi
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S Venuta", I-88100 Catanzaro, Italy
| | - Silvia Voci
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S Venuta", I-88100 Catanzaro, Italy
| | - Sonia Bonacci
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S Venuta", I-88100 Catanzaro, Italy
| | - Giuseppe Iriti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S Venuta", I-88100 Catanzaro, Italy
| | - Antonio Procopio
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S Venuta", I-88100 Catanzaro, Italy
| | - Massimo Fresta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S Venuta", I-88100 Catanzaro, Italy
| | - Donato Cosco
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S Venuta", I-88100 Catanzaro, Italy.
| |
Collapse
|
82
|
Xu YY, Huo YF, Xu L, Zhu YZ, Wu YT, Wei XY, Zhou T. Resveratrol-loaded ovalbumin/Porphyra haitanensis polysaccharide composite nanoparticles: Fabrication, characterization and antitumor activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
83
|
Can A, Tyler AI, Mackie AR. Potential use of bile salts in lipid self-assembled systems for the delivery of phytochemicals. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
84
|
Niu F, Hu D, Gu F, Du Y, Zhang B, Ma S, Pan W. Preparation of ultra-long stable ovalbumin/sodium carboxymethylcellulose nanoparticle and loading properties of curcumin. Carbohydr Polym 2021; 271:118451. [PMID: 34364584 DOI: 10.1016/j.carbpol.2021.118451] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 11/25/2022]
Abstract
OVA (ovalbumin)/CMC (sodium carboxymethylcellulose) nanoparticles are prepared by combining complex coacervation and thermal induction. The effect of different parameters on stability of OVA/CMC nanoparticles (different ratios, pH, temperature, salt concentration and storage time) is investigated. And then the loading and stabilizing mechanism of particles on curcumin are further analyzed. After heating, OVA and CMC in particle could further cross-linking and a highly salt-tolerant and ultra-long stable nanoparticle can be formed. OVA/CMC nanoparticle with the loose structure of wool ball could effectively load curcumin with the loading content and loading efficiency of 36.40 and 95.40%, 36.30 and 92.82%, 36.0 and 94.48% for the ratios of 1:2, 1:1 and 2:1, respectively. Curcumin-loaded of OVA/CMC nanoparticles show good DPPH· scavenging activity, Ferric-reducing ability and ABTS+ scavenging activity compared with curcumin/water. The results can be useful for designing food and beverage particle with improving bioactive substances functional properties.
Collapse
Affiliation(s)
- Fuge Niu
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Anhui Rongda Poultry Development Co., Ltd., Xuancheng 242200, China.
| | - Demei Hu
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feina Gu
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yixuan Du
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Bin Zhang
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shuang Ma
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weichun Pan
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
85
|
Zou Y, Qian Y, Rong X, Cao K, McClements DJ, Hu K. Encapsulation of quercetin in biopolymer-coated zein nanoparticles: Formation, stability, antioxidant capacity, and bioaccessibility. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106980] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
86
|
Ruan YT, Wang WJ, Zheng GD, Yin ZP, Chen JG, Li JE, Chen LL, Zhang QF. In vivo and in vitro comparison of three astilbin encapsulated zein nanoparticles with different outer shells. Food Funct 2021; 12:9784-9792. [PMID: 34533153 DOI: 10.1039/d1fo01522b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three shell materials, lecithin (ZNP-L), chitosan (ZNP-CH) and sodium caseinate (ZNP-SC), were used to prepare core-shell zein nanoparticles. Astilbin was encapsulated as a model flavonoid to compare the influence of the shell materials on zein nanoparticles both in vitro and in vivo. The particle size was moderately increased by lecithin and sodium caseinate, but notably increased by chitosan. All the shell materials provided good redispersibility for the nanoparticles and significantly improved the colloidal stability. Chitosan and sodium caseinate significantly delayed and decreased the feces excretion of astilbin in rats, while lecithin exhibited a very weak effect. The results may be attributed to the difference in mucoadhesive properties between the shell materials. As a consequence, the bioavailability values of astilbin in rats were 18.2, 9.3 and 1.89 times increased through ZNP-CH, ZNP-SC and ZNP-L compared with that of free astilbin, respectively.
Collapse
Affiliation(s)
- Yi-Ting Ruan
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Guo-Dong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Zhong-Ping Yin
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Ji-Guang Chen
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jing-En Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Ling-Li Chen
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Qing-Feng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
87
|
Cinan E, Cesur S, Erginer Haskoylu M, Gunduz O, Toksoy Oner E. Resveratrol-Loaded Levan Nanoparticles Produced by Electrohydrodynamic Atomization Technique. NANOMATERIALS 2021; 11:nano11102582. [PMID: 34685023 PMCID: PMC8540966 DOI: 10.3390/nano11102582] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Considering the significant advances in nanostructured systems in various biomedical applications and the escalating need for levan-based nanoparticles as delivery systems, this study aimed to fabricate levan nanoparticles by the electrohydrodynamic atomization (EHDA) technique. The hydrolyzed derivative of levan polysaccharide from Halomonas smyrnensis halophilic bacteria, hydrolyzed Halomonas levan (hHL), was used. Nanoparticles were obtained by optimizing the EHDA parameters and then they were characterized in terms of morphology, molecular interactions, drug release and cell culture studies. The optimized hHL and resveratrol (RS)-loaded hHL nanoparticles were monodisperse and had smooth surfaces. The particle diameter size of hHL nanoparticles was 82.06 ± 15.33 nm. Additionally, release of RS from the fabricated hHL nanoparticles at different pH conditions were found to follow the first-order release model and hHL with higher RS loading showed a more gradual release. In vitro biocompatibility assay with human dermal fibroblast cell lines was performed and cell behavior on coated surfaces was observed. Nanoparticles were found to be safe for healthy cells. Consequently, the fabricated hHL-based nanoparticle system may have potential use in drug delivery systems for wound healing and tissue engineering applications and surfaces could be coated with these electrosprayed particles to improve cellular interaction.
Collapse
Affiliation(s)
- Ezgi Cinan
- Industrial Biotechnology and System Biology (IBSB) Research Group, Department of Bioengineering, Marmara University, Istanbul 34722, Turkey; (E.C.); (M.E.H.)
| | - Sumeyye Cesur
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (S.C.); (O.G.)
| | - Merve Erginer Haskoylu
- Industrial Biotechnology and System Biology (IBSB) Research Group, Department of Bioengineering, Marmara University, Istanbul 34722, Turkey; (E.C.); (M.E.H.)
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (S.C.); (O.G.)
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Ebru Toksoy Oner
- Industrial Biotechnology and System Biology (IBSB) Research Group, Department of Bioengineering, Marmara University, Istanbul 34722, Turkey; (E.C.); (M.E.H.)
- Correspondence:
| |
Collapse
|
88
|
Einhorn-Stoll U, Archut A, Eichhorn M, Kastner H. Pectin - Plant protein systems and their application. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
89
|
Zhu P, He J, Huang S, Han L, Chang C, Zhang W. Encapsulation of resveratrol in zein-polyglycerol conjugate stabilized O/W nanoemulsions: Chemical stability, in vitro gastrointestinal digestion, and antioxidant activity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
90
|
Bioaccessibility of different types of phenolic compounds co-encapsulated in alginate/chitosan-coated zein nanoparticles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
91
|
Sharifi-Rad J, Quispe C, Mukazhanova Z, Knut E, Turgumbayeva A, Kipchakbayeva A, Seitimova G, Mahomoodally MF, Lobine D, Koay A, Wang J, Sheridan H, Leyva-Gómez G, Prado-Audelo MLD, Cortes H, Rescigno A, Zucca P, Sytar O, Imran M, Rodrigues CF, Cruz-Martins N, Ekiert H, Kumar M, Abdull Razis AF, Sunusi U, Kamal RM, Szopa A. Resveratrol-Based Nanoformulations as an Emerging Therapeutic Strategy for Cancer. Front Mol Biosci 2021; 8:649395. [PMID: 34540888 PMCID: PMC8440914 DOI: 10.3389/fmolb.2021.649395] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Resveratrol is a polyphenolic stilbene derivative widely present in grapes and red wine. Broadly known for its antioxidant effects, numerous studies have also indicated that it exerts anti-inflammatory and antiaging abilities and a great potential in cancer therapy. Regrettably, the oral administration of resveratrol has pharmacokinetic and physicochemical limitations such as hampering its effects so that effective administration methods are demanding to ensure its efficiency. Thus, the present review explores the published data on the application of resveratrol nanoformulations in cancer therapy, with the use of different types of nanodelivery systems. Mechanisms of action with a potential use in cancer therapy, negative effects, and the influence of resveratrol nanoformulations in different types of cancer are also highlighted. Finally, the toxicological features of nanoresveratrol are also discussed.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Zhazira Mukazhanova
- Department of Natural Sciences and Technologies, Sarsen Amanzholov East Kazakhstan State University, Ust-Kamenogorsk, Kazakhstan
| | - Ewa Knut
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| | - Aknur Turgumbayeva
- Asfendiyarov Kazakh National Medical University, School Pharmacy, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Higher School of Medicine, Almaty, Kazakhstan
| | - Aliya Kipchakbayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Devina Lobine
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Aaron Koay
- Trinity College Dublin, NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Jinfan Wang
- Trinity College Dublin, NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Helen Sheridan
- Trinity College Dublin, NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico City, Mexico
| | - María L. Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico City, Mexico
| | - Hernán Cortes
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico City, Mexico
| | - Antonio Rescigno
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Oksana Sytar
- Department of Plant Biology, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Célia F. Rodrigues
- Laboratory for Process Engineering, Environment, Biotechnology and Energy—Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR – Central Institute for Research on Cotton Technology, Mumbai, India
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, Dutse, Nigeria
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| |
Collapse
|
92
|
Interactions of the molecular assembly of polysaccharide-protein systems as encapsulation materials. A review. Adv Colloid Interface Sci 2021; 295:102398. [PMID: 33931199 DOI: 10.1016/j.cis.2021.102398] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 01/05/2023]
Abstract
Studying the interactions of biopolymers like polysaccharides and proteins is quite important mainly due to the wide number of applications such as the stabilization and encapsulation of active compounds in complex systems. Complexation takes place when materials like proteins and polysaccharides are blended to promote the entrapment of active compounds. The interaction forces between the charged groups in the polymeric chains allow the miscibility of the components in the complex system. Understanding the interactions taking place between the polymers as well as between the wall material and the active compound is important when designing delivery systems. However, some features of the biopolymers like structure, functional groups, or electrical charge as well as extrinsic parameters like pH or ratios might affect the structure and the performance of the complex system when used in encapsulation applications. This work summarizes the recent progress of the polysaccharide/protein complexes for encapsulation and the influence of the pH on the structural modifications during the complexation process.
Collapse
|
93
|
Gómez-Guillén MC, Montero MP. Enhancement of oral bioavailability of natural compounds and probiotics by mucoadhesive tailored biopolymer-based nanoparticles: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106772] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
94
|
Comparative study of whey protein isolate and gelatin treated by pH-shifting combined with ultrasonication in loading resveratrol. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
95
|
Mokgehle TM, Madala N, Gitari WM, Tavengwa NT. Advances in the development of biopolymeric adsorbents for the extraction of metabolites from nutraceuticals with emphasis on Solanaceae and subsequent pharmacological applications. Carbohydr Polym 2021; 264:118049. [PMID: 33910751 DOI: 10.1016/j.carbpol.2021.118049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/17/2022]
Abstract
Biopolymers are renowned for their sustainable, biodegradable, biocompatible and most of them have antitoxic characteristics. These versatile naturally derived compounds include proteins, polynucleotides (RNA and DNA) and polysaccharides. Cellulose and chitosan are the most abundant polysaccharides. Proteins and polysaccharides have been applied as emulsifiers. Additional applications of proteins and polysaccharides include cosmetics, food and wastewater treatment for adsorption of dyes and pesticides. However, more interesting applications of biopolymers are emerging, such as use in transport systems for delivery of plant derived nutraceuticals to sites of inflammation, due to its inherent ability to immobilize different biological and chemical systems. This review aims to give a summary on new trends and complement what is already known in the development of polysaccharides and proteins as adsorbents of nutraceutical compounds. The application of polysaccharides/protein containing the adsorbed Solanum derived nutraceutical compounds for drug deliveryis also reviewed.
Collapse
Affiliation(s)
- Tebogo Mphatlalala Mokgehle
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Ntakadzeni Madala
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Wilson Mugera Gitari
- Department of Ecology and Resource Management, School of Environmental Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
96
|
Wei Y, Li C, Dai L, Zhang L, Liu J, Mao L, Yuan F, Gao Y. The construction of resveratrol-loaded protein-polysaccharide-tea saponin complex nanoparticles for controlling physicochemical stability and in vitro digestion. Food Funct 2021; 11:9973-9983. [PMID: 33118591 DOI: 10.1039/d0fo01741h] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The novel zein-propylene glycol alginate (PGA) -tea saponin (TS) ternary complex nanoparticles were fabricated to deliver resveratrol. TS was firstly introduced to modulate the functional attributes, microstructure, molecular interactions and gastrointestinal digestion of the complex nanoparticles. The size of zein-PGA-TS complex nanoparticles was between 281.9 and 309.7 nm. In the presence of TS, the encapsulation efficiency of resveratrol was significantly elevated from 58.43% to 85.58%. The environmental stability of resveratrol was improved through entrapping into the complex nanoparticles with the rise in TS proportion. Multiple spectroscopic methods revealed that TS altered the micro-environment and secondary structure of the protein. Hydrogen bonds, hydrophobic effects and electrostatic interactions contributed to the formation of complex nanoparticles. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) patterns showed the amorphous nature of the encapsulated resveratrol. Field emission scanning electron microscopy (FE-SEM) confirmed the globular shape of the nanoparticles and their different aggregation states were dependent on the particle compositions. Moreover, the zein-PGA-TS complex nanoparticles exhibited the best sustained release in the small intestine when the mass ratio of zein to TS was 5 : 1 (23.20% in the stomach and 63.11% in the small intestine). These findings indicated the influence of TS on the properties and applications of the protein-polysaccharide complexes, which provided a new insight into the development of novel food grade nanoparticles with desirable stability and digestion behaviour.
Collapse
Affiliation(s)
- Yang Wei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Shi Q, Wang X, Tang X, Zhen N, Wang Y, Luo Z, Zhang H, Liu J, Zhou D, Huang K. In vitro antioxidant and antitumor study of zein/SHA nanoparticles loaded with resveratrol. Food Sci Nutr 2021; 9:3530-3537. [PMID: 34262713 PMCID: PMC8269682 DOI: 10.1002/fsn3.2302] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 01/03/2023] Open
Abstract
Resveratrol (RES) loaded Zein-SHA (low-molecular-weight sodium hyaluronate) nanoparticles with average diameter of about 152.13 nm and polydispersity index (PDI) of 0.122, which can be used to encapsulate, protect and deliver resveratrol. By measuring ABTS free radical scavenging ability and iron (III) reducing power, it was determined that encapsulated resveratrol has higher in vitro antioxidant activity than free resveratrol. When tested with murine breast cancer cells 4T1, the encapsulated resveratrol also showed higher antiproliferative activity than free resveratrol, with IC50 values of 14.73 and 17.84 μg/ml, respectively. The colloidal form of resveratrol developed in this research may be particularly suitable for functional foods and beverages, as well as dietary supplements and pharmaceutical products.
Collapse
Affiliation(s)
- Qiankun Shi
- College of Food Science and EngineeringNational Engineering Laboratory for Wheat and Corn Deep ProcessingJilin Agricultural UniversityChangchunChina
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xinya Wang
- College of Food Science and EngineeringNational Engineering Laboratory for Wheat and Corn Deep ProcessingJilin Agricultural UniversityChangchunChina
| | - Xudong Tang
- Department of Food ScienceRutgers UniversityNew BrunswickNJUSA
| | - Nuo Zhen
- College of Food Science and EngineeringNational Engineering Laboratory for Wheat and Corn Deep ProcessingJilin Agricultural UniversityChangchunChina
| | - Yupeng Wang
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Zhijian Luo
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Hao Zhang
- College of Food Science and EngineeringNational Engineering Laboratory for Wheat and Corn Deep ProcessingJilin Agricultural UniversityChangchunChina
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchunChina
| | - Jingsheng Liu
- College of Food Science and EngineeringNational Engineering Laboratory for Wheat and Corn Deep ProcessingJilin Agricultural UniversityChangchunChina
| | - Dongfang Zhou
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchunChina
| |
Collapse
|
98
|
Zhang Y, Li Y, Lin C, Zhang J, Gao H, Chen J. Dioscin-loaded zein nanoparticles alleviate lipopolysaccharide-induced acute kidney injury via the microRNA-let 7i signalling pathways. IET Nanobiotechnol 2021; 15:465-472. [PMID: 34694758 PMCID: PMC8675823 DOI: 10.1049/nbt2.12051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/01/2020] [Accepted: 08/17/2020] [Indexed: 11/22/2022] Open
Abstract
The present study investigates the potential role of dioscin (DIO) in the lipopolysaccharide (LPS)-induced kidney injury. For this purpose, DIO-loaded zein nanoparticles (DIO-ZNPs) were formulated and evaluated for physicochemical parameters. The DIO-ZNPs exhibited a controlled release of drug compared with that of the free drug suspension. Results showed that the cell viability of NRK-52E consistently decreased with the increase in LPS from 0.01 µg/ml to 2 µg/ml. When compared with LPS, DIO-induced NPs showed 1.10-, 1.32-, 1.57- and 1.92-fold increase in the cell viability for concentrations of 20 µg/ml, 50 µg/ml, 100 µg/ml and 200 µg/ml, respectively. DIO-ZNPs exhibited the most remarkable recovery in the cell proliferation compared with free DIO as shown by the cellular morphology analysis. Furthermore, Annexin-V staining analysis showed that the LPS-treated cells possess the lowest green fluorescence indicating fewer viable cells, whereas DIO-ZNPs exhibited the maximum green fluorescence comparable with that of the non-treated cells indicating maximum cell viability. Furthermore, the results show that DIO-ZNPs significantly increased the expression of miR-let-7i in the epithelial kidney cells, whereas the expression levels of TLR4 were significantly downregulated compared with that of the LPS-treated cells. In conclusion, miR-let-7i could be an interesting therapeutic target and nanoparticle-based DIO could be a potential candidate in the management of acute kidney injury.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Renal MedicineSecond Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Yuangen Li
- Department of Renal MedicineSecond Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Changda Lin
- Department of Renal MedicineSecond Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Jiequn Zhang
- Department of Renal MedicineSecond Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Hanyuan Gao
- Department of Renal MedicineSecond Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Jinhai Chen
- Department of Renal MedicineSecond Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| |
Collapse
|
99
|
Properties and Applications of Nanoparticles from Plant Proteins. MATERIALS 2021; 14:ma14133607. [PMID: 34203348 PMCID: PMC8269707 DOI: 10.3390/ma14133607] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/12/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
Nanoparticles from plant proteins are preferred over carbohydrates and synthetic polymeric-based materials for food, medical and other applications. In addition to their large availability and relatively low cost, plant proteins offer higher possibilities for surface modifications and functionalizing various biomolecules for specific applications. Plant proteins also avoid the immunogenic responses associated with the use of animal proteins. However, the sources of plant proteins are very diverse, and proteins from each source have distinct structures, properties and processing requirements. While proteins from corn (zein) and wheat (gliadin) are soluble in aqueous ethanol, most other plant proteins are insoluble in aqueous conditions. Apart from zein and gliadin nanoparticles (which are relatively easy to prepare), soy proteins, wheat glutenin and proteins from several legumes have been made into nanoparticles. The extraction of soluble proteins, hydrolyzing with alkali and acids, conjugation with other biopolymers, and newer techniques such as microfluidization and electrospraying have been adopted to develop plant protein nanoparticles. Solid, hollow, and core-shell nanoparticles with varying sizes and physical and chemical properties have been developed. Most plant protein nanoparticles have been used as carriers for drugs and as biomolecules for controlled release applications and for stabilizing food emulsions. This review provides an overview of the approaches used to prepare nanoparticles from plant proteins, and their properties and potential applications. The review's specific focus is on the preparation methods and applications, rather than the properties of the proteins, which have been reported in detail in other publications.
Collapse
|
100
|
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:1238. [PMID: 34207139 PMCID: PMC8234206 DOI: 10.3390/plants10061238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Plants constitute a rich source of diverse classes of valuable phytochemicals (e.g., phenolic acids, flavonoids, carotenoids, alkaloids) with proven biological activity (e.g., antioxidant, anti-inflammatory, antimicrobial, etc.). However, factors such as low stability, poor solubility and bioavailability limit their food, cosmetics and pharmaceutical applications. In this regard, a wide range of delivery systems have been developed to increase the stability of plant-derived bioactive compounds upon processing, storage or under gastrointestinal digestion conditions, to enhance their solubility, to mask undesirable flavors as well as to efficiently deliver them to the target tissues where they can exert their biological activity and promote human health. In the present review, the latest advances regarding the design of innovative delivery systems for pure plant bioactive compounds, extracts or essential oils, in order to overcome the above-mentioned challenges, are presented. Moreover, a broad spectrum of applications along with future trends are critically discussed.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece;
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | | |
Collapse
|