51
|
Dima C, Assadpour E, Nechifor A, Dima S, Li Y, Jafari SM. Oral bioavailability of bioactive compounds; modulating factors, in vitro analysis methods, and enhancing strategies. Crit Rev Food Sci Nutr 2023; 64:8501-8539. [PMID: 37096550 DOI: 10.1080/10408398.2023.2199861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Foods are complex biosystems made up of a wide variety of compounds. Some of them, such as nutrients and bioactive compounds (bioactives), contribute to supporting body functions and bring important health benefits; others, such as food additives, are involved in processing techniques and contribute to improving sensory attributes and ensuring food safety. Also, there are antinutrients in foods that affect food bioefficiency and contaminants that increase the risk of toxicity. The bioefficiency of food is evaluated with bioavailability which represents the amount of nutrients or bioactives from the consumed food reaching the organs and tissues where they exert their biological activity. Oral bioavailability is the result of some physicochemical and biological processes in which food is involved such as liberation, absorption, distribution, metabolism, and elimination (LADME). In this paper, a general presentation of the factors influencing oral bioavailability of nutrients and bioactives as well as the in vitro techniques for evaluating bioaccessibility and is provided. In this context, a critical analysis of the effects of physiological factors related to the characteristics of the gastrointestinal tract (GIT) on oral bioavailability is discussed, such as pH, chemical composition, volumes of gastrointestinal (GI) fluids, transit time, enzymatic activity, mechanical processes, and so on, and the pharmacokinetics factors including BAC and solubility of bioactives, their transport across the cell membrane, their biodistribution and metabolism. The impact of matrix and food processing on the BAC of bioactives is also explained. The researchers' recent concerns for improving oral bioavailability of nutrients and food bioactives using both traditional techniques, for example, thermal treatments, mechanical processes, soaking, germination and fermentation, as well as food nanotechnologies, such as loading of bioactives in different colloidal delivery systems (CDSs), is also highlighted.
Collapse
Affiliation(s)
- Cristian Dima
- Faculty of Food Science and Engineering, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Alexandru Nechifor
- Faculty of Medicine and Pharmacy - Medical Clinical Department, Dunarea de Jos" University of Galati, Galati, Romania
| | - Stefan Dima
- Faculty of Science and Environment, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
52
|
Ma Y, Xu J, Guo R, Teng G, Chen Y, Xu X. In vitro gastrointestinal model for the elderly: Effect of high hydrostatic pressure on protein structures and antioxidant activities of whey protein isolate. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
53
|
Far from being a simple question: The complexity between in vitro and in vivo responses from nutrients and bioactive compounds with antioxidant potential. Food Chem 2023; 402:134351. [DOI: 10.1016/j.foodchem.2022.134351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
|
54
|
In vitro bioaccessibility and uptake of β-carotene from encapsulated carotenoids from mango by-products in a coupled gastrointestinal digestion/Caco-2 cell model. Food Res Int 2023; 164:112301. [PMID: 36737902 DOI: 10.1016/j.foodres.2022.112301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
β-carotene is a carotenoid with provitamin A activity and other health benefits, which needs to become bioavailable upon oral intake to exert its biological activity. A better understanding of its behaviour and stability in the gastrointestinal tract and means to increase its bioavailability are highly needed. Using an in vitro gastrointestinal digestion method coupled to an intestinal cell model, we explored the stability, gastrointestinal bioaccessibility and cellular uptake of β-carotene from microparticles containing carotenoid extracts derived from mango by-products. Three types of microparticles were tested: one with the carotenoid extract as such, one with added inulin and one with added fructooligosaccharides. Overall, β-carotene was relatively stable during the in vitro digestion, as total recoveries were above 68 %. Prebiotics in the encapsulating material, especially inulin, enhanced the bioaccessibility of β-carotene almost 2-fold compared to microparticles without prebiotics. Likewise, β-carotene bioaccessibility increased proportionally with bile salt concentrations during digestion. Yet, a bile salts level above 10 mM did not contribute markedly to β-carotene bioaccessibility of prebiotic containing microparticles. Cellular uptake experiments with non-filtered gastrointestinal digests yielded higher absolute levels of β-carotene taken up in the epithelial cells as compared to uptake assays with filtered digests. However, the proportional uptake of β-carotene was higher for filtered digests (24 - 31 %) than for non-filtered digests (2 - 8 %). Matrix-dependent carotenoid uptake was only visible in the unfiltered medium, thereby pointing to possible other cellular transport mechanisms of non-micellarized carotenoids, besides the concentration effect. Regardless of a filtration step, inulin-amended microparticles consistently resulted in a higher β-carotene uptake than regular microparticles or FOS-amended microparticles. In conclusion, encapsulation of carotenoid extracts from mango by-products displayed chemical stability and release of a bioaccessible β-carotene fraction upon gastrointestinal digestion. This indicates the potential of the microparticles to be incorporated into functional foods with provitamin A activity.
Collapse
|
55
|
Kai Y, Liu Y, Li H, Yang H. Wakame replacement alters the metabolic profile of wheat noodles after in vitro digestion. Food Res Int 2023; 164:112394. [PMID: 36737976 DOI: 10.1016/j.foodres.2022.112394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The development of nutritional noodles of high quality has become a new hotspot of research in the area of food science. Since wakame is edible seaweed rich in dietary fiber and proteins and rarely found in ordinary noodle, this study investigated the release of metabolites, the texture quality, and the rheological properties of wakame noodle, as well as the mechanism by which extruded wakame flours can influence noodle texture and viscoelasticity through digestion. Basically, nuclear magnetic resonance spectra were applied to identify the 46 metabolites including amino acids, saccharides, fatty acids, and other metabolites. Both PCA and OPLS-DA model showed fit goodness and good predictivity, which were assessed the increasing release of most metabolites. Structural studies discussed the effects on the enhancement of interlinkage with gluten matrix and protein matrix, which were validated via the decreasing instantaneous compliance J0 (1.64 × 10-5 to 0.16 × 10-5 Pa-1). Wakame addition best matched the physiochemical properties of noodle, in terms of chewiness (99.10 vs 122.66 g.mm), gumminess (281.98 vs. 323.44 g), and gel strength (132.65 vs 173.95 kPa•s-1). Beyond the functional characteristics it contributes benefits like reduction of diet-related diabetes. As a consequence, the creation of personalized nutritious, healthy noodles will be an innovative route from a scientific viewpoint and an application standpoint.
Collapse
Affiliation(s)
- Yi Kai
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Yi Liu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Hongliang Li
- Guangzhou Welbon Biological Technology Co., Ltd, Guangzhou, Guangdong 523660, PR China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
56
|
Bauer-Estrada K, Sandoval-Cuellar C, Rojas-Muñoz Y, Quintanilla-Carvajal MX. The modulatory effect of encapsulated bioactives and probiotics on gut microbiota: improving health status through functional food. Food Funct 2023; 14:32-55. [PMID: 36515144 DOI: 10.1039/d2fo02723b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The gut microbiota can be a determining factor of the health status of the host by its association with some diseases. It is known that dietary intake can modulate this microbiota through the consumption of compounds like essential oils, unsaturated fatty acids, non-digestible fiber, and probiotics, among others. However, these kinds of compounds can be damaged in the gastrointestinal tract as they pass through it to reach the intestine. This is due to the aggressive and changing conditions of this tract. For this reason, to guarantee that compounds arrive in the intestine at an adequate concentration to exert a modulatory effect on the gut microbiota, encapsulation should be sought. In this paper, we review the current research on compounds that modulate the gut microbiota, the encapsulation techniques used to protect the compounds through the gastrointestinal tract, in vitro models of this tract, and how these encapsulates interact with the gut microbiota. Finally, an overview of the regulatory status of these encapsulates is presented. The key findings are that prebiotics are the best modulators of gut microbiota fermentation metabolites. Also, probiotics promote an increase of beneficial gut microorganisms, which in some cases promotes their fermentation metabolites as well. Spray drying, freeze drying, and electrodynamics are notable encapsulation techniques that permit high encapsulation efficiency, high viability, and, together with wall materials, a high degree of protection against gastrointestinal conditions, allowing controlled release in the intestine and exerting a modulatory effect on gut microbiota.
Collapse
|
57
|
Effects of different thermal processing methods on bioactive components, phenolic compounds, and antioxidant activities of Qingke (highland hull-less barley). FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
58
|
Souza TL, Souza LA, Barbosa IS, Santos DCMB, Araujo RGO, Korn MGA. Mineral and Trace Elements in Nutritious Flours: Total Contents, In Vitro Bioaccessibility and Contribution to Dietary Intake. Biol Trace Elem Res 2022:10.1007/s12011-022-03534-7. [PMID: 36562954 DOI: 10.1007/s12011-022-03534-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The consumption of fruits, vegetables, and cereals in the form of flour has been an alternative for the intake of nutrients, currently seen in a society that seeks a healthier diet. Thus, the assessment of total contents and bioaccessibility is important to better understand the actual intake of nutrients or contaminants present in foods. The objective of this study was to determine the total content and estimate the bioaccessible fraction of Cu, Fe, and Zn in nutritious flours by inductively coupled plasma optical emission spectrometry (ICP OES) after microwave acid digestion. Bioaccessibility was assessed using the in vitro method, taking into account the entire gastrointestinal tract (Unified Bioaccessibility Method (UBM)). The following concentration ranges, in μg g-1, were found: Ca (341-6275), K (2984-13,953), P (476-6110), Na (< 0.39-2995), Fe (1.4-167), Cu (< 0.01-59.6), and Zn (< 0.07-30.3). Principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed a tendency towards the formation of three groups. The bioaccessible fractions for Cu, Fe, and Zn were considered low, ranging from 0.96 to 40% in the gastrointestinal phase and from 4.1 to 100% in the gastric phase.
Collapse
Affiliation(s)
- Thaís L Souza
- Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Laís A Souza
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Av. Jorn Aníbal Fernandes, s/n - Cidade Universitária, 50740-560, Recife, Brasil
| | - Isa S Barbosa
- Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Daniele Cristina M B Santos
- Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Rennan Geovanny O Araujo
- Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Maria Graças A Korn
- Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Ondina, Salvador, Bahia, 40170-115, Brazil.
| |
Collapse
|
59
|
Refael G, Riess HT, Levi CS, Magzal F, Tamir S, Koren O, Lesmes U. Responses of the human gut microbiota to physiologically digested insect powders or isolated chitin thereof. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
60
|
Sayas-Barberá E, Pérez-Álvarez JA, Navarro-Rodríguez de Vera C, Fernández-López M, Viuda-Martos M, Fernández-López J. Sustainability and Gender Perspective in Food Innovation: Foods and Food Processing Coproducts as Source of Macro- and Micro-Nutrients for Woman-Fortified Foods. Foods 2022; 11:foods11223661. [PMID: 36429253 PMCID: PMC9689430 DOI: 10.3390/foods11223661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Micro- and macro-nutrient deficiencies among women are considered a global issue that the food industry has not adequately considered until recently. The industry must provide and guarantee a diversity of food products worldwide that allow women to get a correct and balanced diet according their life stage. The food industry must focus on this challenge within a framework of sustainable production, minimizing the use of natural resources and avoiding the emission of waste and pollutants throughout the life cycle of food. Food coproducts are presented as potential bioactive functional compounds which can be useful for technological purposes, due to the fact that they can serve as non-chemical, natural and health-improving food ingredients. In this review, we focus on the potential use of food processing coproducts which must be part of a strategy to promote and improve women's health and well-being. This knowledge will make it possible to select potential ingredients from coproducts to be used in the fortification of foods intended for consumption by females and to introduce sustainability and gender perspectives into food innovation. The attainment of fortifications for foods for women has to be linked to the use of sustainable sources from food coproducts in order to be economically viable and competitive.
Collapse
Affiliation(s)
- Estrella Sayas-Barberá
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain
| | - Jose Angel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain
| | - Casilda Navarro-Rodríguez de Vera
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain
| | - Manuela Fernández-López
- Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario Virgen de la Arrixaca, Ctra. Madrid-Cartagena s/n, 30120 El Palmar, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain
| | - Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain
- Correspondence: ; Tel.: +34-966749784
| |
Collapse
|
61
|
Nanofibers of Jussara Pulp: A Tool to Prevent the Loss of Thermal Stability and the Antioxidant Activity of Anthocyanins after Simulated Digestion. Processes (Basel) 2022. [DOI: 10.3390/pr10112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Electrospinning can produce a new composite for coating sensitive bioactive compounds, such as anthocyanins, and the product obtained from this process presents characteristics that potentialize the application of natural pigments in foodstuffs. The present work aimed to develop a new nanofiber composite with incorporated anthocyanins from jussara pulp using polyethylene oxide through electrospinning. A decay in the percentage of anthocyanins during digestion was observed. However, the polymeric solution and composites produced maintained the antioxidant activity, showing their protective effect on bioactive compounds; furthermore, both nanofibers and polymer solution improved the thermal stability of the anthocyanins. Thus, the results obtained potentiate electrospinning composites in processed food products since the nanofibers presented superior thermal stability and antioxidant activity, even after the digestion process in vitro.
Collapse
|
62
|
De Giani A, Pagliari S, Zampolli J, Forcella M, Fusi P, Bruni I, Campone L, Di Gennaro P. Characterization of the Biological Activities of a New Polyphenol-Rich Extract from Cinnamon Bark on a Probiotic Consortium and Its Action after Enzymatic and Microbial Fermentation on Colorectal Cell Lines. Foods 2022; 11:3202. [PMCID: PMC9602362 DOI: 10.3390/foods11203202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cinnamon polyphenols are known as health-promoting agents. However, their positive impact depends on the extraction method and their bioaccessibility after digestion. In this work, cinnamon bark polyphenols were extracted in hot water and subjected to an in vitro enzymatic digestion. After a preliminary characterization of total polyphenols and flavonoids (respectively 520.05 ± 17.43 µgGAeq/mg and 294.77 ± 19.83 µgCATeq/mg powder extract), the extract antimicrobial activity was evidenced only against Staphylococcus aureus and Bacillus subtilis displaying a minimum inhibition growth concentration value of 2 and 1.3 mg/mL, respectively, although it was lost after in vitro extract digestion. The prebiotic potential was evaluated on probiotic Lactobacillus and Bifidobacterium strains highlighting a high growth on the in vitro digested cinnamon bark extract (up to 4 × 108 CFU/mL). Thus, the produced SCFAs and other secondary metabolites were extracted from the broth cultures and determined via GC-MSD analyses. The viability of healthy and tumor colorectal cell lines (CCD841 and SW480) was assayed after the exposition at two different concentrations (23 and 46 µgGAeq/mL) of the cinnamon extract, its digested, and the secondary metabolites produced in presence of cinnamon extract or its digested, showing positive protective effects against a tumorigenic condition.
Collapse
|
63
|
Hui T, Tang T, Gu X, Yuan Z, Xing G. Comparison on Protein Bioaccessibility of Soymilk Gels Induced by Glucono-δ-Lactone and Lactic Acid Bacteria. Molecules 2022; 27:molecules27196202. [PMID: 36234732 PMCID: PMC9571249 DOI: 10.3390/molecules27196202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/01/2022] Open
Abstract
In this study, the protein bioaccessibility of soymilk gels produced by the addition of glu-cono-δ-lactone (GDL) and fermentation with lactic acid bacteria (LAB) was examined using an in vitro gastrointestinal simulated digestion model. The in vitro protein digestibility, soluble protein content, free amino acids contents, degree of hydrolysis, electrophoretic patterns, and peptide content were measured. The results suggested that acid-induced soymilk gel generated by GDL (SG) showed considerably reduced in vitro protein digestibility of 75.33 ± 1.00% compared to the soymilk gel induced by LAB (SL) of 80.57 ± 1.53% (p < 0.05). During the gastric digestion stage, dramatically higher (p < 0.05) soluble protein contents were observed in the SG (4.79−5.05 mg/mL) than that of SL (4.31−4.35 mg/mL). However, during the later intestinal digestion phase, the results were the opposite. At the end of the gastrointestinal digestion phase, the content of small peptides was not significantly different (p > 0.05) between the SL (2.15 ± 0.03 mg/mL) and SG (2.17 ± 0.01 mg/mL), but SL showed higher content of free amino acids (20.637 g/L) than that of SG (19.851 g/L). In general, soymilk gel induced by LAB had a higher protein bioaccessibility than the soymilk gel coagulated by GDL.
Collapse
Affiliation(s)
- Tianran Hui
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
- Department of Biological and Environmental Sciences, Troy University, Troy, AL 36082, USA
| | - Ting Tang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Xuan Gu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Zhen Yuan
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Guangliang Xing
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
- Correspondence:
| |
Collapse
|
64
|
The lipid digestion behavior of oil-in-water Pickering emulsions stabilized by whey protein microgels of various rigidities. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
65
|
Liu M, Svirskis D, Proft T, Loh J, Chen S, Kang D, Wen J. Exploring ex vivo peptideolysis of thymopentin and lipid-based nanocarriers towards oral formulations. Int J Pharm 2022; 625:122123. [PMID: 35995317 DOI: 10.1016/j.ijpharm.2022.122123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/27/2022] [Accepted: 08/14/2022] [Indexed: 01/20/2023]
Abstract
The oral delivery of medicines is the most popular route of administration for patients. However, thymopentin (TP5) is only available in the market in forms for parenteral administration. In large part, this is because of extensive peptidolytic degradation in the gastrointestinal tract (GIT), which decreases the amount of TP5 available for absorption. This study aims to understand the extent of TP5 peptideolysis and determine effective inhibitors and suitable lipid-based nanocarriers to aid in the development of an effective oral delivery formulation. Enzymatic degradation kinetics of TP5 was investigated in the presence or absence of mucosal and luminal components extracted from various parts of the rat intestine, including the duodenum, jejunum, ileum, and colon. Inhibition of TP5 enzymatic peptidolysis was screened in the presence or absence of EDTA, trypsin and chymotrypsin inhibitors from soybean (SBTCI), and bestatin. TP5 with SBTCI was loaded into lipid-based nanocarriers, including microemulsions, niosomes and solid lipid nanoparticles. These TP5-loaded nanocarriers were investigated through characterization of morphology, particle size, zeta potential, entrapment efficacy (EE%), and ex vivo rat intestinal degradation studies to select a lead formulation for a future oral drug delivery study. The degradation kinetics of TP5 followed pseudo-first-order kinetics, and the biological metabolism of TP5 was displayed in the presence of luminal contents, indicating that TP5 is sensitive to luminal enzymes. Notably, a considerable decrease in TP5 peptidolysis was found in the presence of SBTCI, bestatin, and EDTA. TP5 and SBTCI were loaded into three lipid-based delivery systems, displaying superior protection under ex vivo intestinal luminal contents and mucosal homogenates for 6 h compared with the pure drug solution. These findings suggest that using select inhibitors and lipid-based nanocarriers can decrease peptide degradation and may improve oral bioavailability of TP5 following oral administration.
Collapse
Affiliation(s)
- Mengyang Liu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Jacelyn Loh
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Dali Kang
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
66
|
Effects of Marine Bioactive Compounds on Gut Ecology Based on In Vitro Digestion and Colonic Fermentation Models. Nutrients 2022; 14:nu14163307. [PMID: 36014813 PMCID: PMC9412687 DOI: 10.3390/nu14163307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Digestion and the absorption of food compounds are necessary steps before nutrients can exert a role in human health. The absorption and utilization of nutrients in the diet is an extremely complex dynamic process. Accurately grasping the digestion and absorption mechanisms of different nutrients or bioactive compounds can provide a better understanding regarding the relationship between health and nutrition. Several in vitro models for simulating human gastrointestinal digestion and colonic fermentation have been established to obtain more accurate data for further understanding of the metabolism of dietary components. Marine media is rich in a wide variety of nutrients that are essential for humans and is gaining increased attention as a research topic. This review summarizes some of the most explored in vitro digestion and colonic fermentation models. It also summarizes the research progress on the digestion and absorption of nutrients and bioactive compounds from marine substrates when subjected to these in vitro models. Additionally, an overview of the changes imparted by the digestion process on these bioactive compounds is provided, in order to support those marine resources that can be utilized for developing new healthy foods.
Collapse
|
67
|
In vitro simulated digestion affecting physicochemical characteristics and bioactivities of polysaccharides from barley (Hordeum vulgare L.) grasses at different growth stages. Int J Biol Macromol 2022; 219:876-885. [PMID: 35963349 DOI: 10.1016/j.ijbiomac.2022.08.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/22/2022]
Abstract
In this study, three polysaccharides (BGPs: BGPs-Z21, BGPs-Z23, and BGPs-Z31) were successively extracted from barley (Hordeum vulgare L.) grasses (BG) at different growth stages, including seedling (Z21), tillering (Z23), and stem elongation (Z31). The effects of in vitro simulated saliva-gastrointestinal digestion on the physicochemical characteristics and biological activities of BGPs were investigated and compared. Results showed that the simulated saliva-gastrointestinal digestion had considerable influences on reducing sugar content, chemical components, monosaccharide constituents, and molecular weights of BGPs but hardly affected their preliminarily structural characteristics. Moreover, the antioxidant activities of BGPs were weakened after the simulated saliva-gastrointestinal digestion, but their bile acid-binding capacities were remarkably enhanced. The digested BGPs-Z31 by gastric juice possessed better antioxidant benefit, and bile acid-binding capacity (80.33 %) than other digested products. Overall, these results indicated that BGPs obtained from BG are valuable for functional foods as promising bioactive ingredients.
Collapse
|
68
|
Caffeic acid phenethyl ester loaded in a targeted delivery system based on a solid-in-oil-in-water multilayer emulsion: characterization, stability, and fate of the emulsion during in vivo digestion. Food Res Int 2022; 161:111756. [DOI: 10.1016/j.foodres.2022.111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/02/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
|
69
|
Soy protein-based delivery systems as carriers of trans-resveratrol: bioaccessibility using different in vitro digestion models. Food Res Int 2022; 161:111837. [DOI: 10.1016/j.foodres.2022.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 11/19/2022]
|
70
|
The Protein-Rich Powdered Beverages Stabilized with Flax Seeds Gum—Antioxidant and Antiproliferative Properties of the Potentially Bioaccessible Fraction. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The functional beverages market is one of the fastest-growing sectors of functional food production. An innovative recipe for powdered fruit and vegetable drinks fortified with lentil proteins (AGF) and stabilized with flax seed gums (FSG) was developed. The study focused on the analysis of potentially bioaccessible fractions from the produced beverages in terms of their antioxidant, antiproliferative activities and physicochemical properties. The contents of bioactive components were tailored by the incorporation of lyophilized fruits and vegetables, the FSG and the AGF. Digestion in vitro effectively released phenolics from all matrices. The highest contents of potentially bioavailable polyphenols were recorded for the AGF based beverages enriched with 5% of FSG and green-leafy vegetables (58 mg/100 mL) and those with lyophilized fruit (54 mg/100 mL). The reducing power of the beverages was mainly affected by the presence of the AGF, while the FSG and lyophilized fruit improved the chelating power. The digests applied in the concentrations mimicking physiological concentrations showed antiproliferative properties against gastric and colon adenocarcinoma—they seemed to be tailored by bioactive peptides and phenolics, respectively. The addition of the FSG improved the stability of the beverages increasing the time required for a reduction of 20% of the initial optical density by 16- and 28-times in the beverages without additives or enriched with vegetables. Both, the AGF and FSG stabilize the beverages after rehydration and are sources of bioaccessible antioxidant and anticancer components, which create their functionality.
Collapse
|
71
|
Lou M, Ritzoulis C, Liu J, Zhang X, Han J, Liu W. In vitro digestion of tofu with different textures using an artificial gastric digestive system. Food Res Int 2022; 157:111458. [PMID: 35761694 DOI: 10.1016/j.foodres.2022.111458] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Two kinds of tofu with obvious differences in texture ["GDL" and "CaSO4", standing for tofus made with the application of either glucono-δ-lactone (GDL) or calcium sulfate, with measured hardness 23.1 ± 3.3 g and 105.2 ± 25.1 g, respectively] were used as to investigate the in vitro progress and extent of tofu digestion, using an independently-developed artificial gastric digestion system (AGDS). The particle size distributions of both CaSO4 and GDL tofu shifted towards smaller particles as the digestion time increased, while the viscosity of the gastric digesta also increased. Tofu proteins were hydrolyzed in the simulated stomach, with GDL tofu showing a higher hydrolysis rate, based on the temporal evolution of SDS-PAGE bands, and had a higher amino acids accumulation than CaSO4 tofu at the end of gastric digestion. In the absence of peptic enzymes, the protein was acidically-hydrolyzed, but the degree of hydrolysis was much lower than in the presence of enzymes; these findings are in accord with the changes in microstructure observed by scanning electron microscopy. The results indicated that the in vitro extent of tofu digestion is related to its hardness, which is in turn related to its microstructure; they also indicated the potential of our developed in vitro dynamic stomach in studying semi-solid foods.
Collapse
Affiliation(s)
- Mapeizhan Lou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Christos Ritzoulis
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China; Department of Food Science and Technology, International Hellenic University, Alexander Campus, 57400 Thessaloniki, Greece
| | - Jing Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xinyuan Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
72
|
Duijsens D, Pälchen K, Guevara-Zambrano J, Verkempinck S, Infantes-Garcia M, Hendrickx M, Van Loey A, Grauwet T. Strategic choices for in vitro food digestion methodologies enabling food digestion design. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
73
|
Effect of high-pressure processing on the bioaccessibility of phenolic compounds from cloudy hawthorn berry (Crataegus pinnatifida) juice. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
74
|
López-Vázquez J, Rodil R, Trujillo-Rodríguez MJ, Quintana JB, Cela R, Miró M. Mimicking human ingestion of microplastics: Oral bioaccessibility tests of bisphenol A and phthalate esters under fed and fasted states. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154027. [PMID: 35217040 DOI: 10.1016/j.scitotenv.2022.154027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Notwithstanding the fact that microplastic fragments were encountered in the human stool, little effort has been geared towards elucidating the impact of chemical additives upon the human health. In this work, standardized bioaccessibility tests under both fasting and fed conditions are herein applied to the investigation of human oral bioaccessibility of plastic additives and monomers (i.e. eight phthalate esters (PAEs) and bisphenol A (BPA)) in low-density polyethylene (LDPE) and polyvinyl chloride (PVC) microplastics. The generation of phthalate monoesters is evaluated in the time course of the bioaccessibility tests. Maximum gastric and gastrointestinal bioaccessibility fractions are obtained for dimethyl phthalate, diethyl phthalate and BPA, within the range of 55-83%, 40-68% and 37-67%, respectively, increasing to 56-92% and 41-70% for dimethyl phthalate and diethyl phthalate, respectively, whenever their hydrolysis products are considered. Bioaccessibility fractions of polar PAEs are dependent upon the physicochemical characteristics of the microplastics, with greater bioaccessibility for the rubbery polymer (LDPE). With the method herein proposed, oral bioaccessible pools of moderately to non-polar PAEs can be also accurately assessed for risk-assessment explorations, with values ranging from 1.8% to 32.2%, with again significantly larger desorption percentages for LDPE. Our results suggested that the highest gastric/gastrointestinal bioaccessibility of the eight PAEs and BPA is reached under fed-state gastrointestinal extraction conditions because of the larger amounts of surface-active biomolecules. Even including the bioaccessibility factor within human risk assessment/exposure studies to microplastics, concentrations of dimethyl phthalate, di-n-butyl phthalate and BPA exceeding 0.3% (w/w) may pose severe risks after oral uptake in contrast to the more hydrophobic congeners for which concentrations above 3% (w/w), except for diethylhexyl phthalate, would be tolerated.
Collapse
Affiliation(s)
- Javier López-Vázquez
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Galicia, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Galicia, Spain.
| | - María J Trujillo-Rodríguez
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Illes Balears, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Galicia, Spain
| | - Rafael Cela
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Galicia, Spain
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Illes Balears, Spain.
| |
Collapse
|
75
|
[Effects of nano titanium dioxide on gut microbiota based on human digestive tract microecology simulation system in vitro]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54. [PMID: 35701123 PMCID: PMC9197702 DOI: 10.19723/j.issn.1671-167x.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To explore the effects of oral exposure to titanium dioxide nanoparticles (TiO2 NPs) on the composition and structure of human gut microbiota. METHODS The particle size, shape, crystal shape and degree of agglomeration in ultrapure water of TiO2 NPs were characterized. The in vitro human digestive tract microecological simulation system was established by simulating the fluid environment and physical conditions of stomach, small intestine and colon, and the stability of the simulation system was evaluated. The bacterial communities were extracted from human feces and cultured stably in the simulated system. They were exposed to 0, 20, 100 and 500 mg/L TiO2 NPs, respectively, and the bacterial fluids were collected after 24 h of exposure. The effect of TiO2 NPs on the composition and structure of human gut microbiota was analyzed by 16S rRNA sequencing technology. Linear discriminant analysis effect size (LEfSe) was used to screen differential bacteria, and the Kyoto encyclopedia of genes and genomes (KEGG) database for functional prediction. RESULTS The spherical and anatase TiO2 NPs were (25.12±5.64) nm in particle size, while in ultra-pure water hydrated particle size was (609.43±60.35) nm and Zeta potential was (-8.33±0.22) mV. The in vitro digestive tract microecology simulation system reached a relatively stable state after 24 hours, and the counts of Enterococci, Enterobacte-rium, and Lactobacillus reached (1.6±0.85)×107, (5.6±0.82)×107 and (2.7±1.32)×107, respectively. 16S rRNA sequencing results showed that compared with the control group, the number and evenness of gut microbiota were not significantly affected at phylum, class, order, family and genus levels in TiO2 NPs groups (20, 100 and 500 mg/L). The relative abundance of some species was significantly changed, and a total of 42 different bacteria were screened between the TiO2 NPs groups (20, 100 and 500 mg/L) and the control group [linear discriminant analysis(LDA) score>3], represented by Enterobacter, Bacteroidaceae, Lactobacillaceae, Bifidobacteriaceae and Clostridium. Further predictive analysis of gut microbiota function showed that TiO2 NPs might affect oxidative phosphorylation, energy meta-bolism, phosphonate and phosphonate metabolism, and methane metabolism (P < 0.05). CONCLUSION In human digestive tract microecological simulation system, TiO2 NPs could significantly change the composition and structure of human gut microbiota, represented by Enterobacter and probiotics, and may further affect a variety of metabolism and function of the body.
Collapse
|
76
|
Madalena D, Fernandes J, Avelar Z, Gonçalves R, Ramos ÓL, Vicente AA, Pinheiro AC. Emerging challenges in assessing bio-based nanosystems’ behaviour under in vitro digestion focused on food applications – A critical view and future perspectives. Food Res Int 2022; 157:111417. [DOI: 10.1016/j.foodres.2022.111417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 01/23/2023]
|
77
|
Effect of digestive enzymes and pH on variation of bioavailability of green tea during simulated in vitro gastrointestinal digestion. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
78
|
Kim MS, Jung YS, Jang D, Cho CH, Lee SH, Han NS, Kim DO. Antioxidant capacity of 12 major soybean isoflavones and their bioavailability under simulated digestion and in human intestinal Caco-2 cells. Food Chem 2022; 374:131493. [PMID: 34802809 DOI: 10.1016/j.foodchem.2021.131493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/22/2022]
Abstract
Soy isoflavones (SIs) show various health benefits, such as antioxidant and estrogenic effects. It is important to understand the bioaccessibility and bioavailability of SIs due to the close relation to their bioactivities. In this study, the antioxidant capacity, bioaccessibility, and bioavailability of 12 SIs were evaluated using radical-scavenging methods, simulations of human digestion, and Caco-2 cells in Transwell, respectively. All SIs were stable (91.1-99.2%) under gastric digestion conditions compared with the control (100%), whereas acetyl and malonyl conjugates were unstable (38.5% and 65.5%, respectively) under small intestinal digestion conditions. SI aglycones showed higher permeability (7-15 times) and cellular accumulation (8.8 times) than their glucosides. A small amount of SI conjugates was intact in the cell and in the basolateral side of each Transwell. These results suggest that SI conjugates, especially malonyl and acetyl forms, have incidental bioactivity after being metabolized to aglycones inside the cell.
Collapse
Affiliation(s)
- Mi-Seon Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Young Sung Jung
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Davin Jang
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Chi Heung Cho
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Sang-Hoon Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Republic of Korea
| | - Dae-Ok Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
79
|
Tan Y, Zhou H, McClements DJ. Application of static in vitro digestion models for assessing the bioaccessibility of hydrophobic bioactives: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
80
|
Rivera del Rio A, van der Wielen N, Gerrits WJ, Boom RM, Janssen AE. In silico modelling of protein digestion: A case study on solid/liquid and blended meals. Food Res Int 2022; 157:111271. [DOI: 10.1016/j.foodres.2022.111271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/26/2022]
|
81
|
Numal R, Selcuk O, Kurbanoglu S, Shah A, Siddiq M, Uslu B. Trends In Electrochemical Nanosensors For The Analysis Of Antioxidants. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
82
|
Kumar LK, Kapri A, Chandel R, Kumar V, Verma S, Vedamurthy G, Singh D, Onteru SK. Digestive propensity of Aflatoxin M1 (4‐Hydroxyaflatoxin B1), an indication from
In‐vitro
digestion model system. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lal Krishan Kumar
- Molecular Endocrinology Functional Genomics & System Biology Laboratory Animal Biochemistry Division ICAR‐ National Dairy Research Institute Karnal Haryana India
| | - Ankita Kapri
- Molecular Endocrinology Functional Genomics & System Biology Laboratory Animal Biochemistry Division ICAR‐ National Dairy Research Institute Karnal Haryana India
| | - Rajeev Chandel
- Molecular Endocrinology Functional Genomics & System Biology Laboratory Animal Biochemistry Division ICAR‐ National Dairy Research Institute Karnal Haryana India
| | - Varun Kumar
- Molecular Endocrinology Functional Genomics & System Biology Laboratory Animal Biochemistry Division ICAR‐ National Dairy Research Institute Karnal Haryana India
| | - Suryakant Verma
- Molecular Endocrinology Functional Genomics & System Biology Laboratory Animal Biochemistry Division ICAR‐ National Dairy Research Institute Karnal Haryana India
| | - G.V. Vedamurthy
- Molecular Endocrinology Functional Genomics & System Biology Laboratory Animal Biochemistry Division ICAR‐ National Dairy Research Institute Karnal Haryana India
| | - Dheer Singh
- Molecular Endocrinology Functional Genomics & System Biology Laboratory Animal Biochemistry Division ICAR‐ National Dairy Research Institute Karnal Haryana India
| | - Suneel Kumar Onteru
- Molecular Endocrinology Functional Genomics & System Biology Laboratory Animal Biochemistry Division ICAR‐ National Dairy Research Institute Karnal Haryana India
| |
Collapse
|
83
|
Guo D, Lei J, He C, Peng Z, Liu R, Pan X, Meng J, Feng C, Xu L, Cheng Y, Chang M, Geng X. In vitro digestion and fermentation by human fecal microbiota of polysaccharides from Clitocybe squamulose. Int J Biol Macromol 2022; 208:343-355. [PMID: 35337916 DOI: 10.1016/j.ijbiomac.2022.03.126] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
Abstract
The present study aimed to evaluate the effects of in vitro simulated saliva-gastrointestinal digestion and fecal fermentation behavior on the chemical composition, structure and bioactivity of polysaccharides from Clitocybe squamulosa (CSFP). Results showed that gastric digestion significantly changed the chemical composition and structural properties of CSFP, such as total uronic acid, reducing sugar, molecular weight, rheological properties, particle size, and microscopic morphology. In particular, the molecular weight decreased from 19,480 Da to 10,945 Da, while the reducing-sugar content increased from 0.149 mg/mL to 0.293 mg/mL. Gastric digestion also affected the biological activity of CSFP. Although after gastric digestion, CSFP retained its vigorous antioxidant activity, ability to inhibit α-amylase activity, and the binding ability to bile acid, fat, and free cholesterol in vitro. However, there was an apparent weakening trend. After in vitro fermentation of gut microbiota, the content of total sugar was significantly decreased from 11.6 mg/mL to 2.4 mg/mL, and the pH value in the fecal culture significantly decreased to 5.20, indicating that CSFP could be broken down and utilized by gut microbiota. Compared to the blank, the concentrations of total short-chain fatty acids (SCFAs) including acetic, propionic and n-butyric significantly increased. Simultaneously, CSFP could remarkably reduce the proportions of Firmicutes and Bacteroides (F/B) and promote the growth of some beneficial intestinal microbiota. Therefore, CSFP can potentially be a new functional food as prebiotics to promote human gut health.
Collapse
Affiliation(s)
- Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Jiayu Lei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Chang He
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Zhijie Peng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Rongzhu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Xu Pan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China.
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China.
| |
Collapse
|
84
|
Domínguez-Rodríguez G, Marina ML, Plaza M. In vitro assessment of the bioavailability of bioactive non-extractable polyphenols obtained by pressurized liquid extraction combined with enzymatic-assisted extraction from sweet cherry (Prunus avium L.) pomace. Food Chem 2022; 385:132688. [PMID: 35305433 DOI: 10.1016/j.foodchem.2022.132688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 01/19/2023]
Abstract
In vitro digestion and absorption simulation processes of non-extractable polyphenols (NEPs) obtained by pressurized liquid extraction combined with enzymatic-assisted extraction with Promod enzyme (PLE-EAE) from the residue of conventional extraction of sweet cherry pomace were studied. In general, total phenolic and proanthocyanidin contents decreased in each phase of the digestion. However, the antioxidant capacity increased when the digestion process progressed. In addition, the highest total phenolic and proanthocyanidin contents and antioxidant capacity were obtained in the absorbed fraction. NEPs from PLE-EAE extract, digestive fractions, absorbed and unabsorbed fractions were analyzed by ultra-high-performance liquid chromatography coupled to electrospray ionization quadrupole Exactive-Orbitrap mass spectrometry (UHPLC-ESI-Q-Orbitrap-MS). Fifteen NEPs were identified in the intestinal fraction and five in the absorbed fraction after the digestion process. Results obtained in this study define for the first time the bioavailability of antioxidant NEPs obtained from sweet cherry pomace.
Collapse
Affiliation(s)
- Gloria Domínguez-Rodríguez
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares Madrid, Spain
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares Madrid, Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid-Barcelona. Km. 33.600, 28871 Alcalá de Henares Madrid, Spain
| | - Merichel Plaza
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares Madrid, Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid-Barcelona. Km. 33.600, 28871 Alcalá de Henares Madrid, Spain.
| |
Collapse
|
85
|
Pizones Ruiz-Henestrosa VM, Ribourg L, Kermarrec A, Anton M, Pilosof A, Viau M, Meynier A. Emulsifiers modulate the extent of gastric lipolysis during the dynamic in vitro digestion of submicron chia oil/water emulsions with limited impact on the final extent of intestinal lipolysis. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
86
|
Verkempinck S, Guevara-Zambrano J, Infantes-Garcia M, Naranjo M, Soliva-Fortuny R, Elez-Martínez P, Grauwet T. Gastric and small intestinal lipid digestion kinetics as affected by the gradual addition of lipases and bile salts. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
87
|
Zhang S, Xiao J, Wu P, Li C, Chen XD, Deng R, Dai B. A simulation study on expansion of a small intestine model reactor. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
88
|
Chan M, Liu D, Wu Y, Yang F, Howell K. Microorganisms in Whole Botanical Fermented Foods Survive Processing and Simulated Digestion to Affect Gut Microbiota Composition. Front Microbiol 2022; 12:759708. [PMID: 35035384 PMCID: PMC8757042 DOI: 10.3389/fmicb.2021.759708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 01/05/2023] Open
Abstract
Botanical fermented foods have been shown to improve human health, based on the activity of potentially beneficial lactic acid bacteria (LAB) and yeasts and their metabolic outputs. However, few studies have explored the effects of prolonged storage and functional spices on microbial viability of whole fermented foods from fermentation to digestion. Even fewer have assessed their impact on the gut microbiota. Our study investigated the effects of production processes on LAB and yeast microbial viability and gut microbiota composition. We achieved this by using physicochemical assessments and an in vitro gastrointestinal and a porcine gut microbiota model. In low-salt sauerkraut, we assessed the effects of salt concentration, starter cultures, and prolonged storage, and in tibicos, prolonged storage and the addition of spices cayenne, ginger, and turmeric. In both food matrices, LAB counts significantly increased (p<0.05), reaching a peak of 7–8 log cfu/g, declining to 6–6.5 log cfu/g by day 96. Yeast viability remained at 5–6 log cfu/g in tibicos. Ginger tibicos had significantly increased LAB and yeast viability during fermentation and storage (p<0.05). For maximum microbial consumption, tibicos should be consumed within 28days, and sauerkraut, 7weeks. Simulated upper GI digestion of both products resulted in high microbial survival rates of 70–80%. The 82% microbial survival rate of cayenne tibicos was significantly higher than other treatments (p<0.05). 16S rRNA sequencing of simulated porcine colonic microbiota showed that both spontaneously fermented sauerkraut and tibicos increase the relative abundance of Megasphaera 85-fold. These findings will inform researchers, producers, and consumers about the factors that affect the microbial content of fermented foods, and their potential effects on the gut.
Collapse
Affiliation(s)
- Miin Chan
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| | - Di Liu
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| | - Yingying Wu
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| | - Fan Yang
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| | - Kate Howell
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
89
|
Assessment of intestinal injury of hexavalent chromium using a modified in vitro gastrointestinal digestion model. Toxicol Appl Pharmacol 2022; 436:115880. [PMID: 35016909 DOI: 10.1016/j.taap.2022.115880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
Intestinal injury assessment of hexavalent chromium (Cr-VI) in humans is crucial for quantifying assessment of adverse health risk posed by the intake of Cr (VI)-contaminated water. To overcome the deficiency in simulating human gastric reduction and intestinal absorption, we modified the constituents of simulated gastric fluid in in vitro digestion method by adding reductants glutathione (18 μM) and ascorbic acid (180 μM), which incorporated with human intestinal epithelial model to construct an in vitro gastrointestinal digestion (IVGD) model for intestinal injury assessment. Cr-VI bioaccessibility results from IVGD model showed that weak gastric acidity significantly increased the intestinal accessible Cr-VI dose by 22.41-38.43 folds. The time-course intestinal absorption indicated prolongation of intestinal exposure destroyed the intestinal epithelium, and 24 h after Cr-VI treatment was a good time point to perform intestinal absorption and toxicity assessment. A series of cell-based bioassays provided initial warning of adverse effect, suggesting that epithelial integrity exhibited greatest sensitivity to Cr-VI exposure and might be used as a sensitive marker for the toxicity assessment of oral exposure to Cr-VI. Notably, this study provides a feasible strategy for delineation of Cr-VI biotransformation and intestinal injury following ingestion exposure, which contributes to address the toxicity data gap of low-dose exposure in humans and puts forward a reference for intestinal toxicity assessment of other chemicals.
Collapse
|
90
|
Shao Y, Kang Q, Zhu J, Zhao C, Hao L, Huang J, Lu J, Jia S, Yi J. Antioxidant properties and digestion behaviors of polysaccharides from Chinese yam fermented by Saccharomyces boulardii. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
91
|
Martins C, Alvito P, Assunção R. Nanomaterials in Foods and Human Digestion: An Important Layer in the Assessment of Potential Toxic Effects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:403-414. [DOI: 10.1007/978-3-030-88071-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
92
|
Cruz-Casas DE, Aguilar CN, Ascacio-Valdés JA, Rodríguez-Herrera R, Chávez-González ML, Flores-Gallegos AC. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 3:100047. [PMID: 35415659 PMCID: PMC8991988 DOI: 10.1016/j.fochms.2021.100047] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022]
Abstract
Peptide release methods influence its bioactivity by generating different sequences. The absorption, toxicity and taste of peptides is influenced by the production method. The most used methods are enzymatic hydrolysis and microbial fermentation. The most used methods are biotechnological and differ in their process.
Bioactive peptides are biomolecules derived from proteins. They contain anywhere from 2 to 20 amino acids and have different bioactivities. For example, they have antihypertensive activity, antioxidant activity, antimicrobial activity, etc. However, bioactive peptides are encrypted and inactive in the parental protein, so it is necessary to release them to show their bioactivity. For this, there are different methods, where biotechnological methods are highly favorable, highlighting enzymatic hydrolysis and microbial fermentation. The choice of the method to be used depends on different factors, which is why it is essential to know about the process, its principle, and its advantages and disadvantages. The process of peptide release is critical to generate various peptide sequences, which will produce different biological effects in the hydrolysate. This review focuses on providing extensive information on the enzymatic method and microbial fermentation to facilitate selecting the method that provides the most benefits.
Collapse
Affiliation(s)
- Dora Elisa Cruz-Casas
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| | - Juan A Ascacio-Valdés
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| | - Raúl Rodríguez-Herrera
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| | - Mónica L Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| | - Adriana C Flores-Gallegos
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| |
Collapse
|
93
|
Effect of in vitro digestion on the bioaccessibility and bioactivity of phenolic compounds in fractions of Eugenia pyriformis fruit. Food Res Int 2021; 150:110767. [PMID: 34865782 DOI: 10.1016/j.foodres.2021.110767] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/02/2021] [Accepted: 10/17/2021] [Indexed: 11/20/2022]
Abstract
Uvaia is a Brazilian fruit species that has great economic and nutritional potential, in addition to being a good source of compounds of biological interest. In this study, we evaluated for the first time the influence of in vitro gastrointestinal digestion on the bioaccessibility and bioactivity of phenolic compounds from two fractions of uvaia (edible and seed). It was observed that the content of total phenolic compounds was about 3 times higher in the seed (undigested extract), but reduced significantly after intestinal digestion (-50.08%). In turn, the total flavonoid content was about 5 times higher in the undigested seed extract. After intestinal digestion, the flavonoid content increased in the edible fraction (+109.49%) and decreased in the uvaia seed (-70.20%). The heatmap analysis showed that after intestinal digestion, there was an increase in the relative intensity of the flavonoids, while phenolic acids reduced their intensity. The antioxidant capacity of the undigested extract was 4-7 times greater for the seed, but decreased after intestinal digestion (-8.04-27.23%), while the antioxidant capacity of the edible fraction increased by 72.12-107.89% in this same stage of digestion. Thus, the content of phenolic compounds and antioxidant capacity were higher in the uvaia seed, and the bioaccessibility of the bioactive compounds in this fruit were dependent on the fraction and digestive phase evaluated. These results can contribute to the establishment of uvaia as a novel ingredient for preparations with functional claims.
Collapse
|
94
|
Boyd AP, Talbert JN, Acevedo NC. Effect of agitation and added cholesterol esterase on bioaccessibility of phytosterols in a standardized in vitro digestion model. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
95
|
Extraction Processes Affect the Composition and Bioavailability of Flavones from Lamiaceae Plants: A Comprehensive Review. Processes (Basel) 2021. [DOI: 10.3390/pr9091675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lamiaceae plants are a widespread family of herbaceous plants with around 245 plant genera and nearly 22,576 species distributed in the world. Some of the most representative and widely studied Lamiaceae plants belong to the Ocimum, Origanum, Salvia, and Thymus genera. These plants are a rich source of bioactive molecules such as terpenes, flavonoids, and phenolic acids. In this sense, there is a subgroup of flavonoids classified as flavones. Flavones have antioxidant, anti-inflammatory, anti-cancer, and anti-diabetic potential; thus, efficient extraction techniques from their original plant matrixes have been developed. Currently, conventional extraction methods involving organic solvents are no longer recommended due to their environmental consequences, and new environmentally friendly techniques have been developed. Moreover, once extracted, the bioactivity of flavones is highly linked to their bioavailability, which is often neglected. This review aims to comprehensively gather recent information (2011–2021) regarding extraction techniques and their important relationship with the bioavailability of flavones from Lamiaceae plants including Salvia, Ocimum, Thymus, and Origanum.
Collapse
|
96
|
Subramanian P. Lipid-Based Nanocarrier System for the Effective Delivery of Nutraceuticals. Molecules 2021; 26:5510. [PMID: 34576981 PMCID: PMC8468612 DOI: 10.3390/molecules26185510] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Nutraceuticals possess several health benefits and functions; however, most nutraceuticals are prone to degradation in the gastrointestinal environment and have poor bioavailability. Application of a novel carrier system is of increasing importance to overcome obstacles and provide efficient applicability. Lipid-based nanocarriers provide a large surface-to-mass ratio, enhanced intestinal absorption by solubilization in the intestinal milieu, intestinal lymphatic transport, and altering enterocyte-based transport. A critical overview of the current limitation, preparation, and application of lipid-based nanocarriers (liposomes and niosomes) and lipid nanoparticles (SLNs and NLCs) is discussed. Physical and gastrointestinal stability and bioavailability of nanoencapsulated nutraceuticals are considered as well.
Collapse
|
97
|
Colombo R, Ferron L, Frosi I, Papetti A. Advances in static in vitro digestion models after the COST action Infogest consensus protocol. Food Funct 2021; 12:7619-7636. [PMID: 34250533 DOI: 10.1039/d1fo01089a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In vitro digestion models are essential to predictively evaluate the bioaccessibility and bioactivity of food molecules or natural products. Dynamic models better simulate the gastrointestinal conditions as they reproduce similar physiological environments. Despite this, static methods, also known as biochemical methods, represent a simple and useful approach for the study of different types of molecules, with a broad applicability in the nutritional, pharmaceutical, and toxicological fields. In addition, static models can be validated, avoiding the disadvantage of a difficult reproducibility of dynamic in vitro systems and inter-individual variations of in vivo experiments. A crucial point in the standardization of static models was the COST Action Infogest in 2014, which elaborated an international consensus static digestion method to harmonize experimental conditions and has general guidelines, thus allowing the comparison of studies and data. The aim of our review is to underline the impact of the Infogest consensus method and the development and evolution of in vitro static methods in the following years, with a focus on food applications.
Collapse
Affiliation(s)
- Raffaella Colombo
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100, Pavia, Italy.
| | | | | | | |
Collapse
|
98
|
Infantes-Garcia M, Verkempinck S, Guevara-Zambrano J, Hendrickx M, Grauwet T. Development and validation of a rapid method to quantify neutral lipids by NP-HPLC-charged aerosol detector. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
99
|
Laib I, Kehal F, Arris M, Maameri MI, Lachlah H, Bensouici C, Mosbah R, Houasnia M, Barkat M. Effet de la digestion gastro-intestinale in vitro sur les composés phénoliques et l’activité antioxydante du thé vert Camellia sinensis L. issu de l’agriculture biologique. NUTR CLIN METAB 2021. [DOI: 10.1016/j.nupar.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
100
|
Moyo SM, Serem JC, Bester MJ, Mavumengwana V, Kayitesi E. Hydrothermal Processing and In Vitro Simulated Human Digestion Affects the Bioaccessibility and Bioactivity of Phenolic Compounds in African Pumpkin ( Momordica balsamina) Leaves. Molecules 2021; 26:molecules26175201. [PMID: 34500636 PMCID: PMC8434164 DOI: 10.3390/molecules26175201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
The African pumpkin (Momordica balsamina) contains bioactive phenolic compounds that may assist in reducing oxidative stress in the human body. The leaves are mainly consumed after boiling in water for a specific time; this hydrothermal process and conditions of the gastrointestinal tract may affect the presence and bioactivity of phenolics either positively or negatively. In this study, the effects of hydrothermal processing (boiling) and in vitro simulated human digestion on the phenolic composition, bioaccessibility and bioactivity in African pumpkin were investigated in comparison with those of spinach (Spinacia oleracea). A high-resolution ultra-performance liquid chromatography, coupled with diode array detection, quadrupole time-of-flight and mass spectrometer (UPLC-DAD-QTOF-MS) was used to profile phenolic metabolites. Metabolites such as 3-caffeoylquinic acid, 5-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid were highly concentrated in the boiled vegetable extracts compared to the raw undigested and all digested samples. The majority of African pumpkin and spinach extracts (non-digested and digested) protected Deoxyribonucleic acid (DNA), (mouse fibroblast) L929 and human epithelial colorectal adenocarcinoma (Caco-2) cells from 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative damage. From these results, the consumption of boiled African pumpkin leaves, as well as spinach, could be encouraged, as bioactive metabolites present may reduce oxidative stress in the body.
Collapse
Affiliation(s)
- Siphosanele Mafa Moyo
- Department of Biotechnology and Food Technology, Faculty of Science, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
- Correspondence: (S.M.M.); (E.K.)
| | - June C. Serem
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa; (J.C.S.); (M.J.B.)
| | - Megan J. Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa; (J.C.S.); (M.J.B.)
| | - Vuyo Mavumengwana
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg, Cape Town 7505, South Africa;
| | - Eugenie Kayitesi
- Department of Biotechnology and Food Technology, Faculty of Science, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
- Correspondence: (S.M.M.); (E.K.)
| |
Collapse
|