51
|
Benimana F, Potoroko IY, Pathak P, Sonawane SH, Sonawane S, Bagale UD. Ultrasound-assisted synthesis of nanoemulsion/protein blend for packaging application. Food Sci Nutr 2022; 10:1537-1547. [PMID: 35592281 PMCID: PMC9094475 DOI: 10.1002/fsn3.2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 10/27/2021] [Accepted: 11/17/2021] [Indexed: 11/11/2022] Open
Abstract
In the present work, we studied the formation of sunflower oil nanoemulsion using ultrasound techniques. Later, we investigated the development of active films based on a mixture of whey protein containing sunflower oil base nanoemulsion with different concentrations (10, 25, and 50% of total whey protein). The prepared film was by analyzing using the Fourier transform infrared (FTIR), X‐ray diffraction (XRD), and field‐emission scanning electron microscope (FE‐SEM). The film shows no changes in its integrity and crystallinity compared to the virgin film. The presence of nanoemulsion improves the mechanical properties from 2.75 MPa to 3.52 MPa while it decreases the water vapor permeability from 3.4 × 10–10 to 1.3 × 10−10g/m.s.Pa for concentrations NE (50% of Whey protein). The antioxidant activity for Tween 20 nanoemulsion is 38.7% compared to 36.1% for Tween 80 nanoemulsion. The antimicrobial activity of the film contains sunflower nanoemulsion higher than virgin films. The results showed the potential of blend film of whey protein with nanoemulsion for active films for novel food protection.
Collapse
Affiliation(s)
- Fidele Benimana
- Department of Food and Biotechnology South Ural State University Chelyabinsk Russia
| | - Irina Y Potoroko
- Department of Food and Biotechnology South Ural State University Chelyabinsk Russia
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs Higher Medical and Biological School South Ural State University Chelyabinsk Russia
| | - Shirish H Sonawane
- Department of Chemical Engineering National Institute of Technology Warangal India
| | - Shriram Sonawane
- Department of Chemical Engineering Visvesvaraya National Institute of Technology Nagpur India
| | - Uday D Bagale
- Department of Food and Biotechnology South Ural State University Chelyabinsk Russia
| |
Collapse
|
52
|
Gaba ABM, Hassan MA, Abd EL-Tawab AA, Abdelmonem MA, Morsy MK. Protective Impact of Chitosan Film Loaded Oregano and Thyme Essential Oil on the Microbial Profile and Quality Attributes of Beef Meat. Antibiotics (Basel) 2022; 11:583. [PMID: 35625227 PMCID: PMC9137996 DOI: 10.3390/antibiotics11050583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
Edible films and essential oil (EO) systems have the potency to enhance the microbial quality and shelf life of food. This investigation aimed to evaluate the efficacy of chitosan films including essential oils against spoilage bacteria and foodborne pathogens associated with meat. Antimicrobial activity (in vitro and in vivo) of chitosan films (CH) incorporated with oregano oil (OO) and thyme oil (TO) at 0.5 and 1% was done against spoilage bacteria and foodborne pathogens, compared to the control sample and CH alone. Preliminary experiments (in vitro) showed that the 1% OO and TO were more active against Staphylococcus aureus compared to Escherichia coli O157:H7 and Salmonella Typhimurium. In in vivo studies, CH containing OO and TO effectively inhibited the three foodborne pathogens and spoilage bacteria linked with packed beef meat which was kept at 4 °C/30 days compared to the control. The total phenolic content of the EOs was 201.52 mg GAE L-1 in thyme and 187.64 mg GAE L-1 in oregano. The antioxidant activity of thyme oil was higher than oregano oil. The results demonstrated that the shelf life of meat including CH with EOs was prolonged ~10 days compared to CH alone. Additionally, CH-OO and CH-TO have improved the sensory acceptability until 25 days, compared to the control. Results revealed that edible films made of chitosan and containing EOs improved the quality parameters and safety attributes of refrigerated or fresh meat.
Collapse
Affiliation(s)
- Abdul Basit M. Gaba
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qaluobia 13736, Egypt; (A.B.M.G.); (M.A.H.)
- Department of Quality Systems and Sustainability, Kalustyan Corporation, 855 Rahway Ave, Union, NJ 07083, USA
| | - Mohamed A. Hassan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qaluobia 13736, Egypt; (A.B.M.G.); (M.A.H.)
| | - Ashraf A. Abd EL-Tawab
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Qaluobia 13736, Egypt;
| | - Mohamed A. Abdelmonem
- Agriculture Research Center, Central Lab of Residue Analysis of Pesticides and Heavy Metals on Food, Food Microbiology Unit, Cairo 12311, Egypt;
| | - Mohamed K. Morsy
- Department of Food Technology, Faculty of Agriculture, Benha University, Qaluobia 13736, Egypt
| |
Collapse
|
53
|
Nanoliposomes Containing Carvacrol and Carvacrol-Rich Essential Oils as Effective Mosquitoes Larvicides. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00971-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
54
|
Augusto A, Miranda A, Costa L, Pinheiro J, Campos MJ, Raimundo D, Pedrosa R, Mitchell G, Niranjan K, Silva SF. A pilot plant scale testing of the application of seaweed‐based natural coating and modified atmosphere packaging for shelf‐life extension of fresh‐cut apple. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ana Augusto
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
- Department of Food and Nutritional Sciences University of Reading Reading United Kingdom
- Centre for Rapid and Sustainable Product Development (CDRsp), Politécnico de Leiria, 2430‐028 Marinha Grande
| | - Andreia Miranda
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| | - Leonor Costa
- iBET – Instituto de Biologia Experimental e Tecnológica, 2781‐901 Oeiras Portugal
| | - Joaquina Pinheiro
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| | - Maria J. Campos
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| | | | - Rui Pedrosa
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| | - Geoffrey Mitchell
- Centre for Rapid and Sustainable Product Development (CDRsp), Politécnico de Leiria, 2430‐028 Marinha Grande
| | - Keshavan Niranjan
- Department of Food and Nutritional Sciences University of Reading Reading United Kingdom
| | - Susana F.J. Silva
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| |
Collapse
|
55
|
Faheem F, Liu ZW, Rabail R, Haq IU, Gul M, Bryła M, Roszko M, Kieliszek M, Din A, Aadil RM. Uncovering the Industrial Potentials of Lemongrass Essential Oil as a Food Preservative: A Review. Antioxidants (Basel) 2022; 11:720. [PMID: 35453405 PMCID: PMC9031912 DOI: 10.3390/antiox11040720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
The food industry is growing vastly, with an increasing number of food products and the demand of consumers to have safe and pathogen-free food with an extended shelf life for consumption. It is critical to have food safe from pathogenic bacteria, fungi, and unpleasant odors or tastes so that the food may not cause any health risks to consumers. Currently, the direction of food industry has been shifting from synthetically produced preservatives to natural preservatives to lower the unnecessary chemical burden on health. Many new technologies are working on natural prevention tools against food degradation. Lemongrass is one such natural preservative that possesses significant antimicrobial and antioxidant activity. The essential oil of lemongrass contains a series of terpenes that are responsible for these activities. These properties make lemongrass acceptable in the food industry and may fulfill consumer demands. This article provides detailed information about the role of lemongrass and its essential oil in food preservation. The outcomes of the research on lemongrass offer room for its new technological applications in food preservation.
Collapse
Affiliation(s)
- Fatima Faheem
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Zhi Wei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Iahtisham-Ul Haq
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore 54600, Pakistan;
| | - Maryam Gul
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.R.)
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.R.)
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Ahmad Din
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| |
Collapse
|
56
|
Mahmud J, Sarmast E, Shankar S, Lacroix M. Advantages of nanotechnology developments in active food packaging. Food Res Int 2022; 154:111023. [DOI: 10.1016/j.foodres.2022.111023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 01/04/2023]
|
57
|
Bleoanca I, Lanciu A, Patrașcu L, Ceoromila A, Borda D. Efficacy of Two Stabilizers in Nanoemulsions with Whey Proteins and Thyme Essential Oil as Edible Coatings for Zucchini. MEMBRANES 2022; 12:membranes12030326. [PMID: 35323801 PMCID: PMC8951633 DOI: 10.3390/membranes12030326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023]
Abstract
Edible coatings are important for horticulture crops preservation and reducing food waste. Application of edible coatings followed by low-temperature storage prolongs the storability, preserves quality, and decreases the overall postharvest losses. This study evaluated the efficacy of two nanoemulsions formulae containing thyme essential oil and whey proteins as coatings for zucchini, with the purpose of extending their shelf-life. The nanoemulsions were rheologically evaluated and the formula with guar and arabic gum mix stabilizer (S) showed a better capacity to restructure after strain compared to the formulae with Tween 20 (T). The S coating material had a better capacity to integrate nanoparticles compared to T. However, when applied on zucchini, T coating was more effective in reducing weight loss showing 16% weight loss compared to 21% in S, after 42 days. At the end of storage at 10 °C, the T-coated zucchini had better firmness (p < 0.05) compared with S and both coatings were superior to control (p < 0.05). POD (peroxidase) activity was high in peel at the end of storage when also CAT (catalase) showed a sudden increase. On the 42nd day of storage, the highest enzymes activity (CAT, POD, and APX (ascorbate peroxidase)) was present in the S-coated zucchini peel. The most abundant volatile in T coating was α-pinene and 4-carene in S. Sensory analysis showed that T coating delayed the appearance of senescence while S exhibited surface cracks.
Collapse
Affiliation(s)
- Iulia Bleoanca
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 800201 Galati, Romania; (I.B.); (A.L.)
| | - Andreea Lanciu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 800201 Galati, Romania; (I.B.); (A.L.)
| | - Livia Patrașcu
- Cross-Border Faculty, Dunarea de Jos University of Galati, 111 Domneasca Str., 800201 Galati, Romania; (L.P.); (A.C.)
| | - Alina Ceoromila
- Cross-Border Faculty, Dunarea de Jos University of Galati, 111 Domneasca Str., 800201 Galati, Romania; (L.P.); (A.C.)
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 800201 Galati, Romania; (I.B.); (A.L.)
- Correspondence: ; Tel.: +40-336-130-177
| |
Collapse
|
58
|
Essential oils as natural antimicrobials for application in edible coatings for minimally processed apple and melon: A review on antimicrobial activity and characteristics of food models. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
59
|
Ultrasonication induced nano-emulsification of thyme essential oil: Optimization and antibacterial mechanism against Escherichia coli. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108609] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
60
|
Roshan AB, Venkatesh HN, Dubey NK, Mohana DC. Chitosan-based nanoencapsulation of Toddalia asiatica (L.) Lam. essential oil to enhance antifungal and aflatoxin B 1 inhibitory activities for safe storage of maize. Int J Biol Macromol 2022; 204:476-484. [PMID: 35151710 DOI: 10.1016/j.ijbiomac.2022.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
Abstract
The present study reports the enhanced antifungal, aflatoxin B1 (AFB1) inhibitory activities and mode of action of chitosan-based nanoencapsulated Toddalia asiatica essential oil (neTAEO). Twenty-seven different chemical components were recognized from T. asiatica essential oil (TAEO) using gas chromatography-mass spectrometry (GC-MS). The caryophyllene oxide (CO) (25.4%), and 1,3-hexadiene, 3-ethyl-2,5-dimethyl- (HED) (24.08%) were documented as significant compounds. The Z-average particles diameter (Z-APD) of the neTAEO ranged between 18.41 and 131.8 nm. The neTAEO showed enhanced and most promising antifungal and AFB1 inhibitory activity than TAEO. In viable maize model assay, neTAEO effectively preserved the maize from fungal invade and AFB1 biosynthesis. The neTAEO significantly disturbs membrane integrities of Aspergillus flavus by inhibiting ergosterol biosynthesis followed by the extreme release of ions (Mg2+ and K+) and UV-absorbing (260 and 280 nm) cellular constituents. The in-silico molecular docking showed that the major active components of TAEO viz., CO and HED were active against AFB1 synthesizing leading genes Ver-1 and Omt-A with docking scores ranging from -4.8 to -7.7. The obtained results confirm that neTAEO showed promising antifungal and AFB1 inhibitory activities; hence, it could be used as an alternative green strategy to protect food grains from fungal invade and AFB1 production during storage.
Collapse
Affiliation(s)
- Akbar Basha Roshan
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru 560 056, India
| | - Hosur Narayanappa Venkatesh
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru 560 056, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Devihalli Chikkaiah Mohana
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi, Bengaluru 560 056, India.
| |
Collapse
|
61
|
Ghosh M, Singh AK. Potential of engineered nanostructured biopolymer based coatings for perishable fruits with Coronavirus safety perspectives. PROGRESS IN ORGANIC COATINGS 2022; 163:106632. [PMID: 34931104 PMCID: PMC8674086 DOI: 10.1016/j.porgcoat.2021.106632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 05/25/2023]
Abstract
Fresh fruits are prioritized needs in order to fulfill the required health benefits for human beings. However, some essential fruits are highly perishable with very short shelf-life during storage because of microbial growth and infections. Thus improvement of fruits shelf-life is a serious concern for their proper utlization without generation of huge amount of fruit-waste. Among various methods employed in extension of fruits shelf-life, design and fabrication of edible nanocoatings with antimicrobial activities have attracted considerable interest because of their enormous potential, novel functions, eco-friendly nature and good durability. In recent years, scientific communities have payed increased attention in the development of advanced antimicrobial edible coatings to prolong the postharvest shelf-life of fruits using hydrocolloids. In this review, we attempted to highlight the technical breakthrough and recent advancements in development of edible fruit coating by the application of various types of agro-industrial residues and different active nanomaterials incorporated into the coatings and their effects on shelf-life of perishable fruits. Improvements in highly desired functions such as antioxidant/antimicrobial activities and mechanical properties of edible coating to significantly control the gases (O2/CO2) permeation by the incorporation of nanoscale natural materials as well as metal nanoparticles are reviewed and discussed. In addition, by compiling recent knowledge, advantages of coatings on fruits for nutritional security during COVID-19 pandemic are also summarized along with the scientific challenges and insights for future developments in fabrication of engineered nanocoatings.
Collapse
Affiliation(s)
- Moushumi Ghosh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Arun Kumar Singh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| |
Collapse
|
62
|
Inhibition of Staphylococcus aureus on a laboratory medium and black peppercorns by individual and combinations of essential oil vapors. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
63
|
Hao R, Shah BR, Sterniša M, Možina SS, Mráz J. Development of essential oil-emulsion based coating and its preservative effects on common carp. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
64
|
Song R, Lin Y, Li Z. Ultrasonic-assisted preparation of eucalyptus oil nanoemulsion: Process optimization, in vitro digestive stability, and anti-Escherichia coli activity. ULTRASONICS SONOCHEMISTRY 2022; 82:105904. [PMID: 34979457 PMCID: PMC8799746 DOI: 10.1016/j.ultsonch.2021.105904] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 06/01/2023]
Abstract
Eucalyptus oil (EO) is a natural and effective antimicrobial agent; however, it has disadvantages such as poor water solubility and instability. The aim of this study was to investigate the effect of process vessels and preparation process parameters on the particle size of the emulsion droplets using ultrasonic technique and response surface methodology to prepare eucalyptus oil nanoemulsion (EONE). The optimal sonication process parameters in conical centrifuge tubes were confirmed: sonication distance of 0.9 cm, sonication amplitude of 18%, and sonication time of 2 min. Under these conditions, the particle size of EONE was 18.96 ± 4.66 nm, the polydispersity index was 0.39 ± 0.09, and the zeta potential was -31.17 ± 2.15 mV. In addition, the changes in particle size, potential, micromorphology, and anti-Escherichia coli activity of EONE during digestion were investigated by in vitro simulated digestion. The emulsion was stable in simulated salivary fluid, tended to aggregate in simulated gastric fluid, and increased in particle size and potential value in simulated intestinal fluid. EONE showed higher anti-E. coli activity than EO by simulated digestion. These results provide a useful reference for the in vivo antimicrobial application of the essential oil.
Collapse
Affiliation(s)
- Ruiteng Song
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Yongqi Lin
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Zhenzhen Li
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
65
|
Jongman M, Carmichael P, Loeto D, Gomba A. Advances in the use of biocontrol applications in preharvest and postharvest environments: A food safety milestone. J Food Saf 2021. [DOI: 10.1111/jfs.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Patricia Carmichael
- Department of Agricultural Research and Specialists Services Malkerns Eswatini
| | - Daniel Loeto
- Department of Biological Sciences University of Botswana Gaborone Botswana
| | - Annancietar Gomba
- National Institute for Occupational Health National Health Laboratory Service Johannesburg South Africa
| |
Collapse
|
66
|
Maurya A, Singh VK, Das S, Prasad J, Kedia A, Upadhyay N, Dubey NK, Dwivedy AK. Essential Oil Nanoemulsion as Eco-Friendly and Safe Preservative: Bioefficacy Against Microbial Food Deterioration and Toxin Secretion, Mode of Action, and Future Opportunities. Front Microbiol 2021; 12:751062. [PMID: 34912311 PMCID: PMC8667777 DOI: 10.3389/fmicb.2021.751062] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Microbes are the biggest shareholder for the quantitative and qualitative deterioration of food commodities at different stages of production, transportation, and storage, along with the secretion of toxic secondary metabolites. Indiscriminate application of synthetic preservatives may develop resistance in microbial strains and associated complications in human health with broad-spectrum environmental non-sustainability. The application of essential oils (EOs) as a natural antimicrobial and their efficacy for the preservation of foods has been of present interest and growing consumer demand in the current generation. However, the loss in bioactivity of EOs from fluctuating environmental conditions is a major limitation during their practical application, which could be overcome by encapsulating them in a suitable biodegradable and biocompatible polymer matrix with enhancement to their efficacy and stability. Among different nanoencapsulated systems, nanoemulsions effectively contribute to the practical applications of EOs by expanding their dispersibility and foster their controlled delivery in food systems. In line with the above background, this review aims to present the practical application of nanoemulsions (a) by addressing their direct and indirect (EO nanoemulsion coating leading to active packaging) consistent support in a real food system, (b) biochemical actions related to antimicrobial mechanisms, (c) effectiveness of nanoemulsion as bio-nanosensor with large scale practical applicability, (d) critical evaluation of toxicity, safety, and regulatory issues, and (e) market demand of nanoemulsion in pharmaceuticals and nutraceuticals along with the current challenges and future opportunities.
Collapse
Affiliation(s)
- Akash Maurya
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Jitendra Prasad
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Akash Kedia
- Government General Degree College, Mangalkote, Burdwan, India
| | - Neha Upadhyay
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
67
|
Marzlan AA, Hussin ASM, Bourke P, Chaple S, Barroug S, Muhialdin BJ. Combination of Green Extraction Techniques and Essential Oils to Develop Active Packaging for Improving the Quality and Shelf Life for Chicken Meat. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anis Asyila Marzlan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Anis Shobirin Meor Hussin
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Paula Bourke
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
- School of Biological Science, Institute for Global Food Security, Queens University Belfast, Belfast, Northern Ireland
| | - Sonal Chaple
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Soukaina Barroug
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Belal J Muhialdin
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
68
|
Perumal AB, Huang L, Nambiar RB, He Y, Li X, Sellamuthu PS. Application of essential oils in packaging films for the preservation of fruits and vegetables: A review. Food Chem 2021; 375:131810. [PMID: 34959137 DOI: 10.1016/j.foodchem.2021.131810] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/16/2021] [Accepted: 12/04/2021] [Indexed: 01/10/2023]
Abstract
Fruits and vegetables are highly perishable in nature. Several factors could affect the quality and shelf life of fruits and vegetables. Packaging materials (usually made up of polymers, proteins, lipids, polysaccharides, etc.,) are incorporated with essential oil (EO) which is high in antimicrobial and antioxidant compounds that can enhance the shelf life of fruits and vegetables without affecting their quality. However, the use of EO for postharvest preservation can alter the organoleptic properties of fresh produce. Exploiting synergistic interactions between several EOs, encapsulation of EO, or combining EO with non-thermal techniques such as irradiation, UV-C, cold plasma, ultrasound, etc., may help in preventing the spoilage of food products at lower concentrations without altering their organoleptic properties. This review aims to discuss the overview and current scenario of packaging film with EO for the preservation of fruit and vegetables. We have also discussed the spoilage mechanism of fruits and vegetables, mode of action of EOs, and the effect of EO with packaging film on antimicrobial and sensory properties of fruits and vegetables.
Collapse
Affiliation(s)
- Anand Babu Perumal
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Lingxia Huang
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Reshma B Nambiar
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Periyar Selvam Sellamuthu
- Department of Food Process Engineering, Postharvest Research Lab, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamilnadu, India.
| |
Collapse
|
69
|
Rehman A, Qunyi T, Sharif HR, Korma SA, Karim A, Manzoor MF, Mehmood A, Iqbal MW, Raza H, Ali A, Mehmood T. Biopolymer based nanoemulsion delivery system: An effective approach to boost the antioxidant potential of essential oil in food products. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
70
|
Kumar P, Sethi S, Varghese E. Impact of carboxymethyl cellulose coating functionalized with browning inhibitors for maintaining quality attributes of fresh‐cut pineapple cubes. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pushpendra Kumar
- Department of Post Harvest Management, College of Horticulture and Forestry Central Agricultural University (I) Pasighat India
| | - Shruti Sethi
- Division of Food Science and Postharvest Technology ICAR‐Indian Agricultural Research Institute New Delhi India
| | - Eldho Varghese
- Fishery Resources Assessment Division (FRAD) ICAR‐Central Marine Fisheries Research Institute Kochi India
| |
Collapse
|
71
|
Das S, Ghosh A, Mukherjee A. Nanoencapsulation-Based Edible Coating of Essential Oils as a Novel Green Strategy Against Fungal Spoilage, Mycotoxin Contamination, and Quality Deterioration of Stored Fruits: An Overview. Front Microbiol 2021; 12:768414. [PMID: 34899650 PMCID: PMC8663763 DOI: 10.3389/fmicb.2021.768414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022] Open
Abstract
Currently, applications of essential oils for protection of postharvest fruits against fungal infestation and mycotoxin contamination are of immense interest and research hot spot in view of their natural origin and possibly being an alternative to hazardous synthetic preservatives. However, the practical applications of essential oils in broad-scale industrial sectors have some limitations due to their volatility, less solubility, hydrophobic nature, and easy oxidation in environmental conditions. Implementation of nanotechnology for efficient incorporation of essential oils into polymeric matrices is an emerging and novel strategy to extend its applicability by controlled release and to overcome its major limitations. Moreover, different nano-engineered structures (nanoemulsion, suspension, colloidal dispersion, and nanoparticles) developed by applying a variety of nanoencapsulation processes improved essential oil efficacy along with targeted delivery, maintaining the characteristics of food ingredients. Nanoemulsion-based edible coating of essential oils in fruits poses an innovative green alternative against fungal infestation and mycotoxin contamination. Encapsulation-based coating of essential oils also improves antifungal, antimycotoxigenic, and antioxidant properties, a prerequisite for long-term enhancement of fruit shelf life. Furthermore, emulsion-based coating of essential oil is also efficient in the protection of physicochemical characteristics, viz., firmness, titrable acidity, pH, weight loss, respiration rate, and total phenolic contents, along with maintenance of organoleptic attributes and nutritional qualities of stored fruits. Based on this scenario, the present article deals with the advancement in nanoencapsulation-based edible coating of essential oil with efficient utilization as a novel safe green preservative and develops a green insight into sustainable protection of fruits against fungal- and mycotoxin-mediated quality deterioration.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, India
| | - Abhinanda Ghosh
- Department of Botany, Burdwan Raj College, Purba Bardhaman, India
| | - Arpan Mukherjee
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| |
Collapse
|
72
|
Esmaeili Y, Paidari S, Baghbaderani SA, Nateghi L, Al-Hassan AA, Ariffin F. Essential oils as natural antimicrobial agents in postharvest treatments of fruits and vegetables: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01178-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
73
|
Grieger KD, Merck AW, Cuchiara M, Binder AR, Kokotovich A, Cummings CL, Kuzma J. Responsible innovation of nano-agrifoods: Insights and views from U.S. stakeholders. NANOIMPACT 2021; 24:100365. [PMID: 35559824 DOI: 10.1016/j.impact.2021.100365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 06/15/2023]
Abstract
To date, there has been little published work that has elicited diverse stakeholder views of nano-agrifoods and of how nano-agrifoods align with the goals of responsible innovation. This paper aims to fill this research gap by investigating views of nano-agrifoods, how well their development adheres to principles of responsible innovation, and potential challenges for achieving responsible nano-agrifood innovation. Using an online engagement platform, we find that U.S. stakeholder views of responsible innovation were dominated by environmental, health, and safety (EHS) contexts, considerations of societal impacts, opportunities for stakeholder engagement, and responding to societal needs. These views overlap with scholarly definitions of responsible innovation, albeit stakeholders were more focused on impacts of products, while the field of responsible innovation strives for more "upstream" considerations of the process of innovation. We also find that views of nano-agrifoods differed across applications with dietary supplements and improved whitening of infant formula viewed least favorably, and environmental health or food safety applications viewed most favorably. These findings align with the larger body of literature, whereby stakeholders are expected to be more supportive of nanotechnology used in agricultural applications compared to directly within food and food supplements. Overall, participants indicated they held relatively neutral views on research and innovation for nano-agrifoods being conducted responsibly, and they identified key challenges to ensuring their responsible innovation that were related to uncertainties in EHS studies, the need for public understanding and acceptance, and adequate regulation. In light of these results, we recommend future research efforts on EHS impacts and risk-benefit frameworks for nano-agrifoods, better understanding stakeholder views on what constitutes effective regulation, and addressing challenges with effective regulation and responsible innovation practices.
Collapse
Affiliation(s)
- Khara D Grieger
- Department of Applied Ecology, North Carolina State University, USA; Genetic Engineering and Society Center, North Carolina State University, USA.
| | - Ashton W Merck
- Department of Applied Ecology, North Carolina State University, USA; Genetic Engineering and Society Center, North Carolina State University, USA
| | - Maude Cuchiara
- Department of Materials Science and Engineering, North Carolina State University, USA
| | - Andrew R Binder
- Genetic Engineering and Society Center, North Carolina State University, USA; Department of Communication, North Carolina State University, USA
| | - Adam Kokotovich
- Genetic Engineering and Society Center, North Carolina State University, USA; Department of Forestry and Environmental Resources, North Carolina State University, USA
| | - Christopher L Cummings
- Genetic Engineering and Society Center, North Carolina State University, USA; Gene Edited Foods Program, Iowa State University, USA
| | - Jennifer Kuzma
- Genetic Engineering and Society Center, North Carolina State University, USA; School of Public and International Affairs, North Carolina State University, USA
| |
Collapse
|
74
|
Patil PD, Patil SP, Kelkar RK, Patil NP, Pise PV, Nadar SS. Enzyme-assisted supercritical fluid extraction: An integral approach to extract bioactive compounds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
75
|
Iñiguez-Moreno M, Ragazzo-Sánchez JA, Calderón-Santoyo M. An Extensive Review of Natural Polymers Used as Coatings for Postharvest Shelf-Life Extension: Trends and Challenges. Polymers (Basel) 2021; 13:polym13193271. [PMID: 34641086 PMCID: PMC8512484 DOI: 10.3390/polym13193271] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 12/16/2022] Open
Abstract
Global demand for minimally processed fruits and vegetables is increasing due to the tendency to acquire a healthy lifestyle. Losses of these foods during the chain supply reach as much as 30%; reducing them represents a challenge for the industry and scientific sectors. The use of edible packaging based on biopolymers is an alternative to mitigate the negative impact of conventional films and coatings on environmental and human health. Moreover, it has been demonstrated that natural coatings added with functional compounds reduce the post-harvest losses of fruits and vegetables without altering their sensorial and nutritive properties. Furthermore, the enhancement of their mechanical, structural, and barrier properties can be achieved through mixing two or more biopolymers to form composite coatings and adding plasticizers and/or cross-linking agents. This review shows the latest updates, tendencies, and challenges in the food industry to develop eco-friendly food packaging from diverse natural sources, added with bioactive compounds, and their effect on perishable foods. Moreover, the methods used in the food industry and the new techniques used to coat foods such as electrospinning and electrospraying are also discussed. Finally, the tendency and challenges in the development of edible films and coatings for fresh foods are reviewed.
Collapse
|
76
|
Zixiang W, Jingjing Z, Huachen Z, Ning Z, Ruiyan Z, Lanjie L, Guiqin L. Effect of nanoemulsion loading a mixture of clove essential oil and carboxymethyl chitosan‐coated ε‐polylysine on the preservation of donkey meat during refrigerated storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wei Zixiang
- Biopharmaceutical Research Institute Liaocheng University Liaocheng China
| | - Zhang Jingjing
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| | - Zhang Huachen
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| | - Zhang Ning
- Biopharmaceutical Research Institute Liaocheng University Liaocheng China
| | - Zhang Ruiyan
- Biopharmaceutical Research Institute Liaocheng University Liaocheng China
| | - Li Lanjie
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| | - Liu Guiqin
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| |
Collapse
|
77
|
Targino de Souza Pedrosa G, Pimentel TC, Gavahian M, Lucena de Medeiros L, Pagán R, Magnani M. The combined effect of essential oils and emerging technologies on food safety and quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
78
|
Cineole-containing nanoemulsion: Development, stability, and antibacterial activity. Chem Phys Lipids 2021; 239:105113. [PMID: 34216586 DOI: 10.1016/j.chemphyslip.2021.105113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/21/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
1,8-cineole is a monoterpene commonly used by the food, cosmetic, and pharmaceutical industries owing to its flavor and fragrances properties. In addition, this bioactive monoterpene has demonstrated bactericidal and fungicidal activities. However, such activities are limited due to its low aqueous solubility and stability. This study aimed to develop nanoemulsion containing cineole and assess its stability and antibacterial activity in this context. The spontaneous emulsification method was used to prepare nanoemulsion (NE) formulations (F1, F2, F3, F4, and F5). Following the development of NE formulations, we chose the F1 formulation that presented an average droplet size (in diameter) of about 100 nm with narrow size distribution (PdI <0.2) and negative zeta potential (∼ - 35 mV). According to the analytical centrifugation method with photometric detection, F1 and F5 formulations were considered the most stable NE with lower droplet migration velocities. In addition, F1 formulation showed high incorporation efficiency (> 80 %) and TEM analyses demonstrated nanosized oil droplets with irregular spherical shapes and without any aggregation tendency. Antibacterial activity assessment showed that F1 NE was able to enhance the cineole action against Staphylococcus aureus, Enterococcus faecalis, and Streptococcus pyogenes. Therefore, using a simple and reproducible method of low energy emulsification we designed a stable nanoemulsion containing 1,8-cineole with improved antibacterial activity against Gram-positive strains.
Collapse
|
79
|
Nanoencapsulation of Essential Oils as Natural Food Antimicrobial Agents: An Overview. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135778] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The global demand for safe and healthy food with minimal synthetic preservatives is continuously increasing. Natural food antimicrobials and especially essential oils (EOs) possess strong antimicrobial activities that could play a remarkable role as a novel source of food preservatives. Despite the excellent efficacy of EOs, they have not been widely used in the food industry due to some major intrinsic barriers, such as low water solubility, bioavailability, volatility, and stability in food systems. Recent advances in nanotechnology have the potential to address these existing barriers in order to use EOs as preservatives in food systems at low doses. Thus, in this review, we explored the latest advances of using natural actives as antimicrobial agents and the different strategies for nanoencapsulation used for this purpose. The state of the art concerning the antibacterial properties of EOs will be summarized, and the main latest applications of nanoencapsulated antimicrobial agents in food systems will be presented. This review should help researchers to better choose the most suitable encapsulation techniques and materials.
Collapse
|
80
|
Pinilla CMB, Lopes NA, Brandelli A. Lipid-Based Nanostructures for the Delivery of Natural Antimicrobials. Molecules 2021; 26:molecules26123587. [PMID: 34208209 PMCID: PMC8230829 DOI: 10.3390/molecules26123587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Encapsulation can be a suitable strategy to protect natural antimicrobial substances against some harsh conditions of processing and storage and to provide efficient formulations for antimicrobial delivery. Lipid-based nanostructures, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid nanocarriers (NLCs), are valuable systems for the delivery and controlled release of natural antimicrobial substances. These nanostructures have been used as carriers for bacteriocins and other antimicrobial peptides, antimicrobial enzymes, essential oils, and antimicrobial phytochemicals. Most studies are conducted with liposomes, although the potential of SLNs and NLCs as antimicrobial nanocarriers is not yet fully established. Some studies reveal that lipid-based formulations can be used for co-encapsulation of natural antimicrobials, improving their potential to control microbial pathogens.
Collapse
Affiliation(s)
- Cristian Mauricio Barreto Pinilla
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (C.M.B.P.); (N.A.L.)
| | - Nathalie Almeida Lopes
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (C.M.B.P.); (N.A.L.)
| | - Adriano Brandelli
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (C.M.B.P.); (N.A.L.)
- Center of Nanoscience and Nanotechnology (CNANO), Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Correspondence: ; Tel.: +55-51-3308-6249
| |
Collapse
|
81
|
Employing Nanoemulsions in Food Packaging: Shelf Life Enhancement. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09282-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
82
|
Zhao W, Wei Z, Xue C. Recent advances on food-grade oleogels: Fabrication, application and research trends. Crit Rev Food Sci Nutr 2021; 62:7659-7676. [PMID: 33955285 DOI: 10.1080/10408398.2021.1922354] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to improve the nutritional and quality characteristics of food, solid fats are widely used in food formulations. With the continuous improvement of consumers' awareness of health in recent years, substantial attempts have been carried out to find substitutes for solid fats to reduce saturated fatty acid content in foods. Oleogels have drawn increasing attention due to their attractive advantages such as easy fabrication, superior fatty acid composition and safe use in food products to satisfy consumers' demands for healthy products. This review provides the latest information on the diversified oleogel systems. The feasibility of oleogel and oleogel-based system as nutraceutical vehicles is elucidated. The type as well as concentration of oleogelators and the synergistic effect between two or more oleogelators are important factors affecting the properties of obtained oleogel. Oleogels used in nutraceutical delivery have been shown to offer increased loading amount, enhanced bioaccessibility and targeted or controlled release. These nutrients wrapped in oleogels may in turn affect the formation and properties of oleogels. Furthermore, the future perspectives of oleogels are discussed. The feasible research trends of food-grade oleogel include oleogel-based solid lipid particle, essential oil-in-oleogel system, delivery of probiotics, nutraceuticals co-delivery and microencapsulated oleogel.
Collapse
Affiliation(s)
- Wanjun Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
83
|
Akhavan HR, Hosseini FS, Amiri S, Radi M. Cinnamaldehyde-Loaded Nanostructured Lipid Carriers Extend the Shelf Life of Date Palm Fruit. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02645-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
84
|
Combination Therapy Involving Lavandula angustifolia and Its Derivatives in Exhibiting Antimicrobial Properties and Combatting Antimicrobial Resistance: Current Challenges and Future Prospects. Processes (Basel) 2021. [DOI: 10.3390/pr9040609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance (AMR) has been identified as one of the biggest health threats in the world. Current therapeutic options for common infections are markedly limited due to the emergence of multidrug resistant pathogens in the community and the hospitals. The role of different essential oils (EOs) and their derivatives in exhibiting antimicrobial properties has been widely elucidated with their respective mechanisms of action. Recently, there has been a heightened emphasis on lavender essential oil (LEO)’s antimicrobial properties and wound healing effects. However, to date, there has been no review published examining the antimicrobial benefits of lavender essential oil, specifically. Previous literature has shown that LEO and its constituents act synergistically with different antimicrobial agents to potentiate the antimicrobial activity. For the past decade, encapsulation of EOs with nanoparticles has been widely practiced due to increased antimicrobial effects and greater bioavailability as compared to non-encapsulated oils. Therefore, this review intends to provide an insight into the different aspects of antimicrobial activity exhibited by LEO and its constituents, discuss the synergistic effects displayed by combinatory therapy involving LEO, as well as to explore the significance of nano-encapsulation in boosting the antimicrobial effects of LEO; it is aimed that from the integration of these knowledge areas, combating AMR will be more than just a possibility.
Collapse
|
85
|
Emulsions Incorporated in Polysaccharide-Based Active Coatings for Fresh and Minimally Processed Vegetables. Foods 2021; 10:foods10030665. [PMID: 33804642 PMCID: PMC8003668 DOI: 10.3390/foods10030665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
The consumption of minimally processed fresh vegetables has increased by the consumer's demand of natural products without synthetic preservatives and colorants. These new consumption behaviors have prompted research on the combination of emulsion techniques and coatings that have traditionally been used by the food industries. This combination brings great potential for improving the quality of fresh-cut fruits and vegetables by allowing the incorporation of natural and multifunctional additives directly into food formulations. These antioxidant, antibacterial, and/or antifungal additives are usually encapsulated at the nano- or micro-scale for their stabilization and protection to make them available by food through the coating. These nano- or micro-emulsions are responsible for the release of the active agents to bring them into direct contact with food to protect it from possible organoleptic degradation. Keeping in mind the widespread applications of micro and nanoemulsions for preserving the quality and safety of fresh vegetables, this review reports the latest works based on emulsion techniques and polysaccharide-based coatings as carriers of active compounds. The technical challenges of micro and nanoemulsion techniques, the potential benefits and drawbacks of their use, the development of polysaccharide-based coatings with natural active additives are considered, since these systems can be used as alternatives to conventional coatings in food formulations.
Collapse
|
86
|
Effects of UVC light‐emitting diodes on inactivation of Escherichia coli O157:H7 and quality attributes of fresh‐cut white pitaya. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00816-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
87
|
McClements DJ, Das AK, Dhar P, Nanda PK, Chatterjee N. Nanoemulsion-Based Technologies for Delivering Natural Plant-Based Antimicrobials in Foods. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.643208] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is increasing interest in the use of natural preservatives (rather than synthetic ones) for maintaining the quality and safety of foods due to their perceived environmental and health benefits. In particular, plant-based antimicrobials are being employed to protect against microbial spoilage, thereby improving food safety, quality, and shelf-life. However, many natural antimicrobials cannot be utilized in their free form due to their chemical instability, poor dispersibility in food matrices, or unacceptable flavor profiles. For these reasons, encapsulation technologies, such as nanoemulsions, are being developed to overcome these hurdles. Indeed, encapsulation of plant-based preservatives can improve their handling and ease of use, as well as enhance their potency. This review highlights the various kinds of plant-based preservatives that are available for use in food applications. It then describes the methods available for forming nanoemulsions and shows how they can be used to encapsulate and deliver plant-based preservatives. Finally, potential applications of nano-emulsified plant-based preservatives for improving food quality and safety are demonstrated in the meat, fish, dairy, and fresh produce areas.
Collapse
|
88
|
Tripathi AD, Sharma R, Agarwal A, Haleem DR. Nanoemulsions based edible coatings with potential food applications. INTERNATIONAL JOURNAL OF BIOBASED PLASTICS 2021. [DOI: 10.1080/24759651.2021.1875615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P., India
| | - Ruchi Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Sonepat, Haryana, India
| | - Aparna Agarwal
- Department of Food & Nutrition and Food Technology, Lady Irwin College, New Delhi, India
| | - Dr Rizwana Haleem
- Department of Food Technology, Bhaskaracharya College of Applied Sciences, Dwarka, New Delhi, India
| |
Collapse
|
89
|
Chaudhari AK, Singh VK, Das S, Dubey NK. Nanoencapsulation of essential oils and their bioactive constituents: A novel strategy to control mycotoxin contamination in food system. Food Chem Toxicol 2021; 149:112019. [PMID: 33508419 DOI: 10.1016/j.fct.2021.112019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
Spoilage of food by mycotoxigenic fungi poses a serious risk to food security throughout the world. In view of the negative effects of synthetic preservatives, essential oils (EOs) and their bioactive constituents are gaining momentum as suitable substitute to ensure food safety by controlling mycotoxins. However, despite their proven preservative potential against mycotoxins, the use of EOs/bioactive constituents in real food system is still restricted due to instability caused by abiotic factors and negative impact on organoleptic attributes after direct application. Nanoencapsulation in this regard could be a promising approach to address these problems, since the process can increase the stability of EOs/bioactive constituents, barricades their loss and considerably prevent their interaction with food matrices, thus preserving their original organoleptic qualities. The aim of this review is to provide wider and up-to-date overview on recent advances in nanoencapsulation of EOs/bioactive constituents with the objective to control mycotoxin contamination in food system. Further, the information on polymer characteristics, nanoencapsulation techniques, factors affecting the nanoencapsulation, applications of nanoencapsulated formulations, and characterization along with the study on their release kinetics and impacts on organoleptic attributes of food are discussed. Finally, the safety aspects of nanoencapsulated formulations for their safe utilization are also explored.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
90
|
Nanoemulsions of Satureja montana Essential Oil: Antimicrobial and Antibiofilm Activity against Avian Escherichia coli Strains. Pharmaceutics 2021; 13:pharmaceutics13020134. [PMID: 33494240 PMCID: PMC7909762 DOI: 10.3390/pharmaceutics13020134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
Satureja montana essential oil (SEO) presents a wide range of biological activities due to its high content of active phytochemicals. In order to improve the essential oil’s (EO) properties, oil in water nanoemulsions (NEs) composed of SEO and Tween-80 were prepared, characterized, and their antimicrobial and antibiofilm properties assayed against Escherichia coli strains isolated from healthy chicken. Since surfactant and oil composition can strongly influence NE features and their application field, a ternary phase diagram was constructed and evaluated to select a suitable surfactant/oil/water ratio. Minimal inhibitory concentration and minimal bactericidal concentration of NEs, evaluated by the microdilution method, showed that the SEO NE formulation exhibited higher inhibitory effects against planktonic E. coli than SEO alone. The quantification of biofilm production in the presence of NEs, assessed by crystal violet staining and scanning electron microscopy, evidenced that sub-MIC concentrations of SEO NEs enable an efficient reduction of biofilm production by the strong producer strains. The optimized nanoemulsion formulation could ensure food safety quality, and counteract the antibiotic resistance of poultry associated E. coli, if applied/aerosolized in poultry farms.
Collapse
|
91
|
Huang X, Lao Y, Pan Y, Chen Y, Zhao H, Gong L, Xie N, Mo CH. Synergistic Antimicrobial Effectiveness of Plant Essential Oil and Its Application in Seafood Preservation: A Review. Molecules 2021; 26:molecules26020307. [PMID: 33435286 PMCID: PMC7827451 DOI: 10.3390/molecules26020307] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 11/23/2022] Open
Abstract
The synergistic potential of plant essential oils (EOs) with other conventional and non-conventional antimicrobial agents is a promising strategy for increasing antimicrobial efficacy and controlling foodborne pathogens. Spoilage microorganisms are one of main concerns of seafood products, while the prevention of seafood spoilage principally requires exclusion or inactivation of microbial activity. This review provides a comprehensive overview of recent studies on the synergistic antimicrobial effect of EOs combined with other available chemicals (such as antibiotics, organic acids, and plant extracts) or physical methods (such as high hydrostatic pressure, irradiation, and vacuum-packaging) utilized to reduce the growth of foodborne pathogens and/or to extend the shelf-life of seafood products. This review highlights the synergistic ability of EOs when used as a seafood preservative, discovering the possible routes of the combined techniques for the development of a novel seafood preservation strategy.
Collapse
Affiliation(s)
- Xianpei Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (X.H.); (H.Z.)
- Shanwei Marine Industry Institute, Shanwei Polytechnic, Shanwei 516600, China; (Y.P.); (Y.C.); (N.X.)
| | - Yuli Lao
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China;
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Yifeng Pan
- Shanwei Marine Industry Institute, Shanwei Polytechnic, Shanwei 516600, China; (Y.P.); (Y.C.); (N.X.)
| | - Yiping Chen
- Shanwei Marine Industry Institute, Shanwei Polytechnic, Shanwei 516600, China; (Y.P.); (Y.C.); (N.X.)
| | - Haiming Zhao
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (X.H.); (H.Z.)
| | - Liang Gong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Nanbin Xie
- Shanwei Marine Industry Institute, Shanwei Polytechnic, Shanwei 516600, China; (Y.P.); (Y.C.); (N.X.)
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (X.H.); (H.Z.)
- Correspondence: ; Tel.: +86-20-85223405
| |
Collapse
|
92
|
Özogul Y, Özogul F, Kulawik P. The antimicrobial effect of grapefruit peel essential oil and its nanoemulsion on fish spoilage bacteria and food-borne pathogens. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110362] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
93
|
Nair MS, Tomar M, Punia S, Kukula-Koch W, Kumar M. Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. Int J Biol Macromol 2020; 164:304-320. [DOI: 10.1016/j.ijbiomac.2020.07.083] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/20/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
|
94
|
Rossi C, Chaves-López C, Serio A, Casaccia M, Maggio F, Paparella A. Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: An updated review. Crit Rev Food Sci Nutr 2020; 62:2172-2191. [PMID: 33249878 DOI: 10.1080/10408398.2020.1851169] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microbial biofilms represent a constant source of contamination in the food industry, being also a real threat for human health. In fact, most of biofilm-producing bacteria are becoming resistant to sanitizers, thus arousing the interest in natural alternatives to prevent biofilm formation on foods and food-contact surfaces. In particular, studies on biofilm control by essential oils (EOs) application are increasing, being EOs characterized by unique mixtures of compounds able to impair the mechanisms of biofilm development. This review reports the anti-biofilm properties of EOs in bacterial biofilm control (inhibition, removal and prevention of biofilm dispersion) on food-contact surfaces. The relationship between EOs effect and composition, concentration, involved bacteria, and surfaces is discussed, and the possible sites of action are also elucidated. The findings prove the high biofilm controlling capability of EOs through the regulation of genes and proteins implicated in motility, Quorum Sensing and exopolysaccharides (EPS) matrix. Moreover, incorporation in nanosized delivery systems, formulation of blends and combination of EOs with other strategies can increase their anti-biofilm activity. This review provides an overview of the current knowledge of the EOs effectiveness in controlling bacterial biofilm on food-contact surfaces, providing valuable information for improving EOs use as sanitizers in food industries.
Collapse
Affiliation(s)
- Chiara Rossi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, TE, Italy
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, TE, Italy
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, TE, Italy
| | - Manila Casaccia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, TE, Italy
| | - Francesca Maggio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, TE, Italy
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, TE, Italy
| |
Collapse
|
95
|
Zhang Y, Xin C, Cheng C, Wang Z. Antitumor activity of nanoemulsion based on essential oil of Pinus koraiensis pinecones in MGC-803 tumor-bearing nude mice. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
96
|
Magri A, Petriccione M, Cerqueira MA, Gutiérrez TJ. Self-assembled lipids for food applications: A review. Adv Colloid Interface Sci 2020; 285:102279. [PMID: 33070103 DOI: 10.1016/j.cis.2020.102279] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Lipids play an important role in human nutrition. Several foodstuffs can be manufactured from the simple, compound and derived lipids. In particular, the use of self-assembled lipids (SLs, e.g. self-assembled L-α-lecithin) has brought great attention for the development of tailored, tuned and targeted colloidal structures loading degradation-sensitive substances with valuable antimicrobial, antioxidant and nutraceutical properties for food applications. For example, polyunsaturated fatty acids (PUFAs) and essential oils can be protected from degradation, thus improving their bioavailability in general terms in consumers. From a nanotechnological point of view, SLs allow the development of advanced and multifaceted architectures, in which each molecule of them are used as building blocks to obtain designed and ordered structures. It is important to note before beginning this review, that simple and compound lipids are the main SLs, while essential fatty acids and derived lipids in general have been considered by many research groups as the bulk loaded substances within several structures from self-assembled carbohydrates, proteins and lipids. However, this review paper is addressed on the analysis of the lipid-lipid self-assembly. Lipids can be self-assembled into various structures (micelles, vesicular systems, lyotropic liquid crystals, oleogels and films) to be used in different food applications: coatings, controlled and sustained release materials, emulsions, functional foods, etc. SLs can be obtained via non-covalent chemical interactions, primarily by hydrogen, hydrophilic and ionic bonding, which are influenced by the conditions of ionic strength, pH, temperature, among others. This manuscript aims to give an analysis of the specific state-of-the-art of SLs for food applications, based primarily on the literature reported in the past five years.
Collapse
|
97
|
György É, Laslo É, Kuzman IH, Dezső András C. The effect of essential oils and their combinations on bacteria from the surface of fresh vegetables. Food Sci Nutr 2020; 8:5601-5611. [PMID: 33133562 PMCID: PMC7590337 DOI: 10.1002/fsn3.1864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
During the study, we determined the antimicrobial activity of different selected essential oils (thyme, lemongrass, juniper, oregano, sage, fennel, rosemary, mint, rosehips, dill) on some pathogenic and spoilage bacteria isolated from the surface of various fresh vegetables. At the same time, in the case of some volatile oil combinations we followed the phenomena of synergism and antagonism. The identification of the isolated bacterial strains was made using 16S rDNA gene sequence analysis. The most resistant isolates appeared to be Curtobacterium herbarum, Achromobacter xylosoxidans, and Enterobacter ludwigii, while Pseudomonas hibiscicola was the most sensitive. Of the chosen plant essential oils, the most pronounced antimicrobial effect was detected in the case of oregano. The essential oils of thyme and mint also showed elevated antimicrobial activity. A synergistic effect was observed in case of five combinations of essential oil. Based on the results, we find that some individual essential oils and mixture compositions (due to synergic effect) could be good candidates for the preservation of fresh vegetables. These preliminary findings suggest that essential oils from locally grown spices could contribute to decreasing the health risk and also to the suppression of emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Éva György
- Department of Food ScienceFaculty of EconomicsSocio‐Human Sciences and EngineeringSapientia Hungarian University of TransylvaniaMiercurea CiucRomania
| | - Éva Laslo
- Department of BioengineeringFaculty of EconomicsSocio‐Human Sciences and EngineeringSapientia Hungarian University of TransylvaniaMiercurea CiucRomania
| | - Ildikó Hajnalka Kuzman
- Department of Food ScienceFaculty of EconomicsSocio‐Human Sciences and EngineeringSapientia Hungarian University of TransylvaniaMiercurea CiucRomania
| | - Csaba Dezső András
- Department of Food ScienceFaculty of EconomicsSocio‐Human Sciences and EngineeringSapientia Hungarian University of TransylvaniaMiercurea CiucRomania
| |
Collapse
|
98
|
Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
99
|
Li S, Sun J, Yan J, Zhang S, Shi C, McClements DJ, Liu X, Liu F. Development of antibacterial nanoemulsions incorporating thyme oil: Layer-by-layer self-assembly of whey protein isolate and chitosan hydrochloride. Food Chem 2020; 339:128016. [PMID: 33152858 DOI: 10.1016/j.foodchem.2020.128016] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
The aim of this study was to develop a thyme oil emulsion with good physicochemical properties and antibacterial activity. Initially, oil-in-water emulsions containing whey protein-coated essential oil droplets were prepared by high-pressure homogenization. The double-layer emulsions were formed around the oil droplets by electrostatic deposition of cationic chitosan hydrochloride onto the anionic protein-coated droplets. Then, the structure, physicochemical properties, and storage stability of the emulsions were determined. Emulsions formulated using 1% v/v thyme oil, 0.7 wt% whey protein, and 0.25 wt% of chitosan hydrochloride contained relatively small cationic droplets. Moreover, the emulsions containing double-layer coatings were shear-thinning fluids. Storage tests indicated that double-layer emulsions had better stability than the single-layer. Antibacterial tests indicated that the double-layer emulsions exhibited prolonged antibacterial activity against two model food pathogens: E. coli and S. aureus. These results provide a scientific basis for the rational design of antimicrobial delivery systems for use in foods.
Collapse
Affiliation(s)
- Siqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jialin Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jun Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Sairui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | | | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
100
|
Li K, Zhang M, Bhandari B, Xu J, Yang C. Improving storage quality of refrigerated steamed buns by mung bean starch composite coating enriched with nano‐emulsified essential oils. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kun Li
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| | - Min Zhang
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- International Joint Laboratory on Food SafetyJiangnan University Wuxi China
| | - Bhesh Bhandari
- School of Agriculture and Food SciencesUniversity of Queensland Brisbane Australia
| | - Jicheng Xu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| | - Chaohui Yang
- Yechun Food Production and Distribution Co., Ltd. Yangzhou China
| |
Collapse
|