51
|
Pires EDO, Pereira E, Pereira C, Dias MI, Calhelha RC, Ćirić A, Soković M, Hassemer G, Garcia CC, Caleja C, Barros L, Ferreira ICFR. Chemical Composition and Bioactive Characterisation of Impatiens walleriana. Molecules 2021; 26:1347. [PMID: 33802535 PMCID: PMC7962038 DOI: 10.3390/molecules26051347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
The attractive colour characteristics of the flowers of the species Impatiens walleriana have been arousing great interest in the food industry, which is looking for potential natural sources of colouring ingredients. In this sense, the present work focused on the chemical and bioactive characterization of pink and orange flowers of I. walleriana. The phenolic compounds were determined by HPLC-DAD-ESI/MS; in addition, different bioactivities (antioxidant, antimicrobial, anti-inflammatory and cytotoxicity) were also analysed. Both samples studied showed significant amounts of phenolic compounds, especially phenolic acids, flavonoids, and anthocyanins, which justifies the excellent performance in the different bioactivities studied. The orange variety, despite having a greater variety of phenolic compounds, showed a total amount of compounds lower than the pink variety. Overall, the flowers of I. walleriana emerge as a promising resource to be explored by the food industry.
Collapse
Affiliation(s)
- Eleomar de O. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (C.P.); (M.I.D.); (R.C.C.); (C.C.); (I.C.F.R.F.)
- Departamento Acadêmico de Alimentos (DAALM), Câmpus Medianeira, Universidade Tecnológica Federal do Paraná (UTFPR), CEP, Medianeira, PR 85884-000, Brazil;
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (C.P.); (M.I.D.); (R.C.C.); (C.C.); (I.C.F.R.F.)
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (C.P.); (M.I.D.); (R.C.C.); (C.C.); (I.C.F.R.F.)
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (C.P.); (M.I.D.); (R.C.C.); (C.C.); (I.C.F.R.F.)
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (C.P.); (M.I.D.); (R.C.C.); (C.C.); (I.C.F.R.F.)
| | - Ana Ćirić
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.Ć.); (M.S.)
| | - Marina Soković
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.Ć.); (M.S.)
| | - Gustavo Hassemer
- Câmpus de Três Lagoas, Universidade Federal do Mato Grosso do Sul (UFMS), Três Lagoas, MS 79613-000, Brazil;
| | - Carolina Castilho Garcia
- Departamento Acadêmico de Alimentos (DAALM), Câmpus Medianeira, Universidade Tecnológica Federal do Paraná (UTFPR), CEP, Medianeira, PR 85884-000, Brazil;
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (C.P.); (M.I.D.); (R.C.C.); (C.C.); (I.C.F.R.F.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (C.P.); (M.I.D.); (R.C.C.); (C.C.); (I.C.F.R.F.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (C.P.); (M.I.D.); (R.C.C.); (C.C.); (I.C.F.R.F.)
| |
Collapse
|
52
|
Yu C, Wang M, Liu F, Wang M. Nutrient compositions and functional constituents of 12 crabapple cultivars (
Malus
Mill. species): Aptitudes for fresh consumption and processing. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Changhao Yu
- College of Food Science and EngineeringNorthwest A & F University Yang Ling Shaanxi China
| | - Meng Wang
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical EngineeringNanjing University Nanjing China
| | - Fang Liu
- College of Food Science and EngineeringNorthwest A & F University Yang Ling Shaanxi China
| | - Min Wang
- College of Food Science and EngineeringNorthwest A & F University Yang Ling Shaanxi China
| |
Collapse
|
53
|
Janarny G, Gunathilake KDPP, Ranaweera KKDS. Nutraceutical potential of dietary phytochemicals in edible flowers-A review. J Food Biochem 2021; 45:e13642. [PMID: 33533514 DOI: 10.1111/jfbc.13642] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/01/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
Edible flowers have been in traditional cuisine and phytotherapy for centuries. Recently, the consumption of edible flowers has increased significantly as the phytochemicals in them are known to have numerous health benefits. Information on nutraceutical potentials and health benefits of the phytochemicals available in different varieties of edible flowers and their uses are discussed. It is found that the major groups of dietary phytochemicals in edible flowers include flavonoids, phenolic acids, and anthocyanins and they are capable of exerting antioxidant, anti-inflammatory, anti-diabetic, anticancer, cardioprotective, hepatoprotective gastroprotective, and genoprotective effects. PRACTICAL APPLICATIONS: Edible flowers are good sources of phytochemicals and possessing antioxidant, anti-inflammatory properties, anticancer, anti-diabetic, and cardio-protective properties. However, many edible flowers remain unexplored and underutilized. This review gives eye openings that more in-depth investigations need to be conducted on different edible flowers and they need to be incorporated into commercialized foods and drugs or need to be used for novel nutraceutical development to deliver the potential health benefits to consumers.
Collapse
Affiliation(s)
- Ganesamoorthy Janarny
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | | |
Collapse
|
54
|
de Araújo FF, de Paulo Farias D, Neri-Numa IA, Dias-Audibert FL, Delafiori J, de Souza FG, Catharino RR, do Sacramento CK, Pastore GM. Gastrointestinal bioaccessibility and bioactivity of phenolic compounds from araçá-boi fruit. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
55
|
Aguirre-Becerra H, Pineda-Nieto SA, García-Trejo JF, Guevara-González RG, Feregrino-Pérez AA, Álvarez-Mayorga BL, Rivera Pastrana DM. Jacaranda flower ( Jacaranda mimosifolia) as an alternative for antioxidant and antimicrobial use. Heliyon 2020; 6:e05802. [PMID: 33376830 PMCID: PMC7758518 DOI: 10.1016/j.heliyon.2020.e05802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/10/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023] Open
Abstract
Antimicrobial resistance to antibiotics is a serious health problem worldwide, for this reason, the search for natural agents with antimicrobial power against pathogenic microorganisms is of current importance. The objective of this work was to evaluate the antioxidant capacity (ABTS+ and DPPH), antimicrobial activity, and polyphenol compounds of methanolic and aqueous extracts of Jacaranda mimosifolia flowers. The antimicrobial activity against Bacillus cereus ATCC 10876, Bacillus subtilis ATCC 6633, Enterococcus faecalis ATCC 51299, Escherichia coli ATCC 25922, Listeria monocytogenes ATCC 19115, Pseudomonas aeruginosa ATCC 27853, Salmonella typhimurium ATCC 14028, Staphylococcus aureus ATCC 25923, and Streptococcus mutans ATCC 25175, was determined using the Kirby Bauer technique. The results of polyphenolic compounds showed a high amount of total flavonoids in the methanolic and aqueous extracts (503.3 ± 86.5 and 245. 7 ± 27.8 mg Rutin Equivalents/g DW, respectively). Quercetin, gallic acid, caffeic acid, and rutin were identified by the HPLC-DAD technique, while in the GC-MS analysis, esters, fatty acids, organic compounds, as well as monosaccharides were identified. Higher antioxidant capacity was detected by the ABTS technique (94.9% and 62.6%) compared to DPPH values (52.5% and 52.7 %) for methanolic and aqueous extracts, respectively. The methanolic extract showed a greater inhibitory effect on gram-positive bacteria, with a predominant higher inhibition percentage on Listeria monocytogenes and Streptococcus mutans (86% for both). In conclusion, Jacaranda flower extracts could be a natural antimicrobial and antioxidant alternative due to the considerable amount of polyphenolic compounds, and serve as a sustainable alternative for the isolation of active ingredients that could help in agriculture, aquaculture, livestock, pharmaceutics, and other industrial sectors, to remediate problems such as oxidative stress and antimicrobial abuse.
Collapse
Affiliation(s)
- Humberto Aguirre-Becerra
- Ingeniería en Biosistemas, Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, Chichimequillas-Amazcala Road Km 1 S/N, Amazcala, CP: 76265, El Marqués, Querétaro, Mexico
| | - Silvia Araceli Pineda-Nieto
- Ingeniería en Biosistemas, Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, Chichimequillas-Amazcala Road Km 1 S/N, Amazcala, CP: 76265, El Marqués, Querétaro, Mexico
| | - Juan Fernando García-Trejo
- Ingeniería en Biosistemas, Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, Chichimequillas-Amazcala Road Km 1 S/N, Amazcala, CP: 76265, El Marqués, Querétaro, Mexico
| | - Ramón G Guevara-González
- Ingeniería en Biosistemas, Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, Chichimequillas-Amazcala Road Km 1 S/N, Amazcala, CP: 76265, El Marqués, Querétaro, Mexico
| | - Ana Angelica Feregrino-Pérez
- Ingeniería en Biosistemas, Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, Chichimequillas-Amazcala Road Km 1 S/N, Amazcala, CP: 76265, El Marqués, Querétaro, Mexico
| | - Beatriz Liliana Álvarez-Mayorga
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N. Col. Las Campanas, CP: 76010, Santiago de Querétaro, Qro, Mexico
| | - Dulce María Rivera Pastrana
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N. Col. Las Campanas, CP: 76010, Santiago de Querétaro, Qro, Mexico
| |
Collapse
|
56
|
Mengist MF, Burtch H, Debelo H, Pottorff M, Bostan H, Nunn C, Corbin S, Kay CD, Bassil N, Hummer K, Lila MA, Ferruzzi MG, Iorizzo M. Development of a genetic framework to improve the efficiency of bioactive delivery from blueberry. Sci Rep 2020; 10:17311. [PMID: 33057109 PMCID: PMC7560831 DOI: 10.1038/s41598-020-74280-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/23/2020] [Indexed: 01/28/2023] Open
Abstract
In the present study, we applied a novel high-throughput in vitro gastrointestinal digestion model to phenotype bioaccessibility of phenolics in a diverse germplasm collection representing cultivated highbush blueberries. Results revealed significant (P < 0.05) differences between accessions, years, and accession by year interaction for relative and absolute bioaccessibility of flavonoids and phenolic acids. Broad sense heritability estimates revealed low to moderate inheritances of relative and absolute bioaccessibility, suggesting that besides environmental variables, genetics factors could control bioaccessibility of phenolics. Acylated anthocyanins had significantly higher relative bioaccessibility than non-acylated anthocyanins. Correlation analysis indicated that relative bioaccessibility did not show significant association with fruit quality or raw concentration of metabolites. The study also identified accessions that have high relative and absolute bioaccessibility values. Overall, combining the bioaccessibility of phenolics with genetic and genomic approaches will enable the identification of genotypes and genetic factors influencing these traits in blueberry.
Collapse
Affiliation(s)
- Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Haley Burtch
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Hawi Debelo
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Marti Pottorff
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Hamed Bostan
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Candace Nunn
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Sydney Corbin
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Colin D Kay
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA.,Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, 27606, NC, USA
| | - Nahla Bassil
- USDA-ARS-National Clonal Germplasm Repository, Corvallis, OR, 97333, USA
| | - Kim Hummer
- USDA-ARS-National Clonal Germplasm Repository, Corvallis, OR, 97333, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA.,Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, 27606, NC, USA
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA. .,Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, 27606, NC, USA.
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA. .,Department of Horticultural Science, North Carolina State University, Raleigh, 27607, NC, USA.
| |
Collapse
|
57
|
Mikołajczak N, Sobiechowska DA, Tańska M. Edible flowers as a new source of natural antioxidants for oxidative protection of cold-pressed oils rich in omega-3 fatty acids. Food Res Int 2020; 134:109216. [DOI: 10.1016/j.foodres.2020.109216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
|
58
|
Fadda A, Palma A, Azara E, D'Aquino S. Effect of modified atmosphere packaging on overall appearance and nutraceutical quality of pot marigold held at 5 °C. Food Res Int 2020; 134:109248. [PMID: 32517910 DOI: 10.1016/j.foodres.2020.109248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/29/2022]
Abstract
The effectiveness of passive modified atmosphere packaging (MAP) on chemical and quality properties of calendula flowers was studied during ten days of storage at 5 °C. Weight loss of flowers wrapped with continuous and micro-perforated-films (2-3%), was significantly lower than control (unwrapped flowers) (about 30%) and those wrapped with macro-perforated film (about 7%). At the end of storage unwrapped flowers were judged unmarketable being severely wilted and shriveled, while all packaged ones were still fresh and marketable. On day 10, the fructose concentration of control flowers decreased by 74%. Continuous and micro-perforated films delayed the decline of fructose concentration over storage. Sucrose concentration decreased with storage in control flowers, while in continuous film wrapped flowers it increased. After 10 d of storage, the total phenols' concentration of all packaged flowers was significantly higher than control and similar to the initial value (2.58 ± 0.02 g 100 g-1 d.w.). Thirteen carotenoids were identified by HPLC-MS. The initial β carotene concentration (65.72 ± 0.09 mg 100 g-1 d.w.) did not change in flowers wrapped with macro- and micro-perforated films, in contrast to the other treatments. Lycopene concentration strongly decreased in control flowers, while minor losses occurred in packaged ones. Laser micro-perforated film, being a good compromise between humidity retention inside the packages and the permeability of the film, seems to be the best choice to extend the storage life of calendula flowers.
Collapse
Affiliation(s)
- Angela Fadda
- Institute of the Sciences of Food Production, National Research Council, Traversa La Crucca, 3, 07100 Sassari, Italy.
| | - Amedeo Palma
- Institute of the Sciences of Food Production, National Research Council, Traversa La Crucca, 3, 07100 Sassari, Italy
| | - Emanuela Azara
- Institute of Biomelecular Chemistry, National Research Council, Traversa la Crucca, 3, 07100 Sassari, Italy
| | - Salvatore D'Aquino
- Institute of the Sciences of Food Production, National Research Council, Traversa La Crucca, 3, 07100 Sassari, Italy
| |
Collapse
|
59
|
Tena N, Martín J, Asuero AG. State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants (Basel) 2020; 9:E451. [PMID: 32456252 PMCID: PMC7278599 DOI: 10.3390/antiox9050451] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023] Open
Abstract
The antioxidant activity of anthocyanins in food is well known. Numerous antioxidant assays have been proposed to measure the capacity of anthocyanins to prevent the oxidation process that naturally occurs. Different solvents, temperatures, and pH levels are applied in each assay, and these factors should be taken into account in order to obtain useful and reproducible results. The concentration and the structure of these compounds are directly related to their antioxidant capacity and their environment. However, the effectiveness of the anthocyanin ingestion against diseases is also influenced by its bioavailability. Novel methodologies that simulate the digestion process have been developed in order to facilitate the current knowledge of anthocyanins bioavailability. Studies highlight the potential synergy effect between parent compounds and their derivatives (metabolites, conjugated products, and microbe-generated metabolites). The aim of this review is to provide an overview of advantages and disadvantages of the most common methods to determine the antioxidant activity of anthocyanins, chemical structure, and concentration of these compounds in different edible fruits, vegetables, and plants; their bioavailability after intake; as well as the main therapeutic effect described in the scientific literature.
Collapse
Affiliation(s)
- Noelia Tena
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Sevilla, Prof. García González 2, E-41012 Sevilla, Spain;
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África 7, E-41011 Sevilla, Spain;
| | - Agustín G. Asuero
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Sevilla, Prof. García González 2, E-41012 Sevilla, Spain;
| |
Collapse
|