51
|
Song H, Fu Q, Huang K, Zou Z, Chen L, Chen H, Ge S, Wang J, Guan X. Digestion characteristics of quinoa, barley and mungbean proteins and the effects of their simulated gastrointestinal digests on CCK secretion in enteroendocrine STC-1 cells. Food Funct 2022; 13:6233-6243. [PMID: 35587126 DOI: 10.1039/d2fo00243d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The demand for plant-based proteins has been rapidly increasing due to sustainability, ethical and health reasons. The present study aimed to investigate the digestion characteristics of three plant proteins (quinoa, barley and mungbean) based on an in vitro digestion model and the effect of their simulated gastrointestinal digests on satiety hormone cholecystokinin (CCK) secretion in enteroendocrine STC-1 cells. The nitrogen distribution in the digestion process, the relative molecular weight (MW) of peptides and the amino acid composition in simulated gastrointestinal digests were characterized. Quinoa protein had the highest proportion of soluble nitrogen after gastrointestinal digestion (85.79%), followed by barley protein (74.98%) and mungbean protein (64.14%), suggesting that quinoa protein was more easily digested than barley and mungbean proteins. The peptides but not free amino acids were the main components in the gastrointestinal digests of quinoa, barley, and mungbean proteins. The gastrointestinal digest of quinoa protein had a well balanced amino acid pattern, whereas that of barley protein was lacking Lys, and that of the mungbean protein was short of sulfur amino acids (Phe + Tyr) but rich in Lys. In terms of the ability to stimulate CCK secretion, the gastrointestinal digest of barley protein had a strong stimulatory effect on CCK secretion, while that of quinoa and mungbean proteins had only a weak stimulatory effect. After pretreatment with a specific calcium-sensing receptor (CaSR) antagonist NPS 2143, CCK secretion induced by the barley protein digest was greatly suppressed, indicating that CaSR was involved in barley protein digest-induced CCK secretion. These results show that quinoa protein has good nutritional quality, while barley protein is an excellent plant protein source to stimulate CCK secretion and has a potential application as a dietary supplement for obesity management.
Collapse
Affiliation(s)
- Hongdong Song
- School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Qiuyun Fu
- School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Kai Huang
- School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhiying Zou
- School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Limin Chen
- School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hulin Chen
- School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Shaocheng Ge
- School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Xiao Guan
- School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
52
|
Xing Z, Li J, Zhang Y, Gao A, Xie H, Gao Z, Chu X, Cai Y, Gu C. Peptidomics Comparison of Plant-Based Meat Alternatives and Processed Meat After In Vitro Digestion. Food Res Int 2022; 158:111462. [DOI: 10.1016/j.foodres.2022.111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/04/2022]
|
53
|
Ishaq A, Irfan S, Sameen A, Khalid N. Plant-based meat analogs: A review with reference to formulation and gastrointestinal fate. Curr Res Food Sci 2022; 5:973-983. [PMID: 35721393 PMCID: PMC9198813 DOI: 10.1016/j.crfs.2022.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 01/14/2023] Open
|
54
|
Liu D, Guo Y, Ma H. Production, bioactivities and bioavailability of bioactive peptides derived from walnut origin by-products: a review. Crit Rev Food Sci Nutr 2022; 63:8032-8047. [PMID: 35361034 DOI: 10.1080/10408398.2022.2054933] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Walnut-origin by-products obtained from walnut oil extraction industry are high in proteins with various physiological functions and pharmacological properties and an extensive potential for usage in producing bioactive peptides. This review presents the current research status of bioactive peptides derived from walnut by-products, including preparation, separation, purification, identification, bioactivities, and bioavailability. A plethora of walnut peptides with multiple biological activities, including antioxidative, antihypertensive, neuroprotective, antidiabetic, anticancer, and antihyperuricemia activities, were obtained from walnut-origin by-products by enzymatic hydrolysis, fermentation, and synthesis. Different bioactive peptides show various structural characteristics and amino acid composition due to their diverse mechanism of action. Furthermore, walnut protein and its hydrolysate present a high bioavailability in human gastrointestinal digestive system. Improving the bioavailability of walnut peptides is needful in the development of walnut industry. However, future research still needs to exploit energy conservation, high efficiency, environmentally friendly and low-cost production method of walnut bioactive peptide. The molecular mechanisms of different bioactive walnut peptides still need to be explored at the cell and gene levels. Additionally, the digestion, absorption, and metabolism processes of walnut peptides are also the focus of future research.
Collapse
Affiliation(s)
- Dandan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yiting Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
55
|
Zhang J, Lee NA, Duley JA, Cowley DM, Shaw PN, Bansal N. Comparing the effects of hydrostatic high-pressure processing vs holder pasteurisation on the microbial, biochemical and digestion properties of donor human milk. Food Chem 2022; 373:131545. [PMID: 34839967 DOI: 10.1016/j.foodchem.2021.131545] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 01/08/2023]
Abstract
In this study, hydrostatic high-pressure processing (HHP), a non-thermal pasteurisation method, was used to achieve the microbiological safety of donor human milk. After HHP, no bacteria were detected in human milk processed at 400 MPa for 5 min. Activities of a selection of bioactive components, including lysozyme, xanthine oxidase, lactoperoxidase, immunoglobulin A, lactoferrin, lipoprotein lipase and bile salt-stimulated lipase, did not decrease significantly. This study further investigated the gastrointestinal digestion kinetics of HoP and HHP milk compared with raw human milk, using an in vitro static infant digestion model. After 60 min of 'gastric digestion', the microstructure and protein profile of HHP milk samples were more similar to raw milk samples than HoP milk samples. Overall, HPP showed a better retention in milk nutrients and closer digestion behavior than that of HoP.
Collapse
Affiliation(s)
- Jie Zhang
- School of Agriculture and Food Science, The University of Queensland, St Lucia 4072, Australia
| | - Nanju Alice Lee
- School of Chemical Engineering, University of New South Wales, Sydney NSW2052, Australia
| | - John A Duley
- School of Pharmacy, The University of Queensland, St Lucia 4072, Australia
| | - David M Cowley
- Mater Research Institute, The University of Queensland, South Brisbane 4101, Australia
| | - Paul N Shaw
- School of Pharmacy, The University of Queensland, St Lucia 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Science, The University of Queensland, St Lucia 4072, Australia; School of Pharmacy, The University of Queensland, St Lucia 4072, Australia.
| |
Collapse
|
56
|
Rivera del Rio A, Boom RM, Janssen AEM. Effect of Fractionation and Processing Conditions on the Digestibility of Plant Proteins as Food Ingredients. Foods 2022; 11:870. [PMID: 35327292 PMCID: PMC8955167 DOI: 10.3390/foods11060870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Plant protein concentrates and isolates are used to produce alternatives to meat, dairy and eggs. Fractionation of ingredients and subsequent processing into food products modify the techno-functional and nutritional properties of proteins. The differences in composition and structure of plant proteins, in addition to the wide range of processing steps and conditions, can have ambivalent effects on protein digestibility. The objective of this review is to assess the current knowledge on the effect of processing of plant protein-rich ingredients on their digestibility. We obtained data on various fractionation conditions and processing after fractionation, including enzymatic hydrolysis, alkaline treatment, heating, high pressure, fermentation, complexation, extrusion, gelation, as well as oxidation and interactions with starch or fibre. We provide an overview of the effect of some processing steps for protein-rich ingredients from different crops, such as soybean, yellow pea, and lentil, among others. Some studies explored the effect of processing on the presence of antinutritional factors. A certain degree, and type, of processing can improve protein digestibility, while more extensive processing can be detrimental. We argue that processing, protein bioavailability and the digestibility of plant-based foods must be addressed in combination to truly improve the sustainability of the current food system.
Collapse
Affiliation(s)
| | | | - Anja E. M. Janssen
- Food Process Engineering, Wageningen University, 6700 AA Wageningen, The Netherlands; (A.R.d.R.); (R.M.B.)
| |
Collapse
|
57
|
Combined plant protein modification and complex coacervation as a sustainable strategy to produce coacervates encapsulating bioactives. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
58
|
Gallo V, Romano A, Miralles B, Ferranti P, Masi P, Santos-Hernández M, Recio I. Physicochemical properties, structure and digestibility in simulated gastrointestinal environment of bread added with green lentil flour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
59
|
Melchior S, Moretton M, Calligaris S, Manzocco L, Nicoli MC. High pressure homogenization shapes the techno-functionalities and digestibility of pea proteins. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2021.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
60
|
Gasparini A, Benedé S, Tedeschi T, Sforza S, Recio I, Miralles B. In vitro simulated semi-dynamic gastrointestinal digestion: evaluation of the effects of processing on whey proteins digestibility and allergenicity. Food Funct 2022; 13:1593-1602. [DOI: 10.1039/d1fo04102a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of thermal processing on digestibility of milk proteins should be better understood as this can greatly affect their immunoreactivity. The aim of this study was to evaluate the...
Collapse
|
61
|
The in-vitro digestion behaviors of micellar casein acting as wall materials in spray-dried microparticles: The relationships between colloidal calcium phosphate and the release of loaded blueberry anthocyanins. Food Chem 2021; 375:131864. [PMID: 34954584 DOI: 10.1016/j.foodchem.2021.131864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 01/05/2023]
Abstract
Micellar casein (MC) is a natural carrier for delivering various bioactive substances, and its gastrointestinal digestion behavior has an important impact on the loaded materials. Studies have shown that the digestion behavior of MC is dominated by colloidal calcium phosphate (CCP) in micelle structure. In this paper, The MCs with different CCP levels were used as the carriers to prepare spray-dried microparticles loaded with blueberry anthocyanins (ACNs), then the release of ACNs during digestion was investigated. The results found that the microparticles with less CCP showed the faster dissolution and quicker protein hydrolysis, which caused weaker curd ability. The coagulation was believed as the critical issue to influence the digestion and release behaviors. Therefore, lowering CCP resulted in significantly more ACNs released. This study demonstrated the possibility of using CCP levels to control MC digestion behaviors, which can further determine the release of loaded bioactive substances in casein-based delivery systems.
Collapse
|
62
|
Ariëns RM, Bastiaan-Net S, van de Berg-Somhorst DB, El Bachrioui K, Boudewijn A, van den Dool RT, de Jong GA, Wichers HJ, Mes JJ. Comparing nutritional and digestibility aspects of sustainable proteins using the INFOGEST digestion protocol. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
63
|
Wu Y, Li W, Martin GJO, Ashokkumar M. Mechanism of low-frequency and high-frequency ultrasound-induced inactivation of soy trypsin inhibitors. Food Chem 2021; 360:130057. [PMID: 34029924 DOI: 10.1016/j.foodchem.2021.130057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 01/15/2023]
Abstract
In this study, the effect of ultrasonic frequency and power on the inactivation of soy trypsin inhibitors (TIs) was investigated to explore the ultrasound-induced inactivation mechanism. It was observed that 20 kHz and 355 kHz ultrasound have better inactivation efficiency than 1056 kHz. First-order rate constants for the inactivation process were obtained, which increased with increasing ultrasonic power at both 20 kHz and 355 kHz. For 20 kHz ultrasound, the formation of TI aggregates resulting from the physical effects of acoustic cavitation decreased the interactions between the active sites of TIs and trypsin, thus reducing the TI activity. For 355 kHz ultrasound, most of the methionine in the TIs was oxidised within 5 mins, resulting in a faster reduction of TI activity. Subsequent aggregation of TIs resulted in further TI inactivation. SDS-PAGE showed that neither disulphide bonds nor CC coupling were involved in the formation of aggregates.
Collapse
Affiliation(s)
- Yue Wu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wu Li
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gregory J O Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Muthupandian Ashokkumar
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
64
|
Bautista-Expósito S, Vandenberg A, Peñas E, Frias J, Martínez-Villaluenga C. Lentil and Fava Bean With Contrasting Germination Kinetics: A Focus on Digestion of Proteins and Bioactivity of Resistant Peptides. FRONTIERS IN PLANT SCIENCE 2021; 12:754287. [PMID: 34759946 PMCID: PMC8575454 DOI: 10.3389/fpls.2021.754287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/20/2021] [Indexed: 05/03/2023]
Abstract
Germination offers advantages to improve legume protein digestibility as it disintegrates seed structure and hydrolyzes proteins and anti-nutrients. Seed permeability (related to polyphenol content of seed coats) is an important factor affecting the duration of seed germination and its impact on protein digestibility and bioactivity. The objective was to compare the effect of seed germination on protease activity, structure, and proteolysis of four selected legumes with contrasting seed coat polyphenol profiles (gray zero-tannin lentil [GZL], beluga lentil [BL], and dehulled red lentil [DL]; and zero tannin/low vicine-convicine fava bean [ZF]). Protein hydrolysis was characterized during germination and digestion with respect to proteins, peptides, and free amino acids (FAAs). In vitro antihypertensive and antioxidant activities of digests were investigated, and the peptidomic characterization [high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS)] and identification of bioactive fragments in intestinal digests were performed. Regardless of the seed type, germination increased protease activity and reduced the levels of phytic acid, trypsin inhibitors, and tannins (only in BL). A significant proteolysis of the 7S and 11S globulins and a concomitant increase of peptides and FAAs were observed in all sprouted legumes. Digestion kinetics in sprouts revealed a faster generation of FAAs and peptides than in dry seeds, with changes being more evident for DL, associated with a faster imbibition, germination, and sprout growth. In contrast, BL sprouts showed the lowest protein digestibility, likely due to a lower protease activity, seed structure disintegration, and higher anti-nutrient levels in comparison to GZL, DL, and ZF. Moreover, the digestion of sprouts resulted in a higher number of resistant peptides in DL and ZF that matched with previously reported bioactive sequences, suggesting a promising health potential of legume sprouts that was confirmed in vitro. The results suggested that the germination process improved protein digestibility and the health-promoting potential of lentil and fava bean proteins although these changes were more evident in DL due to its rapid imbibition, faster germination, and sprout development. This study will provide important information for either plant breeders to develop legume varieties with permeable seed coats or food producers that could use dehulled seeds for efficient production of sprouts as sustainable food sources of plant proteins with improved nutritional and healthy properties.
Collapse
Affiliation(s)
- Sara Bautista-Expósito
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Albert Vandenberg
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| |
Collapse
|
65
|
Protein nutritional quality, amino acid profile, anti-amylase and anti-glucosidase properties of microalgae: Inhibition and mechanisms of action through in vitro and in silico studies. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
66
|
Rivero-Pino F, Espejo-Carpio FJ, Guadix EM. Identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from vegetable protein sources. Food Chem 2021; 354:129473. [PMID: 33743449 DOI: 10.1016/j.foodchem.2021.129473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 01/28/2023]
Abstract
Vegetable proteins are appearing as a sustainable source for human consumption. Food-derived peptides are an important field of research in terms of bioactive molecules. In this study, seven vegetable proteins were enzymatically hydrolysed following an optimised treatment (sequential hydrolysis with subtilisin-trypsin-flavourzyme) to obtain dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Hydrolysates were fractionated by size exclusion chromatography and, from the most bioactive fractions (corresponding to Glycine max, Chenopodium quinoa and Lupinus albus proteins); peptides responsible for this bioactivity were identified by mass spectrometry. Peptides with adequate molecular features and based on in silico analysis were proposed as DPP-IV inhibitors from soy (EPAAV) lupine (NPLL), and quinoa (APFTVV). These vegetable protein sources are adequate to obtain protein hydrolysates for functional food.
Collapse
Affiliation(s)
| | | | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, Granada, Spain
| |
Collapse
|
67
|
McClements DJ, Grossmann L. The science of plant-based foods: Constructing next-generation meat, fish, milk, and egg analogs. Compr Rev Food Sci Food Saf 2021; 20:4049-4100. [PMID: 34056859 DOI: 10.1111/1541-4337.12771] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Consumers are increasingly demanding foods that are more ethical, sustainable and nutritious to improve the health of themselves and the planet. The food industry is currently undergoing a revolution, as both small and large companies pivot toward the creation of a new generation of plant-based products to meet this consumer demand. In particular, there is an emphasis on the production of plant-based foods that mimic those that omnivores are familiar with, such as meat, fish, egg, milk, and their products. The main challenge in this area is to simulate the desirable appearance, texture, flavor, mouthfeel, and functionality of these products using ingredients that are isolated entirely from botanical sources, such as proteins, carbohydrates, and lipids. The molecular, chemical, and physical properties of plant-derived ingredients are usually very different from those of animal-derived ones. It is therefore critical to understand the fundamental properties of plant-derived ingredients and how they can be assembled into structures resembling those found in animal products. This review article provides an overview of the current status of the scientific understanding of plant-based foods and highlights areas where further research is required. In particular, it focuses on the chemical, physical, and functional properties of plant-derived ingredients; the processing operations that can be used to convert these ingredients into food products; and, the science behind the formulation of vegan meat, fish, eggs, and milk alternatives.
Collapse
Affiliation(s)
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|