51
|
Zentgraf U, Andrade-Galan AG, Bieker S. Specificity of H 2O 2 signaling in leaf senescence: is the ratio of H 2O 2 contents in different cellular compartments sensed in Arabidopsis plants? Cell Mol Biol Lett 2022; 27:4. [PMID: 34991444 PMCID: PMC8903538 DOI: 10.1186/s11658-021-00300-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/17/2021] [Indexed: 01/21/2023] Open
Abstract
Leaf senescence is an integral part of plant development and is driven by endogenous cues such as leaf or plant age. Developmental senescence aims to maximize the usage of carbon, nitrogen and mineral resources for growth and/or for the sake of the next generation. This requires efficient reallocation of the resources out of the senescing tissue into developing parts of the plant such as new leaves, fruits and seeds. However, premature senescence can be induced by severe and long-lasting biotic or abiotic stress conditions. It serves as an exit strategy to guarantee offspring in an unfavorable environment but is often combined with a trade-off in seed number and quality. In order to coordinate the very complex process of developmental senescence with environmental signals, highly organized networks and regulatory cues have to be in place. Reactive oxygen species, especially hydrogen peroxide (H2O2), are involved in senescence as well as in stress signaling. Here, we want to summarize the role of H2O2 as a signaling molecule in leaf senescence and shed more light on how specificity in signaling might be achieved. Altered hydrogen peroxide contents in specific compartments revealed a differential impact of H2O2 produced in different compartments. Arabidopsis lines with lower H2O2 levels in chloroplasts and cytoplasm point to the possibility that not the actual contents but the ratio between the two different compartments is sensed by the plant cells.
Collapse
Affiliation(s)
- Ulrike Zentgraf
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
| | - Ana Gabriela Andrade-Galan
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Stefan Bieker
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| |
Collapse
|
52
|
Wei D, Yang J, Xiang Y, Meng L, Pan Y, Zhang Z. Attenuation of Postharvest Browning in Rambutan Fruit by Melatonin Is Associated With Inhibition of Phenolics Oxidation and Reinforcement of Antioxidative Process. Front Nutr 2022; 9:905006. [PMID: 35795584 PMCID: PMC9251426 DOI: 10.3389/fnut.2022.905006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Rambutan is a famous tropical fruit with a unique flavor and considerable economic value. However, the high vulnerability to postharvest browning leads to a short shelf life of rambutan fruit. Melatonin (MT) is an excellent bioactive molecule that possesses the potential to improve the storability of the harvested crops. In this study, the physiological mechanism of exogenous MT in affecting pericarp browning and senescence of postharvest rambutan fruit was investigated. Experimental results showed that the application of MT at 0.125 mmol L-1 appreciably retarded the advancement of pericarp browning and color parameters (L*, a*, and b*). MT treatment inhibited the increase in membrane relative electrolytes leakage (REL) while lowering the accumulation of reactive oxygen species (ROS) (■O2 - and H2O2) and malonaldehyde (MDA). Reduced phenolics oxidation, as indicated by higher contents of total phenolics, flavonoids, and anthocyanins along with fewer activities of peroxidase (POD) and polyphenol oxidase (PPO), was detected in MT fruit compared with control fruit. MT treatment maintained the cellular redox state by inducing antioxidant enzyme activity and reinforcing the ascorbate-glutathione (AsA-GSH) cycle. Furthermore, the ultrastructural observation revealed that the spoilage of cellular and subcellular structures was milder in MT fruit than that in control fruit. The results suggest that MT could ameliorate the browning and senescence of rambutan fruit by inhibiting phenolic oxidation and enhancing the antioxidative process.
Collapse
Affiliation(s)
- Dongling Wei
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Jiali Yang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yue Xiang
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Lanhuan Meng
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yonggui Pan
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Zhengke Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
- *Correspondence: Zhengke Zhang,
| |
Collapse
|
53
|
Wang S, Zhou H, Feng N, Xiang H, Liu Y, Wang F, Li W, Feng S, Liu M, Zheng D. Physiological response of soybean leaves to uniconazole under waterlogging stress at R1 stage. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153579. [PMID: 34839099 DOI: 10.1016/j.jplph.2021.153579] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 05/12/2023]
Abstract
Waterlogging is a major limiting factor in global crop production and seriously endangers growth and yield improvement in low-lying, rainfed regions. Soybean is an important economic crop affected by waterlogging stress. The current study investigates the effects of waterlogging stress on the leaf physiology and yield of two soybean varieties (Kenfeng 14, waterlogging-tolerant and Kenfeng 16, waterlogging-sensitive) and the mitigation effect of uniconazole (S3307) in promoting growth and productivity under waterlogging conditions. The results showed that waterlogging stress increased antioxidant enzyme activity and decreased the contents of non-enzymatic antioxidants such as AsA and GSH. Furthermore, the content of MDA and H2O2 increased significantly, indicating oxidative stress and O2-· production rate also improved, and the increase in the waterlogging-sensitive variety Kenfeng 16 was greater than that of the waterlogging-tolerant variety Kenfeng 14. Spraying S3307, however, increased the activities of antioxidants such as SOD, POD, CAT, and APX. GR, MDHAR, and DHAR increased the content of non-enzymatic antioxidants, effectively inhibited the increase of MDA, H2O2 content, and O2-· production rate, and alleviated the loss of yield factors caused by waterlogging stress. The waterlogging-tolerant variety Kenfeng 14 recovered better than the waterlogging-sensitive variety Kenfeng 16. In summary, S3307 ameliorated the effects of waterlogging stress on the physiological characteristics of soybean leaves and improved yield as a result of improved antioxidant defense mechanisms that impeded lipid peroxidation. Thus, S3307 could decelerate the damages caused by waterlogging stress to some extent.
Collapse
Affiliation(s)
- Shiya Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China; College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, 163319, China
| | - Hang Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, 518108, China
| | - Hongtao Xiang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yang Liu
- Yantai Academy of Agricultural Sciences, Shandong province, Yantai, 265500, China
| | - Feng Wang
- Qiqihar Agricultural Technology Extension Center, Qiqihar, 161006, China
| | - Wan Li
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Shengjie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Meiling Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, 518108, China.
| |
Collapse
|
54
|
Dong J, Kebbeh M, Yan R, Huan C, Jiang T, Zheng X. Melatonin treatment delays ripening in mangoes associated with maintaining the membrane integrity of fruit exocarp during postharvest. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:22-28. [PMID: 34741888 DOI: 10.1016/j.plaphy.2021.10.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 05/27/2023]
Abstract
The effects of exogenous melatonin on postharvest ripening of mango (Mangifera indica L. cv. Keitt) were investigated after the fruit were dipped in 0 (as the control), 100, or 200 μM melatonin solution for 30 min, and then stored at room temperature (25 ± 1 °C). The results showed that melatonin treatments could delay the ripening process as indicated by inhibition to softening, respiration, color change and chlorophyll degradation in fruit during storage. Notably, 200 μM melatonin treatment delayed the degradation of phosphatidylglycerol (PG) and phosphatidylinositol (PI), and the accumulation of phosphatidylserine (PS) and phosphatidic acid (PA) in membrane phospholipids, inhibited the decrease in unsaturated fatty acids (IUFA) index and also decreased the contents of H2O2 and malondialdehyde (MDA) in the exocarp of the fruit, which might collectively contribute to the integrity of the membrane associated with the delay in the ripening process of mango fruit during postharvest.
Collapse
Affiliation(s)
- Jingxian Dong
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Mariama Kebbeh
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Ran Yan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chen Huan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Tianjia Jiang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
55
|
Maintenance of Postharvest Quality and Reactive Oxygen Species Homeostasis of Pitaya Fruit by Essential Oil p-Anisaldehyde Treatment. Foods 2021; 10:foods10102434. [PMID: 34681482 PMCID: PMC8535685 DOI: 10.3390/foods10102434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022] Open
Abstract
The performance of p-Anisaldehyde (PAA) for preserving pitaya fruit quality and the underpinning regulatory mechanism were investigated in this study. Results showed that PAA treatment significantly reduced fruit decay, weight loss and loss of firmness, and maintained higher content of total soluble solids, betacyanins, betaxanthins, total phenolics and flavonoids in postharvest pitaya fruits. Compared with control, the increase in hydrogen peroxide (H2O2) content and superoxide anion (O2•−) production was inhibited in fruit treated with PAA. Meanwhile, PAA significantly improved the activity of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT). Moreover, PAA-treated pitaya fruit maintained higher ascorbic acid (AsA) and reduced-glutathione (GSH) content but lower dehydroascorbate (DHA) and oxidized glutathione (GSSG) content, thus sustaining higher ratio of AsA/DHA and GSH/GSSG. In addition, activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and dehydrogenation ascorbic acid reductase (DHAR), as well as the expression of HpSOD, HpPOD, HpCAT, HpAPX, HpGR, HpDHAR and HpMDHAR, were enhanced after PAA treatment. The findings suggest that postharvest application of PAA may be a reliable method to control postharvest decay and preserve quality of harvested pitaya fruit by enhancing the antioxidant potential of the AsA-GSH cycle and activating an antioxidant defense system to alleviate reactive oxygen species (ROS) accumulation.
Collapse
|
56
|
Sun Y, Ma C, Kang X, Zhang L, Wang J, Zheng S, Zhang T. Hydrogen sulfide and nitric oxide are involved in melatonin-induced salt tolerance in cucumber. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:101-112. [PMID: 34340024 DOI: 10.1016/j.plaphy.2021.07.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/15/2021] [Accepted: 07/21/2021] [Indexed: 05/07/2023]
Abstract
Hydrogen sulfide (H2S) is a novel gaseous signaling molecule in response to adversity stress. Melatonin (MT) is a multifunctional molecule that plays an important role in regulating plant stress resistance. However, the interactions between H2S and MT are still unknown. Therefore, the role of H2S in MT-induced salt tolerance was elucidated in this study by measuring the antioxidant defense system and photosynthetic characteristics of cucumber. In addition, the crosstalk among H2S, NO, and mitogen-activated protein kinase (MAPK) was investigated. Results showed that MT induced the production of H2S by significantly increasing the activity of L-/D-cysteine desulfhydrase, thereby regulating photosynthetic efficiency, antioxidant enzyme activity, and antioxidant enzyme gene expression in cucumber, thus alleviating reactive oxygen species burst by salt stress. In this process, the H2S and NO induced by MT were inhibited by NO scavenger (cPTIO) and H2S scavenger (HT) but not affected by MAPK inhibitor (U0126). Intriguingly, the expression of MAPK3/4/6/9 was inhibited by HT and cPTIO. These results suggested that H2S may act as downstream of MT, interact with NO and MAPK cascades, and jointly participate in the process of MT mitigating salt stress in cucumber. In addition, H2S and NO are upstream signaling molecules of the MAPK cascades.
Collapse
Affiliation(s)
- Yuanpei Sun
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Cheng Ma
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Xin Kang
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Lu Zhang
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Juan Wang
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Sheng Zheng
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Tengguo Zhang
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
57
|
Boonsiriwit A, Lee M, Kim M, Itkor P, Lee YS. Exogenous Melatonin Reduces Lignification and Retains Quality of Green Asparagus ( Asparagus officinalis L.). Foods 2021; 10:foods10092111. [PMID: 34574221 PMCID: PMC8472629 DOI: 10.3390/foods10092111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022] Open
Abstract
Asparagus (Asparagus officinalis L.) is highly perishable because of its high respiration rate, which continues after harvesting and leads to weight loss, increased hardness, color change, and limited shelf life. Melatonin is an indoleamine that plays an important role in abiotic stress. This study was designed to investigate the effects of melatonin on the quality attributes of green asparagus during cold storage. Green asparagus was soaked in a melatonin solution (50, 100, and 200 μM) for 30 min and then stored at 4 °C under 90% relative humidity for 25 days. The results indicated that melatonin treatment delayed the post-harvest senescence of asparagus and maintained high chlorophyll and vitamin C levels. Melatonin treatment hindered phenylalanine ammonia-lyase and peroxidase activities and reduced lignin content, thereby delaying the increase in firmness. Moreover, melatonin treatment enhanced catalase and superoxide dismutase activities, leading to reduced hydrogen peroxide content. These results indicate that melatonin treatment can be used to maintain the post-harvest quality and prolong the shelf life of green asparagus.
Collapse
Affiliation(s)
- Athip Boonsiriwit
- Department of Packaging, Yonsei University, Wonju 220-710, Korea; (A.B.); (M.L.); (M.K.); (P.I.)
- Rattanakosin International College of Creative Entrepreneurship (RICE), Rajamangala University of Technology Rattanakosin, Nakhon Pathom 73170, Thailand
| | - Myungho Lee
- Department of Packaging, Yonsei University, Wonju 220-710, Korea; (A.B.); (M.L.); (M.K.); (P.I.)
| | - Minhwi Kim
- Department of Packaging, Yonsei University, Wonju 220-710, Korea; (A.B.); (M.L.); (M.K.); (P.I.)
| | - Pontree Itkor
- Department of Packaging, Yonsei University, Wonju 220-710, Korea; (A.B.); (M.L.); (M.K.); (P.I.)
| | - Youn Suk Lee
- Department of Packaging, Yonsei University, Wonju 220-710, Korea; (A.B.); (M.L.); (M.K.); (P.I.)
- Correspondence: ; Tel.: +82-33-760-2395
| |
Collapse
|
58
|
Wang J, Wang D, Zhu M, Li F. Exogenous 6-Benzyladenine Improves Waterlogging Tolerance in Maize Seedlings by Mitigating Oxidative Stress and Upregulating the Ascorbate-Glutathione Cycle. FRONTIERS IN PLANT SCIENCE 2021; 12:680376. [PMID: 34539688 PMCID: PMC8446516 DOI: 10.3389/fpls.2021.680376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/04/2021] [Indexed: 05/30/2023]
Abstract
The synthetic cytokinin 6-benzyladenine (6-BA) regulates plant growth and prevents the negative consequences of various forms of abiotic stress, including waterlogging in crop plants. The present study aimed to investigate the effects of exogenous 6-BA on the growth, oxidative stress, and ascorbate-glutathione (AsA-GSH) cycle system in the inbred SY-MY13 (waterlogging-resistant) and SY-XT1 (waterlogging-sensitive) seedlings of waxy corn in conditions of waterlogging stress. The results demonstrated that waterlogging stress causes chlorosis and necrosis in waxy corn leaves, inhibiting growth and leading to the accumulation of reactive oxygen species (ROS), which induces oxidative stress and, in turn, reduces membrane lipid peroxidation and the disruption of membrane homeostasis. This is specifically manifested in the increased concentrations of superoxide anion radicals ( O 2 - ), hydrogen peroxide (H2O2), and malondialdehyde (MDA), in addition to increased relative electrical conductivity (REC%) values. The SY-MY13 strain exhibited growth superior to that of SY-XT1 when waterlogged due to its excellent waterlogging resistance. Thus, exogenous 6-BA was found to be effective in enhancing the growth of plants stressed by waterlogging in terms of the weight of the shoots and roots, shoot height, and leaf area. In addition to this, exogenous 6-BA also reduced the accumulation of O 2 - , H2O2, and MDA, increased ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR) activity, and enhanced ascorbic acid (AsA), and reduced glutathione (GSH) concentration through the regulation of the efficiency of the AsA-GSH cycle system in maize plants. Hence, the application of exogenous 6-BA can alleviate waterlogging-induced damage and improve waterlogging tolerance in waxy corn via the activation of the AsA-GSH cycle system and the elimination of ROS.
Collapse
Affiliation(s)
- Ji Wang
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Daye Wang
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Min Zhu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Fenghai Li
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
59
|
Guo S, Li T, Wu C, Fan G, Wang H, Shen D. Melatonin and 1‐methylcyclopropene treatments on delay senescence of apricots during postharvest cold storage by enhancing antioxidant system activity. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuangfeng Guo
- Co‐Innovation Center for the Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu China
| | - Tingting Li
- Co‐Innovation Center for the Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu China
| | - Caie Wu
- College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu China
| | - Gongjian Fan
- College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu China
| | - Hanbo Wang
- College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu China
| | - Dongbei Shen
- College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu China
| |
Collapse
|
60
|
Effects of CaCl 2 Treatment Alleviates Chilling Injury of Loquat Fruit ( Eribotrya japonica) by Modulating ROS Homeostasis. Foods 2021; 10:foods10071662. [PMID: 34359530 PMCID: PMC8304281 DOI: 10.3390/foods10071662] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
The effects of calcium chloride (CaCl2) treatment on chilling injury (CI), reactive oxygen species (ROS) metabolism, and ascorbate-glutathione (AsA-GSH) cycle in loquat fruit at 1 °C storage for 35 d were investigated. The results indicated that CaCl2 treatment remarkably suppressed the increase in browning index and firmness as well as the decrease in extractable juice rate. CaCl2 treatment also decreased the production of superoxide radical (O2•-), hydrogen peroxide (H2O2) content, but increased the 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical (OH•) scavenging ability, the activities of superoxide dismutase (SOD), catalase (CAT), and their gene expressions. Moreover, compared to the control loquat fruit, CaCl2-treated fruit maintained higher contents of AsA, GSH, higher levels of activities of ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR) and expressions of EjAPX, EjGR, EjMDHAR, and EjDHAR, but exhibited lower glutathione disulfide (GSSG) content. These results suggested that CaCl2 treatment alleviated CI in loquat fruit through enhancing antioxidant enzymes activities and AsA-GSH cycle system to quench ROS.
Collapse
|
61
|
Yi SY, Rameneni JJ, Lee M, Song SG, Choi Y, Lu L, Lee H, Lim YP. Comparative Transcriptome-Based Mining of Senescence-Related MADS, NAC, and WRKY Transcription Factors in the Rapid-Senescence Line DLS-91 of Brassica rapa. Int J Mol Sci 2021; 22:ijms22116017. [PMID: 34199515 PMCID: PMC8199657 DOI: 10.3390/ijms22116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Leaf senescence is a developmental process induced by various molecular and environmental stimuli that may affect crop yield. The dark-induced leaf senescence-91 (DLS-91) plants displayed rapid leaf senescence, dramatically decreased chlorophyll contents, low photochemical efficiencies, and upregulation of the senescence-associated marker gene BrSAG12-1. To understand DLS molecular mechanism, we examined transcriptomic changes in DLS-91 and control line DLS-42 following 0, 1, and 4 days of dark treatment (DDT) stages. We identified 501, 446, and 456 DEGs, of which 16.7%, 17.2%, and 14.4% encoded TFs, in samples from the three stages. qRT-PCR validation of 16 genes, namely, 7 MADS, 6 NAC, and 3 WRKY, suggested that BrAGL8-1, BrAGL15-1, and BrWRKY70-1 contribute to the rapid leaf senescence of DLS-91 before (0 DDT) and after (1 and 4 DDT) dark treatment, whereas BrNAC046-2, BrNAC029-2/BrNAP, and BrNAC092-1/ORE1 TFs may regulate this process at a later stage (4 DDT). In-silico analysis of cis-acting regulatory elements of BrAGL8-1, BrAGL42-1, BrNAC029-2, BrNAC092-1, and BrWRKY70-3 of B. rapa provides insight into the regulation of these genes. Our study has uncovered several AGL-MADS, WRKY, and NAC TFs potentially worthy of further study to understand the underlying mechanism of rapid DLS in DLS-91.
Collapse
Affiliation(s)
- So Young Yi
- Institute of Agricultural Science, Chungnam National University, Daejeon 34134, Korea; (S.Y.Y.); (J.J.R.); (M.L.)
| | - Jana Jeevan Rameneni
- Institute of Agricultural Science, Chungnam National University, Daejeon 34134, Korea; (S.Y.Y.); (J.J.R.); (M.L.)
| | - Myungjin Lee
- Institute of Agricultural Science, Chungnam National University, Daejeon 34134, Korea; (S.Y.Y.); (J.J.R.); (M.L.)
| | - Seul Gi Song
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.G.S.); (Y.C.); (L.L.); (H.L.)
| | - Yuri Choi
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.G.S.); (Y.C.); (L.L.); (H.L.)
| | - Lu Lu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.G.S.); (Y.C.); (L.L.); (H.L.)
| | - Hyeokgeun Lee
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.G.S.); (Y.C.); (L.L.); (H.L.)
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.G.S.); (Y.C.); (L.L.); (H.L.)
- Correspondence: ; Tel.: +82-42-821-5739; Fax: +82-42-821-8847
| |
Collapse
|
62
|
Jahan MS, Shu S, Wang Y, Hasan MM, El-Yazied AA, Alabdallah NM, Hajjar D, Altaf MA, Sun J, Guo S. Melatonin Pretreatment Confers Heat Tolerance and Repression of Heat-Induced Senescence in Tomato Through the Modulation of ABA- and GA-Mediated Pathways. FRONTIERS IN PLANT SCIENCE 2021; 12:650955. [PMID: 33841479 PMCID: PMC8027311 DOI: 10.3389/fpls.2021.650955] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/18/2021] [Indexed: 05/03/2023]
Abstract
Heat stress and abscisic acid (ABA) induce leaf senescence, whereas melatonin (MT) and gibberellins (GA) play critical roles in inhibiting leaf senescence. Recent research findings confirm that plant tolerance to diverse stresses is closely associated with foliage lifespan. However, the molecular mechanism underlying the signaling interaction of MT with GA and ABA regarding heat-induced leaf senescence largely remains undetermined. Herein, we investigated putative functions of melatonin in suppressing heat-induced leaf senescence in tomato and how ABA and GA coordinate with each other in the presence of MT. Tomato seedlings were pretreated with 100 μM MT or water and exposed to high temperature (38/28°C) for 5 days (d). Heat stress significantly accelerated senescence, damage to the photosystem and upregulation of reactive oxygen species (ROS), generating RBOH gene expression. Melatonin treatment markedly attenuated heat-induced leaf senescence, as reflected by reduced leaf yellowing, an increased Fv/Fm ratio, and reduced ROS production. The Rbohs gene, chlorophyll catabolic genes, and senescence-associated gene expression levels were significantly suppressed by MT addition. Exogenous application of MT elevated the endogenous MT and GA contents but reduced the ABA content in high-temperature-exposed plants. However, the GA and ABA contents were inhibited by paclobutrazol (PCB, a GA biosynthesis inhibitor) and sodium tungstate (ST, an ABA biosynthesis inhibitor) treatment. MT-induced heat tolerance was compromised in both inhibitor-treated plants. The transcript abundance of ABA biosynthesis and signaling genes was repressed; however, the biosynthesis genes MT and GA were upregulated in MT-treated plants. Moreover, GA signaling suppressor and catabolic gene expression was inhibited, while ABA catabolic gene expression was upregulated by MT application. Taken together, MT-mediated suppression of heat-induced leaf senescence has collaborated with the activation of MT and GA biosynthesis and inhibition of ABA biosynthesis pathways in tomato.
Collapse
Affiliation(s)
- Mohammad Shah Jahan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yu Wang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Md. Mahadi Hasan
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ahmed Abou El-Yazied
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dina Hajjar
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Muhammad Ahsan Altaf
- Center for Terrestrial Biodiversity of the South China Sea, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Shirong Guo,
| |
Collapse
|
63
|
Yang N, Sun K, Wang X, Wang K, Kong X, Gao J, Wen D. Melatonin Participates in Selenium-Enhanced Cold Tolerance of Cucumber Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:786043. [PMID: 35003171 PMCID: PMC8728364 DOI: 10.3389/fpls.2021.786043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/29/2021] [Indexed: 05/19/2023]
Abstract
Melatonin is an important and widespread plant hormone. However, the underlying physiological and molecular mechanisms of melatonin as a secondary messenger in improving cold tolerance by selenium are limited. This study investigated the effects of selenite on the cold stress of cucumber seedlings. The results showed that exogenous application of selenite improved the cold tolerance of cucumber seedlings, which was dependent on the concentration effect. In the present experiment, 1 μM of selenite showed the best effect on alleviating cold stress. Interestingly, we found that in the process of alleviating cold stress, selenite increased the content of endogenous melatonin by regulating the expression of melatonin biosynthesis genes (TDC, T5H, SNAT, and COMT). To determine the interrelation between selenite and melatonin in alleviating cold stress, melatonin synthesis inhibitor p-chlorophenylalanine and melatonin were used for in-depth study. This study provides a theoretical basis for cucumber cultivation and breeding.
Collapse
Affiliation(s)
- Ning Yang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kaining Sun
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiao Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kean Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xianghua Kong
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianwei Gao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Dan Wen
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
- *Correspondence: Dan Wen ;
| |
Collapse
|