51
|
Wang Y, Wu J, Wang L, Yang P, Liu Z, Rajput SA, Hassan M, Qi D. Epigallocatechin Gallate and Glutathione Attenuate Aflatoxin B 1-Induced Acute Liver Injury in Ducklings via Mitochondria-Mediated Apoptosis and the Nrf2 Signalling Pathway. Toxins (Basel) 2022; 14:876. [PMID: 36548773 PMCID: PMC9782748 DOI: 10.3390/toxins14120876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Aflatoxin B1 (AFB1) exists widely in feed and food with severe hazards, posing a serious threat to human and animal health. Epigallocatechin gallate (EGCG) and glutathione (GSH) have been reported as having anti-oxidative and other functions. The present study aimed to investigate the detoxification effect of EGCG and GSH alone or in combination on AFB1 exposure in ducklings. Fifty one-day-old male ducklings were randomly assigned into five experimental groups (n = 10): 1. Control (CTR); 2. 0.3 mg/kg BW AFB1 (AFB1); 3. 0.3 mg/kg BW AFB1 + 100 mg/kg BW EGCG (AFB1 + EGCG); 4. 0.3 mg/kg BW AFB1 + 30 mg/kg BW GSH (AFB1 + GSH); 5. 0.3 mg/kg BW AFB1 + 100 mg/kg BW EGCG + 30 mg/kg BW GSH (AFB1 + EGCG + GSH). The experiment lasted for seven days. Compared with the CTR group, AFB1 reduced growth performance, total serum protein and albumin content, increased serum enzyme activity (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and γ-glutamyl transpeptidase), and caused pathological damage to the ducklings' livers. AFB1 exposure increased malondialdehyde content and decreased superoxide dismutase, total antioxidant capacity, catalase, glutathione peroxidase activities, and glutathione content in the liver. EGCG and GSH alone or in combination mitigated these adverse effects. Meanwhile, EGCG and GSH attenuate apoptosis of hepatocytes, and regulated AFB1-induced changes in the abundance of genes contained in the Keap1/Nrf2 signalling and apoptotic pathways. Collectively, these results suggest that EGCG and GSH alleviate the hepatocyte injury induced by AFB1 by inhibiting oxidative stress and attenuating excessive mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiayu Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingfeng Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuhong Liu
- Institute of Animal Husbandry and Veterinary Sciences, Wuhan Academy of Agricultural Sciences, Wuhan 430208, China
| | - Shahid Ali Rajput
- Department of Animal Feed and Production, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Mubashar Hassan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
52
|
Li S, Wang X, Li L, Liu J, Ding Y, Zhao T, Zhang Y. Atomic-scale simulations of the deoxynivalenol degradation induced by reactive oxygen plasma species. Food Res Int 2022; 162:111939. [DOI: 10.1016/j.foodres.2022.111939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/04/2022]
|
53
|
Llano S, Henao C, María Gómez A, Fernando Gallo Ortiz A. Determination of contaminants in turmeric: Validation of LC-HRMS methods for the determination of pesticides and mycotoxins. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
54
|
Li S, Li X, Liu X, Zhang Q, Fang J, Li X, Yin X. Stability Evaluation of Aflatoxin B 1 Solution Certified Reference Material via Ultra-High Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry. ACS OMEGA 2022; 7:40548-40557. [PMID: 36385854 PMCID: PMC9647931 DOI: 10.1021/acsomega.2c05829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Aflatoxin B1 (AFB1) solution certified reference materials (CRMs) have been widely utilized in the measurements of AFB1 contaminations in foods and agricultural products. It is of great importance to evaluate the stability of AFB1 solution CRMs in different matrices for their practical applications. In this study, the stability of AFB1 solution CRM was investigated and its degradation products under various conditions were elucidated using ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry for the first time. Exposure to high temperatures and UV light irradiation accelerated the degradation of AFB1 solution significantly, and the degradation products were largely dependent on the solvents. Two degradation pathways were proposed based on the degradation products. The addition reaction, oxidation reaction, and modification of the methoxy group are the major processes involved in the degradation of the AFB1 solution. The results of this study indicate that the property value of the acetonitrile solution of AFB1 can be well retained when it is stored at temperatures lower than 60 °C, and the exposure to UV light irradiation is avoided.
Collapse
Affiliation(s)
- Shuangqing Li
- Food
Safety Analysis Laboratory, Division of Chemical Metrology and Analytical
Science, Key Laboratory of Chemical Metrology and Applications on
Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing100029, P. R. China
| | - Xiaomin Li
- Food
Safety Analysis Laboratory, Division of Chemical Metrology and Analytical
Science, Key Laboratory of Chemical Metrology and Applications on
Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing100029, P. R. China
| | - Xuehui Liu
- College
of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Qinghe Zhang
- Food
Safety Analysis Laboratory, Division of Chemical Metrology and Analytical
Science, Key Laboratory of Chemical Metrology and Applications on
Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing100029, P. R. China
| | - Jiaqi Fang
- College
of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Xiuqin Li
- Food
Safety Analysis Laboratory, Division of Chemical Metrology and Analytical
Science, Key Laboratory of Chemical Metrology and Applications on
Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing100029, P. R. China
| | - Xiong Yin
- College
of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
55
|
Su Z, Du T, Liang X, Wang X, Zhao L, Sun J, Wang J, Zhang W. Nanozymes for foodborne microbial contaminants detection: Mechanisms, recent advances, and challenges. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
56
|
Abou Dib A, Assaf JC, El Khoury A, El Khatib S, Koubaa M, Louka N. Single, Subsequent, or Simultaneous Treatments to Mitigate Mycotoxins in Solid Foods and Feeds: A Critical Review. Foods 2022; 11:3304. [PMCID: PMC9601460 DOI: 10.3390/foods11203304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mycotoxins in solid foods and feeds jeopardize the public health of humans and animals and cause food security issues. The inefficacy of most preventive measures to control the production of fungi in foods and feeds during the pre-harvest and post-harvest stages incited interest in the mitigation of these mycotoxins that can be conducted by the application of various chemical, physical, and/or biological treatments. These treatments are implemented separately or through a combination of two or more treatments simultaneously or subsequently. The reduction rates of the methods differ greatly, as do their effect on the organoleptic attributes, nutritional quality, and the environment. This critical review aims at summarizing the latest studies related to the mitigation of mycotoxins in solid foods and feeds. It discusses and evaluates the single and combined mycotoxin reduction treatments, compares their efficiency, elaborates on their advantages and disadvantages, and sheds light on the treated foods or feeds, as well as on their environmental impact.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
- Department of Food Sciences and Technology, Facuty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, Bekaa 1108, Lebanon
| | - Jean Claude Assaf
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
| | - André El Khoury
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
- Correspondence: ; Tel.: +9611421389
| | - Sami El Khatib
- Department of Food Sciences and Technology, Facuty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, Bekaa 1108, Lebanon
| | - Mohamed Koubaa
- TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Université de Technologie de Compiègne, ESCOM—CS 60319, CEDEX, 60203 Compiègne, France
| | - Nicolas Louka
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
| |
Collapse
|
57
|
Kinetics of microbial and photochemical degradation of aflatoxin B1 in a sandy loam and clay soil. Sci Rep 2022; 12:16849. [PMID: 36207407 PMCID: PMC9546847 DOI: 10.1038/s41598-022-20727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
In a 28-days experiment, we investigated the dissipation of aflatoxin B1 (AFB1) (0.5–500 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\upmu }\text {g}\,\text {kg}^{-1}$$\end{document}μgkg-1) by microbial (MD) and photodegradation (PD) in two contrasting soils (sandy loam and clay). Sterile incubation in darkness served as control (C). AFB1 was degraded in all scenarios according to simple first-order kinetics with 50% dissipation times of 20–32 (PD), 19–48 (MD), and 56–65 days (C), respectively. Dissipation rates were significantly lower (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {p}<0.001$$\end{document}p<0.001) in the clay soil than in the sandy loam soil, likely due to photoquenching and strong binding of AFB1 by clay minerals and humic substances. In the sandy loam, dissipation rate of MD decreased in function of initial AFB1 concentration, probably due to toxic effects on degrading microbes. In contrast, in the clay soil the dissipation rate increased with increasing concentration up to 250 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu \text {g}\,\text {kg}^{-1}$$\end{document}μgkg-1, followed by a sharp decrease at 500 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu \text {g}\,\text {kg}^{-1}$$\end{document}μgkg-1, indicating an effect of soil texture on the bioavailability of AFB1 to soil microbes. AFB2a was identified as a transformation product in all scenarios. These results confirm the function of soil for AFB1 degradation, which is modulated by abiotic and biotic processes, soil characteristics and initial AFB1 concentration.
Collapse
|
58
|
Dong K, Xu C, Ren J, Qu. X. Chiral Nanozymes for Enantioselective Biological Catalysis. Angew Chem Int Ed Engl 2022; 61:e202208757. [DOI: 10.1002/anie.202208757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Kai Dong
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- College of Chinese Medicinal Materials Jilin Agricultural University Changchun Jilin 130118 China
| | - Chen Xu
- College of Chinese Medicinal Materials Jilin Agricultural University Changchun Jilin 130118 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Xiaogang Qu.
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| |
Collapse
|
59
|
Dong K, Xu C, Ren J, Qu X. Chiral Nanozymes for Enantioselective Biological Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kai Dong
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Chen Xu
- Jilin Agricultural University College of Chinese Medicinal Materials, CHINA
| | - Jinsong Ren
- Changchun Institute of Applied Chemistry Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization renmin street, #5625 130022 Changchun CHINA
| | - Xiaogang Qu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| |
Collapse
|
60
|
Reactive molecular dynamics simulation on degradation of aflatoxin B1 by cold atmospheric plasmas. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
61
|
Faraji H, Yazdi FT, Razmi N. The influence of ultraviolet radiation on aflatoxin producing Aspergillus species' isolated from Iranian rice. Toxicol Rep 2022; 9:1528-1536. [PMID: 36518428 PMCID: PMC9742913 DOI: 10.1016/j.toxrep.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/24/2022] [Accepted: 07/09/2022] [Indexed: 02/07/2023] Open
Abstract
Cereal grains are a favorable habitat for aflatoxin- producing fungus to develop. the current investigation was carried out to evaluate the quantity and kind of contaminated imported grains and rice generated in the province of Shiraz, Iran. A total of 60 random rice samples were taken from paddy fields in October and November 2020. Aspergillus genera were detected using PCR. HPLC was used to determine the quantity and type of aflatoxin and mycotoxins in samples collected. Irradiation studies were carried out utilizing a collimated beam system with wavelengths ranging from 200 to 360 nm. The quality of rice was assessed using UV light therapy on some of the changed factors, such as amylose content, aroma, and brightness [P < 0.05]. Aspergillus genera were found in 33.3% [20 samples of 60] of rice samples after morphological and molecular analysis of the ITS gene. According to the sequencing experiment, 12 strains [60%] were identified as Aspergillus flavus, whereas 8 strains [40%] were identified as Aspergillus parasiticus. Ver-1 and afl-R genes were positive in 12/12 [100%] Aspergillus flavus and 87.5% in Aspergillus parasiticus. According to the HPLC findings, three Aspergillus parasiticus strains [37.5%] were able to create all four types of aflatoxins, and aflatoxins B1, B2, G1, G2 were produced by 16.6% of Aspergillus flavus strains. Aflatoxin-1 (AFG1) was lowered to 35.1, 48.2, 59.9, and 65.2%, significantly, at doses of 1.22, 2.44, 3.66, and 4.88 Jcm-2 [P < 0.01]. Furthermore, at doses of 1.22, 2.44, 3.66, and 4.88 Jcm-2, AFB2 and AFG2 was shown to be reduced by 13.1%, 11.7%, 30.3%, and 28.9%. [P < 0.05]. At a maximum dose of 4.88 Jcm-2, AFB1 was shown to be extremely susceptible to UV irradiation, with a > 70% decrease seen [P < 0.001]. Our findings imply that UV irradiation with lower energy and lower danger can help minimize aflatoxin contamination in food.
Collapse
Affiliation(s)
- Hamed Faraji
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Farideh Tabatabaee Yazdi
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
- Department of Food Science Industry Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
| | - Nematollah Razmi
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
62
|
Chlorine dioxide fumigation: An effective technology with industrial application potential for lowering aflatoxin content in peanuts and peanut products. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
63
|
Guo Y, Wang Y, Liu Y, Ma Q, Ji C, Zhao L. Detoxification of the mycoestrogen zearalenone by Bacillus licheniformis spore CotA laccase and application of immobilized laccase in contaminated corn meal. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
64
|
Shirai A, Kawasaka K, Tsuchiya K. Antimicrobial action of phenolic acids combined with violet 405-nm light for disinfecting pathogenic and spoilage fungi. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 229:112411. [PMID: 35219030 DOI: 10.1016/j.jphotobiol.2022.112411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study is to investigate the fungicidal spectrum of six phenolic-cinnamic and -benzoic acid derivatives using four fungi, Aspergillus niger, Cladosporium cladosporioides, Trichophyton mentagrophytes and Candida albicans, in a photocombination system with violet 405-nm light. This is the first study to examine the fungicidal mechanism involving oxidative damage using the conidium of A. niger, as well as an assessment of cellular function and chemical characteristics. The results of the screening assay indicated that ferulic acid (FA) and vanillic acid (VA), which possess 4-hydroxyl and 3-methoxy groups in their phenolic acid structures, produced synergistic activity with 405-nm light irradiation. FA and VA (5.0 mM) significantly decreased the viability of A. niger by 2.4 to 2.6-logs under 90-min irradiation. The synergistic effects were attenuated by the addition of the radical scavenger dimethyl sulfoxide. Generation of reactive oxygen species (ROS), such as hydrogen peroxide and hydroxyl radicals, were confirmed in the phenolic acid solutions tested after irradiation with colorimetric and electron spin resonance analyses. Adsorption of FA and VA to conidia was greater than other tested phenolic acids, and produced 1.55- and 1.85-fold elevation of intracellular ROS levels, as determined using an oxidant-sensitive probe with flow cytometry analysis. However, cell wall or membrane damage was not the main mechanism by which the combination-induced fungal death was mediated. Intracellular ATP was drastically diminished (5% of control levels) following combined treatment with FA and light exposure, even under a condition that produced negligible decreases in viability, thereby resulting in pronounced growth delay. These results suggest that the first stage in the photofungicidal mechanism is oxidative damage to mitochondria or the cellular catabolism system associated with ATP synthesis, which is a result of the photoreaction of phenolic acids adsorbed and internalized by conidia. This photo-technology in combination with food-grade phenolic acids can aid in developing alternative approaches for disinfection of pathogenic and spoilage fungi in the fields of agriculture, food processing and medical care.
Collapse
Affiliation(s)
- Akihiro Shirai
- Department of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima, Tokushima 770-8513, Japan; Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima 770-8506, Japan.
| | - Kaito Kawasaka
- Graduate School of Sciences and Technology for Innovation, Tokushima University, 2-1 Minami-Josanjima, Tokushima 770-8506, Japan.
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Graduate School of Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
65
|
Gacem MA, Abd-Elsalam KA. Nanomaterials for the Reduction of Mycotoxins in Cereals. CEREAL DISEASES: NANOBIOTECHNOLOGICAL APPROACHES FOR DIAGNOSIS AND MANAGEMENT 2022:371-406. [DOI: 10.1007/978-981-19-3120-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
66
|
Approaches to Inactivating Aflatoxins-A Review and Challenges. Int J Mol Sci 2021; 22:ijms222413322. [PMID: 34948120 PMCID: PMC8704553 DOI: 10.3390/ijms222413322] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022] Open
Abstract
According to the World Health Organization, the contamination of crops with aflatoxins poses a significant economic burden, estimated to affect 25% of global food crops. In the event that the contaminated food is processed, aflatoxins enter the general food supply and can cause serious diseases. Aflatoxins are distributed unevenly in food or feedstock, making eradicating them both a scientific and a technological challenge. Cooking, freezing, or pressurizing have little effect on aflatoxins. While chemical methods degrade toxins on the surface of contaminated food, the destruction inside entails a slow process. Physical techniques, such as irradiation with ultraviolet photons, pulses of extensive white radiation, and gaseous plasma, are promising; yet, the exact mechanisms concerning how these techniques degrade aflatoxins require further study. Correlations between the efficiency of such degradation and the processing parameters used by various authors are presented in this review. The lack of appropriate guidance while interpreting the observed results is a huge scientific challenge.
Collapse
|
67
|
Mousavi Khaneghah A. Application of new emerging techniques in combination with conventional methods in decontamination of food products: Current state, challenges, and perspectives. Food Res Int 2021; 150:110799. [PMID: 34865814 DOI: 10.1016/j.foodres.2021.110799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Caixa Postal: 6121, 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
68
|
Zhao L, Zhang L, Xu Z, Liu X, Chen L, Dai J, Karrow NA, Sun L. Occurrence of Aflatoxin B 1, deoxynivalenol and zearalenone in feeds in China during 2018-2020. J Anim Sci Biotechnol 2021; 12:74. [PMID: 34243805 PMCID: PMC8272344 DOI: 10.1186/s40104-021-00603-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/09/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The current study was conducted to investigate the individual and combined occurrence of aflatoxin B1 (AFB1), deoxynivalenol (DON) and zearalenone (ZEN) in feeds from various Provinces of China during 2018 to 2020. A total of 3,507 feed samples, including 2,090 feed ingredients and 1,417 complete feed samples, were collected from different areas of China for mycotoxins analysis. RESULTS The individual contamination of AFB1, DON and ZEN were present in more than 81.9%, 96.4% and 96.9% of feed samples, respectively, with average concentration ranges of AFB1 between 1.2-27.4 μg/kg, DON between 458.0-1,925.4 μg/kg and ZEN between 48.1-326.8 μg/kg. Notably, 0.9%, 0.5% and 0.1% of feed ingredients, and 1.2-12.8%, 0.9-2.9% and 0-8.9% of complete feeds for pigs, poultry and ruminants with AFB1, ZEN and DON that exceeded China's safety standards, respectively. Moreover, more than 81.5% of feed ingredients and 95.7% of complete feeds were co-contaminated with various combinations of these mycotoxins. CONCLUSION This study indicates that the feeds in China were universally contaminated with AFB1, DON and ZEN during the past 3 years. These findings highlight the significance of monitoring mycotoxin contaminant levels in the domestic animal feed, and the importance of carrying out feed administration and remediation strategies for mycotoxin control.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lei Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zijian Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xingda Liu
- Guilin Li Yuan Grain and Oil Food Group Co., Ltd, Guilin, 541001, Guangxi, China
| | - Liyuan Chen
- Jiangsu Aomai Bio-Technology Co., Ltd, Nanjing, 211226, China
| | - Jiefan Dai
- Department of Agriculture of Sichuan Province, Chengdu, 610041, China
| | | | - Lvhui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
69
|
Yang P, Xiao W, Lu S, Jiang S, Zheng Z, Zhang D, Zhang M, Jiang S, Jiang S. Recombinant Expression of Trametes versicolor Aflatoxin B 1-Degrading Enzyme (TV-AFB 1D) in Engineering Pichia pastoris GS115 and Application in AFB 1 Degradation in AFB 1-Contaminated Peanuts. Toxins (Basel) 2021; 13:toxins13050349. [PMID: 34068167 PMCID: PMC8153001 DOI: 10.3390/toxins13050349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022] Open
Abstract
Aflatoxins seriously threaten the health of humans and animals due to their potential carcinogenic properties. Enzymatic degradation approach is an effective and environmentally friendly alternative that involves changing the structure of aflatoxins. In this study, Trametes versicolor aflatoxin B1-degrading enzyme gene (TV-AFB1D) was integrated into the genome of Pichia pastoris GS115 by homologous recombination approach. The recombinant TV-AFB1D was expressed in engineering P. pastoris with a size of approximately 77 kDa under the induction of methanol. The maximum activity of TV-AFB1D reached 17.5 U/mL after the induction of 0.8% ethanol (v/v) for 84 h at 28 °C. The AFB1 proportion of 75.9% was degraded using AFB1 standard sample after catalysis for 12 h. In addition, the AFB1 proportion was 48.5% using AFB1-contaminated peanuts after the catalysis for 18 h at 34 °C. The recombinant TV-AFB1D would have good practical application value in AFB1 degradation in food crops. This study provides an alternative degrading enzyme for the degradation of AFB1 in aflatoxin-contaminated grain and feed via enzymatic degradation approach.
Collapse
Affiliation(s)
- Peizhou Yang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
- Correspondence:
| | - Wei Xiao
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Shuhua Lu
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Suwei Jiang
- School of Biological, Food and Environment Engineering, Hefei University, 158 Jinxiu Avenue, Hefei 230601, China;
| | - Zhi Zheng
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Danfeng Zhang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Min Zhang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Shaotong Jiang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Shuying Jiang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| |
Collapse
|