51
|
Tseng YT, Lin WJ, Chang WH, Lo YC. The novel protective effects of loganin against 1-methyl-4-phenylpyridinium-induced neurotoxicity: Enhancement of neurotrophic signaling, activation of IGF-1R/GLP-1R, and inhibition of RhoA/ROCK pathway. Phytother Res 2018; 33:690-701. [PMID: 30556245 DOI: 10.1002/ptr.6259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/16/2018] [Accepted: 11/23/2018] [Indexed: 12/23/2022]
Abstract
Loganin, a major iridoid glycoside obtained from fruits of Cornus officinalis, possesses anti-inflammatory, antitumor, antidiabetic, and osteoporosis prevention effects. Loganin has been linked to neuroprotection in several models of neurodegeneration, including Parkinson's disease (PD). However, mechanisms underlying the neuroprotective effects of loganin are still mostly unknown. Here, we demonstrated the protective effects of loganin against PD mimetic toxin 1-methyl-4-phenylpyridinium (MPP+ ) and the important roles of insulin-like growth factor 1 receptor (IGF-1R) and glucagon-like peptide 1 receptor (GLP-1R) in the neuroprotective mechanisms of loganin. In primary mesencephalic neuronal cultures treated with or without MPP+ , loganin up-regulated expressions of neurotrophic signals including IGF-1R, GLP-1R, p-Akt, BDNF, and tyrosine hydroxylase. Loganin protected against MPP+ -induced apoptosis by up-regulating antiapoptotic protein and down-regulating proapoptotic protein. Moreover, loganin attenuated MPP+ -induced neurite damage via up-regulation of GAP43 and down-regulation of membrane-RhoA/ROCK2/p-LIMK/p-cofilin. Loganin also attenuated MPP+ -induced reactive oxygen species (ROS) production. However, both AG1024, an IGF-1R antagonist, and exendin 9-39, a GLP-1R antagonist, attenuated the protective effects of loganin on MPP+ -induced cytotoxicity, apoptosis, neurite length decrease, and ROS production. Our results suggest that loganin attenuates MPP+ -induced apoptotic death, neurite damage, and oxidative stress through enhancement of neurotrophic signaling, activation of IGF-1R/GLP-1R, and inhibition of RhoA/ROCK pathway, providing the evidence that loganin possesses novel neuroprotective effects.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Jung Lin
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Hsuan Chang
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
52
|
Shakya B, Shakya S, Hasan Siddique Y. Effect of geraniol against arecoline induced toxicity in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9. Toxicol Mech Methods 2018; 29:187-202. [PMID: 30318983 DOI: 10.1080/15376516.2018.1534299] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In the present study geraniol at the final concentration of 10, 20, 30, and 40 µM was mixed in the diet along with 80 µM of arecoline and the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9 were allowed to feed on it for 24 hrs. After the exposure of 24 hrs the larvae were subjected to ONPG, X-gal, trypan blue exclusion test, oxidative stress markers and apoptotic and comet assays. The exposure of larvae to geraniol showed a dose dependent decrease in the activity of β-galactosidase, tissue damage and oxidative stress markers. A dose dependent decrease in apoptosis and DNA damage was also observed. Molecular docking studies also support the protective role of geraniol against the arecoline induced toxicity. The results suggest that geraniol is potent in reducing the toxicity induced by arecoline in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9.
Collapse
Affiliation(s)
- Barkha Shakya
- a Department of Zoology , Aligarh Muslim University , Aligarh , India
| | - Sonam Shakya
- b Department of Chemistry , Aligarh Muslim University , Aligarh , India
| | | |
Collapse
|
53
|
Wang TS, Lin CP, Chen YP, Chao MR, Li CC, Liu KL. CYP450-mediated mitochondrial ROS production involved in arecoline N-oxide-induced oxidative damage in liver cell lines. ENVIRONMENTAL TOXICOLOGY 2018; 33:1029-1038. [PMID: 29964313 DOI: 10.1002/tox.22588] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND IARC has classified the betel nut as a human environmental carcinogen. Previous studies have found that arecoline (AR) is the major alkaloid present in the saliva of betel quid chewers. Saliva contains a large content of AR which has been further shown to cause mutation of oral mucosa cells, resulting in oral cancer. Whereas, to date, there are only few studies reported the hepatotoxicity associated with arecoline and betel nut chewing. Therefore, the main purpose of this study was to determine the toxic effects of AR and its oxidative metabolite, arecoline N-oxide (ARNO), in normal liver cell lines. METHODS The cytotoxic, genotoxic, and mutagenic effects were detected by crystal violet staining, alkaline comet assay, and Salmonella mutagenicity test, respectively. Measurement of intracellular reactive oxygen species (ROS) generation was determined using the H2-DCFDA assay. RESULTS Our results demonstrated that ARNO exerted higher cytotoxicity, DNA damage, and mutagenicity than its parent compound arecoline in liver cells. Antioxidants, such as N-acetylcysteine, Trolox, and penicillamine, strongly protected liver cells from ARNO-induced DNA damage and ROS production. Furthermore, co-treatment with Mito-TEMPO also effectively blocked ARNO-induced ROS production in liver cells. Besides antioxidants, co-treatment with 1-aminobenzotriazole and methimazole nearly completely suppressed ARNO-induced ROS production in liver cells. CONCLUSIONS Our data suggest that arecoline ingested from the habit of chewing betel quid can be primarily oxidized to ARNO, thereby enhancing its toxicity through increased ROS production. Considering the excellent protective effects of both mitochondria-targeted antioxidant and CYP450 inhibitor on ARNO-induced ROS production in liver cells, mitochondria CYP450-mediated metabolism of ARNO may be a key mechanism. Collectively, our results provide novel cellular evidence for the positive connection between habitual betel quid chewing and the risk for liver damage.
Collapse
Affiliation(s)
- Tsu-Shing Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Ping Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Pong Chen
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
54
|
Hsu HT, Tseng YT, Wong WJ, Liu CM, Lo YC. Resveratrol prevents nanoparticles-induced inflammation and oxidative stress via downregulation of PKC-α and NADPH oxidase in lung epithelial A549 cells. Altern Ther Health Med 2018; 18:211. [PMID: 29986680 PMCID: PMC6038342 DOI: 10.1186/s12906-018-2278-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/02/2018] [Indexed: 11/25/2022]
Abstract
Background Exposure to carbon black nanoparticles (CBNPs), a well-known industrial production, promotes pulmonary toxicity through inflammation and oxidative stress. Recent studies show that some polyphenols exert their antioxidant properties through regulation of protein kinase C-α (PKC-α) and NADPH oxidase (Nox) signaling. Resveratrol, a dietary polyphenol in fruits, possesses various health beneficial effects including anti-inflammatory and antioxidative properties. In this study, we aimed to elucidate the involvement of PKC-α and Nox in CBNPs-induced inflammation and oxidative stress, and to investigate the protective effects of resveratrol on CBNP-induced inflammation and oxidative stress in human lung epithelial A549 cells. Methods The production of reactive oxygen species (ROS) and the change of mitochondrial membrane potential (ΔΨm) were measured by flow cytometry. Nitric oxide (NO) was measured using the Griess reagent, and prostaglandin E2 (PGE2) production was detected by ELISA, while protein expressions were measured by Western blotting analysis. Results In lung epithelial A549 cells, CBNPs significantly enhanced oxidative stress by upregulation of Nox2 and membrane expression of p67phox accompanied with increase of ROS production. CBNPs also increased inflammatory factors, including iNOS, COX-2, NO and PGE2. However, resveratrol attenuated the above effects induced by CBNPs in A549 cells; additionally, CBNPs-induced activation of PKC-α was observed. We found that PKC-α inhibitor (Gö6976) could attenuate CBNPs-induced inflammation by down-regulation of ROS, NO and PGE2 production in A549 cells, suggesting PKC-α might be involved in CBNPs-induced oxidative stress and inflammation. Our results also found resveratrol was able to inhibit protein expression of PKC-α induced by CBNPs. Moreover, ROS scavenger (NAC) and Nox inhibitor (DPI) attenuated CBNPs-induced expressions of iNOS and COX-2. DPI could also attenuate CBNPs-induced ROS, NO and PGE2 production. Conclusions Resveratrol attenuated CBNPs-induced oxidative and inflammatory factors in lung epithelial A549 cells, at least in part via inhibiting PKC-α- and Nox-related signaling.
Collapse
|
55
|
Hsieh YP, Wu KJ, Chen HM, Deng YT. Arecoline activates latent transforming growth factor β1 via mitochondrial reactive oxygen species in buccal fibroblasts: Suppression by epigallocatechin-3-gallate. J Formos Med Assoc 2018; 117:527-534. [DOI: 10.1016/j.jfma.2017.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/29/2023] Open
|
56
|
Shakya B, Siddique YH. Evaluation of the toxic potential of arecoline toward the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. Toxicol Res (Camb) 2018; 7:432-443. [PMID: 30090593 PMCID: PMC6062115 DOI: 10.1039/c7tx00305f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/22/2018] [Indexed: 11/21/2022] Open
Abstract
Arecoline is the key component of areca nut and has been suggested as a carcinogenic agent. In the present study, the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9 were allowed to feed on a diet having 5, 10, 20, 40 and 80 μM arecoline for 24 h. After the completion of 24 h, the larvae were subjected to ONPG assay, X-gal staining, trypan blue exclusion test, oxidative stress markers, and apoptotic and comet assays. A dose-dependent increase in the β-galactosidase activity, tissue damage, glutathione-S-transferase (GST) activity, lipid peroxidation assay, monoamine oxidase (MAO), caspase-9 and 3, protein carbonyl content (PCC), apoptotic index, and DNA damage and decrease in glutathione (GSH) content, delta aminolevulinic acid dehydrogenase (δ-ALA-D), and acetylcholinesterase (AChE) activity were observed in the larvae exposed to 20, 40 and 80 μM arecoline. The results suggest that arecoline is toxic at 20, 40, and 80 μM toward the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9 . Arecoline did not show any toxic effects at 5 and 10 μM.
Collapse
Affiliation(s)
- Barkha Shakya
- Drosophila Transgenic Laboratory , Section of Genetics , Department of Zoology , Faculty of Life Sciences , Aligarh Muslim University , Aligarh , Uttar Pradesh , India . ; Tel: +0571-2700920-3430
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory , Section of Genetics , Department of Zoology , Faculty of Life Sciences , Aligarh Muslim University , Aligarh , Uttar Pradesh , India . ; Tel: +0571-2700920-3430
| |
Collapse
|
57
|
Anhydroecgonine Methyl Ester (AEME), a Product of Cocaine Pyrolysis, Impairs Spatial Working Memory and Induces Striatal Oxidative Stress in Rats. Neurotox Res 2017; 34:834-847. [DOI: 10.1007/s12640-017-9813-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 12/17/2022]
|
58
|
Chen CHS, Yuan TH, Shie RH, Wu KY, Chan CC. Linking sources to early effects by profiling urine metabolome of residents living near oil refineries and coal-fired power plants. ENVIRONMENT INTERNATIONAL 2017; 102:87-96. [PMID: 28238459 DOI: 10.1016/j.envint.2017.02.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND This study aims at identifying metabolic changes linking external exposure to industrial air toxics with oxidative stress biomarkers. METHODS We classified 252 study subjects as 111 high vs. 141 low exposure subjects by the distance from their homes to the two main emission sources, oil refineries and coal-fired power plants. We estimated individual's external exposure to heavy metals and polycyclic aromatic hydrocarbons (PAHs) by dispersion and kriging models, respectively. We measured urinary levels of heavy metals and 1-hydroxypyrene (1-OHP) as biomarkers of internal exposure, and 8-OHdG, HNE-MA, 8-isoPGF2α, and 8-NO2Gua as biomarkers of early health effects. We used two-dimensional gas chromatography time-of-flight mass spectrometry to identify urine metabolomics. We applied "meet-in-the-middle" approach to identify potential metabolites as putative intermediate biomarkers linking multiple air toxics exposures to oxidative stress with plausible exposures-related pathways. RESULTS High exposure subjects showed elevated ambient concentrations of vanadium and PAHs, increased urine concentrations of 1-OHP, vanadium, nickel, copper, arsenic, strontium, cadmium, mercury, and thallium, and higher urine concentrations of all four urine oxidative stress biomarkers compared to low exposure subjects. We identified a profile of putative intermediate biomarkers that were associated with both exposures and oxidative stress biomarkers in participants. Urine metabolomics identified age-dependent biological pathways, including tryptophan metabolism and phenylalanine metabolism in children subjects (aged 9-11), and glycine, serine, and threonine metabolism in elderly subjects (aged>55), that could associate multiple exposures with oxidative stress. CONCLUSION By profiling urine biomarkers and metabolomics in children and elderly residents living near a petrochemical complex, we can link their internal exposure to oxidative stress biomarkers through biological pathways associated with common complex chronic diseases and allergic respiratory diseases. The internal exposure may possibly be traced to multiple air toxics emitted from specific sources of oil refineries and coal-fired power plants.
Collapse
Affiliation(s)
- Chi-Hsin Sally Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taiwan
| | - Tzu-Hsuen Yuan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taiwan
| | - Ruei-Hao Shie
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute of Taiwan, Taiwan
| | - Kuen-Yuh Wu
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taiwan
| | - Chang-Chuan Chan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taiwan.
| |
Collapse
|
59
|
Jain V, Garg A, Parascandola M, Chaturvedi P, Khariwala SS, Stepanov I. Analysis of Alkaloids in Areca Nut-Containing Products by Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1977-1983. [PMID: 28190359 PMCID: PMC5729027 DOI: 10.1021/acs.jafc.6b05140] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Chewing of areca nut in different forms such as betel quid or commercially produced pan masala and gutkha is common practice in the Indian subcontinent and many parts of Asia and is associated with a variety of negative health outcomes, particularly oral and esophageal cancers. Areca nut-specific alkaloids arecoline, arecaidine, guvacoline, and guvacine have been implicated in both the abuse liability and the carcinogenicity of the areca nut. Therefore, variations in the levels of areca alkaloids could potentially contribute to variations in addictive and carcinogenic potential across areca nut-containing products. Here, we developed an accurate and robust liquid chromatography-tandem mass-spectrometry (LC-MS/MS) method for simultaneous quantitation of all four areca alkaloids and applied this method to the analysis of a range of products obtained from India, China, and the United States. The results of the analyses revealed substantial variations in the levels of alkaloids across the tested products, with guvacine being the most abundant (1.39-8.16 mg/g), followed by arecoline (0.64-2.22 mg/g), arecaidine (0.14-1.70 mg/g), and guvacoline (0.17-0.99 mg/g). Substantial differences in the relative contribution of individual alkaloids to the total alkaloid content were also observed among the different products. Our results highlight the need for systematic surveillance of constituent levels in areca nut-containing products and a better understanding of the relationship between the chemical profile and the harmful potential of these products.
Collapse
Affiliation(s)
- Vipin Jain
- Masonic Cancer Center, University of Minnesota, 2231 6 Street SE, Minneapolis 55455, USA
| | - Apurva Garg
- Department of Head and Neck Oncosurgery, Tata Memorial Hospital, Mumbai, 400012, India
| | - Mark Parascandola
- Tobacco Control Research Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Pankaj Chaturvedi
- Department of Head and Neck Oncosurgery, Tata Memorial Hospital, Mumbai, 400012, India
| | - Samir S. Khariwala
- Department of Otolaryngology, Head and Neck Surgery, University of Minnesota, 420 Delaware Street SE, Minneapolis 55455, USA
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, 2231 6 Street SE, Minneapolis 55455, USA
- Division of Environmental Health Sciences, University of Minnesota, 2231 6 Street SE, Minneapolis 55455, USA
| |
Collapse
|
60
|
Lin CY, Young YH. Effect of betel nut chewing on the otolithic reflex system. Clin Neurophysiol 2017; 128:138-146. [DOI: 10.1016/j.clinph.2016.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/11/2022]
|
61
|
Liu YJ, Peng W, Hu MB, Xu M, Wu CJ. The pharmacology, toxicology and potential applications of arecoline: a review. PHARMACEUTICAL BIOLOGY 2016; 54:2753-2760. [PMID: 27046150 DOI: 10.3109/13880209.2016.1160251] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Arecoline is an effective constituent of Areca catechu L. (Arecaceae) with various pharmacological effects. However, investigations also revealed that long use of arecoline could arouse some oral diseases. OBJECTIVE The present review gathers the fragmented information available in the literature (before 1 October 2015) regarding pharmacology and toxicology of arecoline. We also discussed the potential developments and applications of arecoline in the future. METHODS All the available information regarding the arecoline is compiled from scientific databases, including Science Direct, PubMed, Web of Science, Scopus, etc. RESULTS Previous research demonstrated that arecoline is one of the major effective constituents in A. catechu. Additionally, arecoline has a wide spectrum of pharmacological activities including effects on nervous, cardiovascular, digestive and endocrine systems and anti-parasitic effects. What's more, arecoline is reported to be the primary toxic constituent of A. catechu, and the main toxic effects include oral submucous fibrosis (OSF), oral squamous cell carcinoma (OSCC) and genotoxicity. CONCLUSION Arecoline has great potential to be a therapeutic drug for various ailments. However, further investigations are needed in the future to reduce or eliminate its toxicities before developing into new drug.
Collapse
Affiliation(s)
- Yu-Jie Liu
- a College of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu , PR China
| | - Wei Peng
- a College of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu , PR China
| | - Mei-Bian Hu
- a College of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu , PR China
| | - Min Xu
- a College of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu , PR China
| | - Chun-Jie Wu
- a College of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu , PR China
| |
Collapse
|
62
|
Arecoline Induces Neurotoxicity to PC12 Cells: Involvement in ER Stress and Disturbance of Endogenous H2S Generation. Neurochem Res 2016; 41:2140-8. [PMID: 27255601 DOI: 10.1007/s11064-016-1929-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/25/2016] [Accepted: 04/18/2016] [Indexed: 02/01/2023]
Abstract
Arecoline is a major alkaloid of areca nut and has been effect on central nervous system. Although arecoline-induced neurotoxicity has been reported, the possible underlying neurotoxic mechanisms have not yet been elucidated. Increasing evidences have shown that both excessive endoplasmic reticulum (ER) stress and disturbance of hydrogen sulfide (H2S) production are involved in the pathophysiology of numerous neurodegenerative diseases. Here, the purpose of present study was to verify whether ER stress and the disturbance of endogenous H2S generation are also involved in arecoline-caused neurotoxicity. We found that treatment of PC12 cells with arecoline induced the down-regulation of cells viability and up-regulation of apoptosis and the activity of caspase-3, indicating the neurotoxic role of arecoline to PC12 cells. In addition, arecoline also increased the expression of Bax (pro-apoptotic protein) and attenuated the expression of Bcl-2 (anti-apoptotic protein) in PC12 cells. Simultaneously, arecoline caused excessive ER stress in PC12 cells, as evidenced by the up-regulations of Glucose-regulated protein 78 (GRP78), CCAAT/enhancer binding protein homologous protein (CHOP), and Cleaved caspase-12 expressions. Notably, the level of H2S in the culture supernatant and the expressions of cystathionine β-synthase and 3-mercaptopyruvate sulfurtransferase (two major enzymes for endogenous H2S generation in PC12 cells) were also reduced by arecoline treatment. These results indicate that arecoline-caused neurotoxicity to PC12 cells is involved in ER stress and disturbance of endogenous H2S generation and suggest that the modulation of ER stress and endogenous H2S generation may be potential therapeutic approach in treatment of arecoline-caused neurotoxicity.
Collapse
|
63
|
Kang YF, Qiao HX, Xin LZ, Ge LP. Chain elongation analog of resveratrol as potent cancer chemoprevention agent. J Physiol Biochem 2016; 72:445-52. [PMID: 27160168 DOI: 10.1007/s13105-016-0487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/12/2016] [Indexed: 11/26/2022]
Abstract
Resveratrol is identified as a natural cancer chemoprevention agent. There has been a lot of interest in designing and developing resveratrol analogs with cancer chemoprevention activity superior to that of parent molecule and exploring their action mechanism in the past several decades. In this study, we have synthesized resveratrol analogs of compounds A-C via conjugated chain elongation based on isoprene unit retention strategy. Remarkably, cytotoxic activity analysis results indicated that compound B possesses the best proliferation inhibition activity for NCI-H460 cells in all the test compounds. Intriguingly, compound B displayed a higher cytotoxicity against human non-small cell lung cancer cells (NCI-H460) compared to normal human embryonic lung fibroblasts (MRC-5). Afterward, flow cytometry analysis showed that compound B would induce cell apoptosis. We further researched the action mechanism. When NCI-H460 cells were incubated by compound B for 6 or 9 h, respectively, the intracellular reactive oxygen species (ROS) level was enhanced obviously. With elevation of intracellular ROS level, flow cytometry measurement verified mitochondrial transmembrane potential collapse, which was accompanied by the up-regulation of Bax and down-regulation of Bcl-2. More interestingly, compound B increased the expression of caspase-9 and caspase-3, which induced cell apoptosis. Moreover, compound B arrested cell cycle in G0/G1 phase. These are all to provide useful information for designing resveratrol-based chemoprevention agent and understanding the action mechanism.
Collapse
Affiliation(s)
- Yan-Fei Kang
- College of Laboratory Medicine, Hebei North University, 11 Diamond Street South, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Hai-Xia Qiao
- College of Laboratory Medicine, Hebei North University, 11 Diamond Street South, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Long-Zuo Xin
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Li-Ping Ge
- College of Laboratory Medicine, Hebei North University, 11 Diamond Street South, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| |
Collapse
|
64
|
M1 and M3 muscarinic receptors may play a role in the neurotoxicity of anhydroecgonine methyl ester, a cocaine pyrolysis product. Sci Rep 2015; 5:17555. [PMID: 26626425 PMCID: PMC4667193 DOI: 10.1038/srep17555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/02/2015] [Indexed: 01/12/2023] Open
Abstract
The smoke of crack cocaine contains cocaine and its pyrolysis product, anhydroecgonine methyl ester (AEME). AEME possesses greater neurotoxic potential than cocaine and an additive effect when they are combined. Since atropine prevented AEME-induced neurotoxicity, it has been suggested that its toxic effects may involve the muscarinic cholinergic receptors (mAChRs). Our aim is to understand the interaction between AEME and mAChRs and how it can lead to neuronal death. Using a rat primary hippocampal cell culture, AEME was shown to cause a concentration-dependent increase on both total [3H]inositol phosphate and intracellular calcium, and to induce DNA fragmentation after 24 hours of exposure, in line with the activation of caspase-3 previously shown. Additionally, we assessed AEME activity at rat mAChR subtypes 1–5 heterologously expressed in Chinese Hamster Ovary cells. l-[N-methyl-3H]scopolamine competition binding showed a preference of AEME for the M2 subtype; calcium mobilization tests revealed partial agonist effects at M1 and M3 and antagonist activity at the remaining subtypes. The selective M1 and M3 antagonists and the phospholipase C inhibitor, were able to prevent AEME-induced neurotoxicity, suggesting that the toxicity is due to the partial agonist effect at M1 and M3 mAChRs, leading to DNA fragmentation and neuronal death by apoptosis.
Collapse
|
65
|
Liu RM, Li YB, Liang XF, Liu HZ, Xiao JH, Zhong JJ. Structurally related ganoderic acids induce apoptosis in human cervical cancer HeLa cells: Involvement of oxidative stress and antioxidant protective system. Chem Biol Interact 2015; 240:134-144. [PMID: 26282491 DOI: 10.1016/j.cbi.2015.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/23/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
Ganoderic acids (GAs) produced by Ganoderma lucidum possess anticancer activities with the generation of reactive oxygen species (ROS). However, the role of oxidative stress in apoptotic process induced by GAs is still undefined. In this study, the effects of four structurally related GAs, i.e. GA-T, GA-Mk, and two deacetylated derivatives of GA-T (GA-T1 and GA-T2) on the antioxidant defense system and induced apoptosis in cervical cancer cells HeLa were investigated in vitro. Our results indicated that the tested GAs (5-40 μM) induced apoptotic cell death through mitochondrial membrane potential decrease and activation of caspase-9 and caspase-3. Furthermore, GAs increased the generation of intracellular ROS and attenuated antioxidant defense system by decreasing glutathione (GSH) level, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. The above effects were remarkably blocked by the exogenous antioxidants, i.e. N-acetylcysteine, catalase and diphenyleneiodonium chloride. The potency of the four GAs toward induced apoptosis, generation of ROS and suppression of antioxidant defense system was in the order of: GA-T > GA-Mk ≈ GA-T1 > GA-T2 in HeLa cells. These findings suggest that GAs induced mitochondria-dependent cell apoptosis in HeLa cells are mediated via enhancing oxidative stress and depressing antioxidant defense. Additionally, the acetylation of hydroxyl groups in GAs may contribute to their pro-oxidant activities and cytotoxicity, which is helpful to the development of novel chemotherapy agents.
Collapse
Affiliation(s)
- Ru-Ming Liu
- Guizhou Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, PR China
| | - Ying-Bo Li
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xiang-Feng Liang
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Hui-Zhou Liu
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jian-Hui Xiao
- Guizhou Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, PR China.
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, PR China.
| |
Collapse
|
66
|
Singh V, Pal A, Darokar MP. A polyphenolic flavonoid glabridin: Oxidative stress response in multidrug-resistant Staphylococcus aureus. Free Radic Biol Med 2015; 87:48-57. [PMID: 26117328 DOI: 10.1016/j.freeradbiomed.2015.06.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/03/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023]
Abstract
Glabridin a polyphenolic flavonoid from Glycyrrhiza glabra is known to possess several therapeutic properties. In the present study, we report for the first time the in vitro antibacterial activity (MIC values ranging from 3.12 to 25 μg/mL) of glabridin against multidrug-resistant clinical isolates of S. aureus by inducing oxidative stress. Increased levels of H2O2 and NO were observed in a dose-dependent manner after treatment of glabridin that further affected macromolecules such as DNA, lipids, and proteins. Surprisingly, glabridin was found to possess antioxidant properties when used at lower concentrations using three different methods including DPPH, FRAP, and SOD assays. These observations were further validated through the expression analysis of oxidative stress-responsive genes using qRT-PCR wherein glabridin was observed to up- and down-regulate these genes at lower and higher concentrations, respectively. In in vitro combination experiments, glabridin was found to reduce the MIC of different antibiotics such as norfloxacin, oxacillin, and vancomycin by up to 4-fold, while the MIC of glabridin itself was found to be reduced by up to 8-fold in the presence of antibiotics. A synergistic interaction was observed between norfloxacin and glabridin when used in combination against multidrug-resistant clinical isolate SA 4627 of Staphylococcus aureus at much lower concentrations, indicating the suitability of glabridin in combination therapy.
Collapse
Affiliation(s)
- Vigyasa Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Anirban Pal
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Mahendra P Darokar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India.
| |
Collapse
|
67
|
So EC, Huang YM, Hsing CH, Liao YK, Wu SN. Arecoline inhibits intermediate-conductance calcium-activated potassium channels in human glioblastoma cell lines. Eur J Pharmacol 2015; 758:177-187. [PMID: 25843414 DOI: 10.1016/j.ejphar.2015.03.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/18/2015] [Accepted: 03/25/2015] [Indexed: 12/14/2022]
Abstract
Arecoline (ARE) is an alkaloid-type natural product from areca nut. This compound has numerous pharmacological and toxicological effects. Whether this agent interacts with ion channels to perturb functional activity of cells remains unknown. The effects of ARE on ionic currents were studied in glioma cell lines (U373 and U87MG) using patch-clamp technique. Like TRAM-34(1-[(2-chlorophenyl)-diphenylmethyl]pyrazole), ARE suppressed the amplitude of whole-cell voltage-gated K(+) currents in U373 cells elicited by a ramp voltage clamp. In cell-attached configuration, ARE did not modify the single-channel conductance of intermediate-conductance Ca(2+)-activated K(+) (IKCa) channels; however, it did reduce channel activity. Its inhibition of IKCa channels was accompanied by a significant lengthening in the slow component of mean closed time of IKCa channels. Based on minimal kinetic scheme, the dissociation constant (KD) required for ARE-mediated prolongation of mean closed time was 11.2µM. ARE-induced inhibition of IKCa channels was voltage-dependent. Inability of ARE to perturb the activity of large-conductance Ca(2+)-activated K(+) (BKCa) channels was seen. Under current-clamp recordings, ARE depolarized the membrane of U373 cells and DCEBIO reversed ARE-induced depolarization. Similarly, ARE suppressed IKCa-channel activities in oral keratinocytes. This study provides the evidence that ARE block IKCa channels in a concentration, voltage and state-dependent manner. ARE-induced block of IKCa channels is unrelated to the binding of muscarinic receptors. The effects of ARE on these channels may partially be responsible for the underlying cellular mechanisms by which it influences the functional activities of glioma cells or oral keratinocytes, if similar findings occur in vivo.
Collapse
Affiliation(s)
- Edmund Cheung So
- Department of Anesthesia & Medical Research, China Medical University - An Nan Hospital, Tainan City, Taiwan; Department of Anesthesia, China Medical University, Taichung City, Taiwan; Department of Anesthesia, Nan Shan branch of Gilu Hospital, Shandong University, Shandong Province, PR China
| | - Yan-Ming Huang
- Department of Physiology, National Cheng Kung University Medical College, No. 1 University Road, Tainan City 70101, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesia, Chi Mei Medical Center, Tainan City, Taiwan
| | - Yu-Kai Liao
- Department of Physiology, National Cheng Kung University Medical College, No. 1 University Road, Tainan City 70101, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, No. 1 University Road, Tainan City 70101, Taiwan.
| |
Collapse
|
68
|
Li YC, Chang JT, Chiu C, Lu YC, Li YL, Chiang CH, You GR, Lee LY, Cheng AJ. Areca nut contributes to oral malignancy through facilitating the conversion of cancer stem cells. Mol Carcinog 2015; 55:1012-23. [PMID: 26087469 DOI: 10.1002/mc.22344] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023]
Abstract
Oral cancer is one of the most frequent malignant diseases worldwide, and areca nut is a primary carcinogen causing this cancer in Southeast Asia. Previous studies to examine the effects of this carcinogen often used short-term and high-dose treatment of area nut extract as a research model, which do not recapitulate the conditions of patients with long-term and habitual use of this substance. To approach authentic mechanism of areca nut-induced oral carcinogenesis that occurs in human, we established four isogenic sublines of oral cells which were chronic exposed to areca nut extract. Without eliciting cytotoxicity or senescence, these four sublines cells exhibited significant increase in invasive ability, along with epithelial-mesenchymal transition. These cells also showed resistance to chemotherapeutic drug and irradiation, accompanying with the augmentation of ABCG2 protein efflux and increased ROS clearance. Moreover, these sublines possessed the characteristics of cancer stemness, as demonstrated by enriched CD24-/CD44+ and CD133+ sub-populations, enhanced spheroid cell formation, and induced expressions of pluripotent stemness regulators, including Gp96, Grp78, Slug, Sox9, Snail, and Foxc2. These stemness regulators were further shown up-regulations in oral cancer patients with areca nut-chewing habit, and were statistically correlated with CD44 expression, a stemness marker. In conclusion, our findings suggested that areca nut contributes to oral malignancy through facilitating the conversion of cancer stem cells. This study may further contribute to clinical applications in disease prevention, risk assessment or molecular therapeutics on areca nut- associated diseases.
Collapse
Affiliation(s)
- Yi-Chen Li
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Joseph T Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Crystal Chiu
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Ching Lu
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Liang Li
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chang-Hsu Chiang
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Guo-Rung You
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Yu Lee
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
69
|
Peng W, Liu YJ, Wu N, Sun T, He XY, Gao YX, Wu CJ. Areca catechu L. (Arecaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2015; 164:340-356. [PMID: 25681543 DOI: 10.1016/j.jep.2015.02.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/04/2015] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Areca catechu L. (Arecaceae), widely distributed in South and Southeast Asia, is a popular traditional herbal medicine that can be chewed for the purpose of dispersing accumulated fluid in the abdominal cavity and killing worms. The present paper aims to provide an up-to-date review on the traditional uses and advances in the botany, phytochemistry, pharmacology and toxicology of this plant. Furthermore, the possible trends and a perspective for future research of this plant are also discussed. MATERIALS AND METHODS A literature search was performed on A. catechu based on classic books of herbal medicine, PhD. and MSc. dissertations, government reports, the state and local drug standards, scientific databases including Pubmed, SciFinder, Scopus, the Web of Science, Google Scholar, and others. Various types of information regarding this plant are discussed in corresponding parts of this paper. In addition, perspectives for possible future studies of A. catechu are discussed. RESULTS The seeds of A. catechu (areca nut) have been widely used in clinical practice in China, India and other South and Southeast Asian Countries. Currently, over 59 compounds have been isolated and identified from A. catechu, including alkaloids, tannins, flavones, triterpenes, steroids, and fatty acids. The extracts and compounds isolated from A. catechu have many pharmacological activities. These include antiparasitic effects, anti-depressive effects, anti-fatigue effects, antioxidant effects, antibacterial and antifungal effects, antihypertensive effects, anti-inflammatory and analgesic effects, anti-allergic effects, the promotion of digestive functions, suppression of platelet aggregation, regulatory effects on blood glucose and lipids, etc. Although arecoline is the primary active constituent of A. catechu, it is also the primary toxic compound. The main toxicities of arecoline are the promotion of oral submucosal fibrosis (OSF) and cytotoxic effects on normal human cells, which involve inducing apoptosis. CONCLUSION As an important herbal medicine, A. catechu has potential for the treatment of many diseases, especially parasitic diseases, digestive function disorders, and depression. Many traditional uses of A. catechu have now been validated by current investigations. However, further research should be undertaken to investigate the clinical effects, toxic constituents, target organs, and pharmacokinetics and to establish criteria for quality control for A. catechu-derived medications. In addition, it will be interesting to investigate the active macromolecular compounds and active constituents other than alkaloids in both raw and processed products of A. catechu.
Collapse
Affiliation(s)
- Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Yu-Jie Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Na Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Tao Sun
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Xiao-Yan He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Yong-Xiang Gao
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| | - Chun-Jie Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| |
Collapse
|
70
|
Liu ZQ, Liu T, Chen C, Li MY, Wang ZY, Chen RS, Wei GX, Wang XY, Luo DQ. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice. Toxicol Appl Pharmacol 2015; 285:61-70. [PMID: 25796170 DOI: 10.1016/j.taap.2015.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to become a potential therapeutic strategy to treat T2DM. Fumosorinone (FU), a new natural product isolated from insect fungi Isaria fumosorosea, was found to inhibit PTP1B activity in our previous study. Herein, the effects of FU on insulin resistance and mechanism in vitro and in vivo were investigated. FU increased the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, and also reduced blood glucose and lipid levels of type 2 diabetic KKAy mice. FU decreased the expression of PTP1B both in insulin-resistant HepG2 cells and in liver tissues of diabetic KKAy mice. Furthermore, FU increased the phosphorylation of IRβ, IRS-2, Akt, GSK3β and Erk1/2 in insulin-resistant HepG2 cells, as well as the phosphorylation of IRβ, IRS-2, Akt in liver tissues of diabetic KKAy mice. These results showed that FU increased glucose uptake and improved insulin resistance by down-regulating the expression of PTP1B and activating the insulin signaling pathway, suggesting that it may possess antidiabetic properties.
Collapse
Affiliation(s)
- Zhi-Qin Liu
- College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China; College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Ting Liu
- College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Chuan Chen
- College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Ming-Yan Li
- College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Zi-Yu Wang
- College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Ruo-Song Chen
- College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Gui-Xiang Wei
- College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Xiao-Yi Wang
- College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Du-Qiang Luo
- College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
71
|
Wu SN, Huang YM, Kao CA, Chen BS, Lo YC. Investigations on contribution of glial inwardly-rectifying K(+) current to membrane potential and ion flux: an experimental and theoretical study. Kaohsiung J Med Sci 2015; 31:9-17. [PMID: 25600915 DOI: 10.1016/j.kjms.2014.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 07/01/2014] [Accepted: 08/20/2014] [Indexed: 01/29/2023] Open
Abstract
The inwardly rectifying K(+) current [IK(IR)] allows large inward K(+) currents at potentials negative to K(+) equilibrium potential (EK) and it becomes small outward K(+) currents at those positive to EK. How changes of such currents enriched in glial cells can influence the functions of glial cell, neurons, or both is not clearly defined, although mutations of Kir4.1 channels have been demonstrated to cause serious neurological disorders. In this study, we identified the presence of IK(IR) in human glioma cells (U373 and U87 cells). The amplitude of IK(IR) in U373 cells was subject to inhibition by amitriptyline, arecoline, or BaCl2. The activity of inwardly rectifying K(+) channels was also clearly detected, and single-channel conductance of these channels was calculated to be around 23 pS. Moreover, based on a simulation model derived from neuron-glial interaction mediated by ion flux, we further found out that incorporation of glial IK(IR) conductance into the model can significantly contribute to regulation of extracellular K(+) concentrations and glial resting potential, particularly during high-frequency stimulation. Glial cells and neurons can mutually modulate their expression of ion channels through K(+) ions released into the extracellular space. It is thus anticipated that glial IK(IR) may be a potential target utilized to influence the activity of neuronal and glial cells as well as their interaction.
Collapse
Affiliation(s)
- Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan City, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan City, Taiwan.
| | - Yan-Ming Huang
- Department of Physiology, National Cheng Kung University Medical College, Tainan City, Taiwan
| | - Ching-An Kao
- Department of Physiology, National Cheng Kung University Medical College, Tainan City, Taiwan
| | - Bing-Shuo Chen
- Department of Anaesthesiology, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|
72
|
Propofol Attenuates Lipopolysaccharide-Induced Reactive Oxygen Species Production Through Activation of Nrf2/GSH and Suppression of NADPH Oxidase in Human Alveolar Epithelial Cells. Inflammation 2014; 38:415-23. [DOI: 10.1007/s10753-014-0046-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
73
|
Li N, Gao C, Peng X, Wang W, Luo M, Fu YJ, Zu YG. Aspidin BB, a phloroglucinol derivative, exerts its antibacterial activity against Staphylococcus aureus by inducing the generation of reactive oxygen species. Res Microbiol 2014; 165:263-72. [DOI: 10.1016/j.resmic.2014.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 03/10/2014] [Indexed: 01/11/2023]
|
74
|
Formulation optimization of arecoline patches. ScientificWorldJournal 2014; 2014:945168. [PMID: 24707220 PMCID: PMC3953398 DOI: 10.1155/2014/945168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022] Open
Abstract
The response surface methodology (RSM) including polynomial equations has been used to design an optimal patch formulation with appropriate adhesion and flux. The patch formulations were composed of different polymers, including Eudragit RS 100 (ERS), Eudragit RL 100 (ERL) and polyvinylpyrrolidone K30 (PVP), plasticizers (PEG 400), and drug. In addition, using terpenes as enhancers could increase the flux of the drug. Menthol showed the highest enhancement effect on the flux of arecoline.
Collapse
|
75
|
Li M, Gao F, Zhou ZS, Zhang HM, Zhang R, Wu YF, Bai MH, Li JJ, Lin SR, Peng JY. Arecoline inhibits epithelial cell viability by upregulating the apoptosis pathway: implication for oral submucous fibrosis. Oncol Rep 2014; 31:2422-8. [PMID: 24647969 DOI: 10.3892/or.2014.3091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/20/2014] [Indexed: 11/06/2022] Open
Abstract
Oral submucous fibrosis (OSF) is a chronic inflammatory disease characterized by the accumulation of excess collagen, and areca nut chewing has been proposed as a significant etiological factor for disease manifestation. However, the underlying molecular mechanisms regarding areca nut chewing-induced OSF are only partially understood. Herein, we reported that arecoline markedly induced morphologic change in HaCaT epithelial cells, but had no obvious effect on Hel fibroblast cells. MTS assay revealed that arecoline significantly suppressed HaCaT cell viability. Moreover, flow cytometric analysis indicated that arecoline substantially promoted HaCaT cell, but not Hel cell apoptosis in a dose-dependent manner. Furthermore, arecoline-induced HaCaT cell apoptosis was found to be associated with increased expression and activation of cleaved-Bid, cleaved-PARA and cleaved-caspase-3. Collectively, our results suggest that HaCaT epithelial cells are more sensitive than Hel fibroblast cells to arecoline-induced cytotoxicity, which may be involved in the pathogenesis of OSF.
Collapse
Affiliation(s)
- Ming Li
- Dental Medical Center, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Feng Gao
- Powder Metallurgy Research Institute of Central South University, Changsha, Hunan, P.R. China
| | - Zhong-Su Zhou
- Changsha Stomatological Hospital, Changsha, Hunan, P.R. China
| | - Hui-Ming Zhang
- Changsha Stomatological Hospital, Changsha, Hunan, P.R. China
| | - Rui Zhang
- Changsha Stomatological Hospital, Changsha, Hunan, P.R. China
| | - Ying-Fang Wu
- Dental Medical Center, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Ming-Hai Bai
- Changsha Stomatological Hospital, Changsha, Hunan, P.R. China
| | - Ji-Jia Li
- Dental Medical Center, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Shi-Rong Lin
- Taiwan Taipei Dental Sciences, Taipei, Taiwan, R.O.C
| | - Jie-Ying Peng
- Dental Medical Center, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
76
|
Garg A, Chaturvedi P, Gupta PC. A review of the systemic adverse effects of areca nut or betel nut. Indian J Med Paediatr Oncol 2014; 35:3-9. [PMID: 25006276 PMCID: PMC4080659 DOI: 10.4103/0971-5851.133702] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Areca nut is widely consumed by all ages groups in many parts of the world, especially south-east Asia. The objective of this review is to systematically review and collate all the published data that are related to the systemic effects of areca nut. The literature search was performed by an electronic search of the Pubmed and Cochrane databases using keywords and included articles published till October 2012. We selected studies that covered the effect of areca nut on metabolism, and a total of 62 studies met the criteria. There is substantial evidence for carcinogenicity of areca nut in cancers of the mouth and esophagus. Areca nut affects almost all organs of the human body, including the brain, heart, lungs, gastrointestinal tract and reproductive organs. It causes or aggravates pre-existing conditions such as neuronal injury, myocardial infarction, cardiac arrhythmias, hepatotoxicity, asthma, central obesity, type II diabetes, hyperlipidemia, metabolic syndrome, etc. Areca nut affects the endocrine system, leading to hypothyroidism, prostate hyperplasia and infertility. It affects the immune system leading to suppression of T-cell activity and decreased release of cytokines. It has harmful effects on the fetus when used during pregnancy. Thus, areca nut is not a harmless substance as often perceived and proclaimed by the manufacturers of areca nut products such as Pan Masala, Supari Mix, Betel quid, etc. There is an urgent need to recognize areca nut as a harmful food substance by the policy makers and prohibit its glamorization as a mouth freshener. Strict laws are necessary to regulate the production of commercial preparations of areca nut.
Collapse
Affiliation(s)
- Apurva Garg
- Department of Head and Neck Oncosurgery, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Pankaj Chaturvedi
- Department of Head and Neck Oncosurgery, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Prakash C. Gupta
- Sekhsaria Institute for Public Health, Navi Mumbai, Maharashtra, India
| |
Collapse
|
77
|
Arecoline inhibits and destabilizes agrin-induced acetylcholine receptor cluster formation in C2C12 myotubes. Food Chem Toxicol 2013; 60:391-6. [DOI: 10.1016/j.fct.2013.07.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 07/19/2013] [Accepted: 07/31/2013] [Indexed: 01/28/2023]
|
78
|
Hsu YY, Tseng YT, Lo YC. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth. Toxicol Appl Pharmacol 2013; 272:787-96. [PMID: 23954465 DOI: 10.1016/j.taap.2013.08.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 12/19/2022]
Abstract
Reactive oxygen intermediates production and apoptotic damage induced by high glucose are major causes of neuronal damage in diabetic neuropathy. Berberine (BBR), a natural antidiabetes drug with PI3K-activating activity, holds promise for diabetes because of its dual antioxidant and anti-apoptotic activities. We have previously reported that BBR attenuated H2O2 neurotoxicity via activating the PI3K/Akt/Nrf2-dependent pathway. In this study, we further explored the novel protective mechanism of BBR on high glucose-induced apoptotic death and neurite damage of SH-SY5Y cells. Results indicated BBR (0.1-10 nM) significantly attenuated reactive oxygen species (ROS) production, nucleus condensation, and apoptotic death in high glucose-treated cells. However, AG1024, an inhibitor of insulin growth factor-1 (IGF-1) receptor, significantly abolished BBR protection against high glucose-induced neuronal death. BBR also increased Bcl-2 expression and decreased cytochrome c release. High glucose down-regulated IGF-1 receptor and phosphorylation of Akt and GSK-3β, the effects of which were attenuated by BBR treatment. BBR also activated nuclear erythroid 2-related factor 2 (Nrf2), the key antioxidative transcription factor, which is accompanied with up-regulation of hemeoxygenase-1 (HO-1). Furthermore, BBR markedly enhanced nerve growth factor (NGF) expression and promoted neurite outgrowth in high glucose-treated cells. To further determine the role of the Nrf2 in BBR neuroprotection, RNA interference directed against Nrf2 was used. Results indicated Nrf2 siRNA abolished BBR-induced HO-1, NGF, neurite outgrowth and ROS decrease. In conclusion, BBR attenuated high glucose-induced neurotoxicity, and we are the first to reveal this novel mechanism of BBR as an Nrf2 activator against glucose neurotoxicity, providing another potential therapeutic use of BBR on the treatment of diabetic complications.
Collapse
Affiliation(s)
- Ya-Yun Hsu
- Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | | | | |
Collapse
|
79
|
Lee SC, Tsai CC, Yao CH, Hsu YM, Chen YS, Wu MC. Effect of Arecoline on Regeneration of Injured Peripheral Nerves. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:865-85. [DOI: 10.1142/s0192415x13500584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The present study provides in vitro and in vivo evaluation of arecoline on peripheral nerve regeneration. In the in vitro study, we found that arecoline at 50 μg/ml could significantly promote the survival and outgrowth of cultured Schwann cells as compared to the controls treated with culture medium only. In the in vivo study, we evaluated peripheral nerve regeneration across a 10-mm gap in the sciatic nerve of the rat, using a silicone rubber nerve chamber filled with the arecoline solution. In the control group, the chambers were filled with normal saline only. At the end of the fourth week, morphometric data revealed that the arecoline-treated group at 5 μg/ml significantly increased the number and the density of myelinated axons as compared to the controls. Immunohistochemical staining in the arecoline-treated animals at 5 μg/ml also showed their neural cells in the L4 and L5 dorsal root ganglia ipsilateral to the injury were strongly retrograde-labeled with fluorogold and lamina I–II regions in the dorsal horn ipsilateral to the injury were significantly calcitonin gene-related peptide-immunolabeled compared with the controls. In addition, we found that the number of macrophages recruited in the distal sciatic nerve was increased as the concentration of arecoline was increased. Electrophysiological measurements showed the arecoline-treated groups at 5 and 50 μg/ml had a relatively larger nerve conductive velocity of the evoked muscle action potentials compared to the controls. These results indicate that arecoline could stimulate local inflammatory conditions, improving the recovery of a severe peripheral nerve injury.
Collapse
Affiliation(s)
- Sheng-Chi Lee
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Orthopaedics, Pingtung Branch, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chin-Chuan Tsai
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Chinese Medicine Department, E-DA Hospital, Kaohsiung, Taiwan
| | - Chun-Hsu Yao
- Lab of Biomaterials, School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yueh-Sheng Chen
- Lab of Biomaterials, School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Ming-Chang Wu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
80
|
Barbehenn RV, Kochmanski J. Searching for synergism: effects of combinations of phenolic compounds and other toxins on oxidative stress in Lymantria dispar caterpillars. CHEMOECOLOGY 2013. [DOI: 10.1007/s00049-013-0136-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
81
|
Chou CH, Chuang LY, Tseng WL, Lu CY. Characterization of protein adducts formed by toxic alkaloids by nano-scale liquid chromatography with mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1303-1312. [PMID: 23019161 DOI: 10.1002/jms.3083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Betel quid chewing is associated with cytotoxicity, genotoxicity and carcinogenicity in diseases such as oral cancer, liver cirrhosis, hepatocellular carcinoma and diabetes mellitus. Arecoline and arecaidine, which are the main alkaloids in the areca nut, are potential exposure biomarkers in habitual betel quid users. This study developed a method of detecting arecoline- and arecaidine-protein adducts by mass spectrometry (MS). First, bovine serum albumin was used to predict and confirm the binding sites of proteins modified by arecoline or arecaidine. Cells were then treated with arecoline to identify new protein adducts after cellular metabolic processing. Finally, human plasma was used to model long-term exposure to arecoline and arecaidine. Following isolation proteins were tryspin digested. The peptides afforded were separated and analyzed by nano-scale liquid chromatography with MS using an LTQ Orbitrap mass spectrometer. The experimental findings showed that cysteine is the predominant amino acid in protein adduct formation. The goal of this study was to establish a screening platform for identifying novel protein adducts that form covalent bonds with arecoline or arecaidine. Use of this strategy to survey new protein-toxic adducts may help to identify novel biomarkers of betel nut exposure.
Collapse
Affiliation(s)
- Chi-Hsien Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
82
|
Chang YF, Liu TY, Liu ST, Tseng CN. Arecoline inhibits myogenic differentiation of C2C12 myoblasts by reducing STAT3 phosphorylation. Food Chem Toxicol 2012; 50:3433-9. [PMID: 22847137 DOI: 10.1016/j.fct.2012.07.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 06/22/2012] [Accepted: 07/19/2012] [Indexed: 01/29/2023]
Abstract
Areca nut (Areca catechu) is chewed regularly as a medical and psychoactive food by about 10% of the world population, in countries including India, Taiwan and parts of Southern Asia. Areca nut chewing during pregnancy has been associated with both lower birth weight and premature birth. Animals of low birth weights showed retardation of muscle development. Our previous study showed that arecoline, the major areca alkaloid, decreased the number of implanted embryos. Here we sought to determine the effects of arecoline in myogenic differentiation by in vitro assays using C2C12 myoblast cells. The results showed that arecoline higher than 0.4mM significantly increased apoptosis and decreased viability of C2C12 cells. Morphometric measurements of myotube formation and analyses of myogenic markers, myosin heavy chain and myogenin, revealed that myogenic differentiation was inhibited by 0.04-0.08 mM arecoline. Moreover, phosphorylated but not total STAT3 was significantly inhibited by arecoline during myotube formation. These results indicate that arecoline inhibits the myogenic differentiation of C2C12 cells by reducing the activation of STAT3, an upstream regulator of myogenesis. Improved understanding of the effects of arecoline during myogenic differentiation may help to establish public health policies and to develop potential treatments for such patients.
Collapse
Affiliation(s)
- Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | | | |
Collapse
|
83
|
Neurotoxicity of Anhydroecgonine Methyl Ester, a Crack Cocaine Pyrolysis Product. Toxicol Sci 2012; 128:223-34. [DOI: 10.1093/toxsci/kfs140] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
84
|
Hsu YY, Chen CS, Wu SN, Jong YJ, Lo YC. Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC34 motor neuron-like cells. Eur J Pharm Sci 2012; 46:415-25. [PMID: 22469516 DOI: 10.1016/j.ejps.2012.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/10/2012] [Accepted: 03/14/2012] [Indexed: 02/08/2023]
Abstract
Berberine (BBR) is a well-known anti-diabetic herbal medicine in Asia due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. Here, we identified the critical role of phosphatidylinositol 3-kinase (PI3K)/Akt involved BBR cellular defense mechanisms and first revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2)/heme oxygenase (HO)-1 induction in NSC34 motor neuron-like cells. BBR (0.1-10 nM) led to increasing insulin receptor expression, Akt phosphorylation and enhanced oxidant-sensitive Nrf2/HO-1 induction, which were blocked by a PI3K inhibitor, LY294002. In H(2)O(2)-treated cells, BBR significantly attenuated ROS production and increased cell viability, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (HO-1 and Nrf2), which also were blocked by LY294002. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential and decreasing the oxygen consumption rate. BBR-induced anti-apoptotic function was demonstrated by increasing anti-apoptotic protein Bcl-2 and survival of motor neuron protein (SMN) and by decreasing apoptotic proteins (cytochrome c, Bax and caspase). These results suggest that BBR, which is active at nanomolar concentration, is a potential neuroprotective agent via PI3K/Akt-dependent cytoprotective and antioxidant pathways.
Collapse
Affiliation(s)
- Ya-Yun Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | | | | | | | | |
Collapse
|
85
|
Ghayur MN, Kazim SF, Rasheed H, Khalid A, Jumani MI, Choudhary MI, Gilani AH. Identification of antiplatelet and acetylcholinesterase inhibitory constituents in betel nut. ACTA ACUST UNITED AC 2012; 9:619-25. [PMID: 21669165 DOI: 10.3736/jcim20110607] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the possible mechanism and the compound(s) responsible for the antiplatelet and acetylcholinesterase (AChE) inhibitory effects of Areca catechu crude extract (Ac.Cr). METHODS Aqueous-methanol (70%) was used for extraction of plant material (betel nut). Antiplatelet activity was measured in human platelet-rich plasma by using a Lumi-aggregometer while anti-AChE activity was measured spectrophotometrically in vitro. In an attempt to find the responsible compound(s) in betel nut for antiplatelet and anti-AChE activities, different commercially available betel nut compounds were tested. RESULTS Ac.Cr inhibited platelet aggregation induced by arachidonic acid (AA), adenosine diphosphate (ADP), platelet-activating factor (PAF), epinephrine and Ca(2+)-ionophore. Ac.Cr was the most potent in inhibiting ADP- and Ca(2+)-ionophore-induced aggregation. In the AChE assay, Ac.Cr showed significant AChE inhibitory activity with almost complete inhibition of the enzyme. Out of the tested compounds, none of the compounds in betel nut showed any antiplatelet effect except for catechin that was the most potent against epinephrine-induced aggregation. Catechin was significantly less potent than Ac.Cr, indicating a presence of additional compound(s) with antiplatelet activity. For the AChE inhibitory effect, only tannic acid, gallic acid, diosgenin and isoguvacine were found to be active, whereby tannic acid was more potent than Ac.Cr. CONCLUSION This study shows the possible antiplatelet and AChE inhibitory potential of betel nut while further studies are needed to confirm and identify more compounds in betel nut for these actions.
Collapse
Affiliation(s)
- Muhammad Nabeel Ghayur
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | | | | | | | | | | |
Collapse
|
86
|
Yang JC, Lu MC, Lee CL, Chen GY, Lin YY, Chang FR, Wu YC. Selective targeting of breast cancer cells through ROS-mediated mechanisms potentiates the lethality of paclitaxel by a novel diterpene, gelomulide K. Free Radic Biol Med 2011; 51:641-57. [PMID: 21641992 DOI: 10.1016/j.freeradbiomed.2011.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 03/26/2011] [Accepted: 05/10/2011] [Indexed: 01/07/2023]
Abstract
Defects in apoptotic pathways confer resistance to tubulin-binding agents via downregulation of caspases or overexpression of antiapoptotic factors, urging the need for novel agents acting on an alternative pathway. The purpose of this study was to investigate whether induction of ROS can induce caspase-independent cell death in breast cancer cells and thereby enhance the activity of paclitaxel. Here, we report that gelomulide K acts as a caspase-independent cell death-inducing agent that synergizes with paclitaxel in breast cancer cells and has low toxicity in normal cells. Treatment with gelomulide K induced PARP-1 hyperactivation, AIF nuclear translocation, and cytoprotective autophagy. These effects were associated with increased ROS production and a decrease in cellular GSH levels in cancer cells. Furthermore, pretreatment with NAC, a precursor of intracellular GSH, effectively abrogated gelomulide K-induced caspase-independent cell death and autophagy, suggesting that ROS-mediated downstream signaling is essential to the anticancer effects of gelomulide K. Additionally, in a xenograft model, gelomulide K induced PARP-1 activation and reduced tumor growth. In terms of structure-activity relationships, analysis not only showed a correlation between ROS levels and drug activity but also highlighted the importance of the 8,14-epoxy group. Taken together, our results show that enhancement of paclitaxel activity can be achieved with gelomulide K and that the structurally relevant pharmacophore provides important insight into the development of new caspase-independent cell death-inducing agents.
Collapse
Affiliation(s)
- Juan-Cheng Yang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | |
Collapse
|