51
|
Duangjan C, Rangsinth P, Zhang S, Gu X, Wink M, Tencomnao T. Vitis Vinifera Leaf Extract Protects Against Glutamate-Induced Oxidative Toxicity in HT22 Hippocampal Neuronal Cells and Increases Stress Resistance Properties in Caenorhabditis Elegans. Front Nutr 2021; 8:634100. [PMID: 34179052 PMCID: PMC8225951 DOI: 10.3389/fnut.2021.634100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
Vitis vinifea has been used for traditional medicines, food, beverages, and dietary antioxidant supplements. The chemical compositions and biological activities of the fruits and seeds have been extensively investigated. However, the biological effects of the leaves are limited, and its anti-neurodegeneration or antiaging activities are little known. The current work aims to study the beneficial effects of V. vinifera leaf extract on neuroprotective effects in HT22 cells, antiaging, and oxidative stress resistance properties in the Caenorhabditis elegans model. The ethanol extract was characterized by phytochemical composition using gas/liquid chromatography–mass spectrometry and reversed-phase high-performance liquid chromatography. The beneficial effects of V. vinifera ethanol (VVE) extract on antioxidant properties, neuroprotective effects, and the underlying mechanisms were studied by in vitro and in vivo studies. In HT22 cells, we found that VVE has a protective effect against glutamate-mediated oxidative stress-induced cell death. The gene expression of cellular antioxidant enzymes such as CAT, SODs, GSTs, and GPx was upregulated by VVE treatment. Moreover, VVE was also shown to alleviate oxidative stress and attenuate reactive oxygen species accumulation in C. elegans. We demonstrated that VVE could upregulate the expression of stress-response genes gst-4 and sod-3 and downregulate the expression of hsp-16.2. Our results suggest that the oxidative stress resistance properties of VVE are possibly involved in DAF-16/FoxO transcription factors. VVE reduced age-related markers (lipofuscin) while did not extend the life span of C. elegans under normal conditions. This study reports the neuroprotective effect and antioxidant activity of V. vinifera leaf extract and suggests its potential as a dietary or alternative supplement to defend against oxidative stress and age-related diseases.
Collapse
Affiliation(s)
- Chatrawee Duangjan
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Panthakarn Rangsinth
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Shaoxiong Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Xiaojie Gu
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.,Department of Biotechnology, School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Tewin Tencomnao
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Natural Products for Neuroprotection and Anti-Ageing Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
52
|
Kosyakovsky J. The neural economics of brain aging. Sci Rep 2021; 11:12167. [PMID: 34108560 PMCID: PMC8190309 DOI: 10.1038/s41598-021-91621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022] Open
Abstract
Despite remarkable advances, research into neurodegeneration and Alzheimer Disease (AD) has nonetheless been dominated by inconsistent and conflicting theory. Basic questions regarding how and why the brain changes over time remain unanswered. In this work, we lay novel foundations for a consistent, integrated view of the aging brain. We develop neural economics—the study of the brain’s infrastructure, brain capital. Using mathematical modeling, we create ABC (Aging Brain Capital), a simple linear simultaneous-equation model that unites aspects of neuroscience, economics, and thermodynamics to explain the rise and fall of brain capital, and thus function, over the human lifespan. Solving and simulating this model, we show that in each of us, the resource budget constraints of our finite brains cause brain capital to reach an upper limit. The thermodynamics of our working brains cause persistent pathologies to inevitably accumulate. With time, the brain becomes damaged causing brain capital to depreciate and decline. Using derivative models, we suggest that this endogenous aging process underpins the pathogenesis and spectrum of neurodegenerative disease. We develop amyloid–tau interaction theory, a paradigm that bridges the unnecessary conflict between amyloid- and tau-centered hypotheses of AD. Finally, we discuss profound implications for therapeutic strategy and development.
Collapse
Affiliation(s)
- Jacob Kosyakovsky
- University of Virginia School of Medicine, 200 Jeanette Lancaster Way, Charlottesville, VA, 22903, USA.
| |
Collapse
|
53
|
Ogunsuyi OB, Olagoke OC, Afolabi BA, Oboh G, Ijomone OM, Barbosa NV, da Rocha JBT. Dietary inclusions of Solanum vegetables mitigate aluminum-induced redox and inflammation-related neurotoxicity in Drosophila melanogaster model. Nutr Neurosci 2021; 25:2077-2091. [PMID: 34057051 DOI: 10.1080/1028415x.2021.1933331] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND This study investigated the modulatory capacity of two Solanum green leafy vegetables; S. macrocarpon L. (African eggplant AE) and S. nigrum L. (Black nightshade BN) on dysregulation of some antioxidant, pro-apoptotic, pro-inflammatory-like, acetylcholinesterase gene expression and redox status in the Drosophila melanogaster model of aluminum-induced neurotoxicity. METHODS Flies were exposed to AlCl3 (6.7 mM) alone or in combination with the leaves (0.1 and 1.0%) from both samples in their diet for seven days. Thereafter, the fly heads were rapidly separated, homogenized, and used to assay for reactive oxygen species (ROS), total thiol content, catalase, glutathione-S-transferase (GST), acetylcholinesterase (AChE) activities, and the expression of antioxidant-mediators (Hsp70, catalase, cnc/Nrf2, Jafrac1 and FOXO), acetylcholinesterase (Ace1), pro-apoptotic caspase-like (Dronc) and its regulator (reaper), as well as inflammation-related (NF-kB/Relish) genes. RESULTS Results showed that AlCl3-exposed flies had significantly reduced survival rate which were ameliorated by AlCl3 also elevated ROS, GST and reduced AChE activities in fly heads while dietary inclusions of AE and BN ameliorated survial rate and oxidative stress in AlCl3-exposed flies. In addition, Hsp70, Jafrac1, reaper and NF-kҝB/Relish were significantly upregulated in AlCl3-exposed fly heads, while cnc/Nrf2 and FOXO were significantly downregulated, but catalase, Dronc and Ace were, not significantly modulated. Nevertheless, these impairments in gene expression levels were ameliorated by dietary inclusions of AE and BN during AlCl3 exposure. CONCLUSION These findings showed that dietary inclusions of AE and BN leaves offer protection against Al-induced neurotoxicity in D. melanogaster and thus, could serve as functional foods with neuroprotective properties.
Collapse
Affiliation(s)
- Opeyemi B Ogunsuyi
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brazil.,Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Olawande C Olagoke
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Blessing A Afolabi
- Department of Biochemistry, Bowen University Iwo, Iwo, Osun State, Nigeria
| | - Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Omamuyovwi M Ijomone
- Neuroscience Laboratory, Human Anatomy Department, Federal University of Technology, Akure, Nigeria
| | - Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - João B T da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
54
|
Pratiwi R, Nantasenamat C, Ruankham W, Suwanjang W, Prachayasittikul V, Prachayasittikul S, Phopin K. Mechanisms and Neuroprotective Activities of Stigmasterol Against Oxidative Stress-Induced Neuronal Cell Death via Sirtuin Family. Front Nutr 2021; 8:648995. [PMID: 34055852 PMCID: PMC8149742 DOI: 10.3389/fnut.2021.648995] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Accumulating studies have confirmed that oxidative stress leads to the death of neuronal cells and is associated with the progression of neurodegenerative diseases, including Alzheimer's disease (AD). Despite the compelling evidence, there is a drawback to the use of the antioxidant approach for AD treatment, partly due to limited blood-brain barrier (BBB) permeability. Phytosterol is known to exhibit BBB penetration and exerts various bioactivities such as antioxidant and anticancer effects, and displays a potential treatment for dyslipidemia, cardiovascular disease, and dementia. Objective: In this study, the protective effects of stigmasterol, a phytosterol compound, on cell death induced by hydrogen peroxide (H2O2) were examined in vitro using human neuronal cells (SH-SY5Y cells). Methods: MTT assay, reactive oxygen species measurement, mitochondrial membrane potential assay, apoptotic cell measurement, and protein expression profiles were performed to determine the neuroprotective properties of stigmasterol. Results: H2O2 exposure significantly increased the levels of reactive oxygen species (ROS) within the cells thereby inducing apoptosis. On the contrary, pretreatment with stigmasterol maintained ROS levels inside the cells and prevented oxidative stress-induced cell death. It was found that pre-incubation with stigmasterol also facilitated the upregulation of forkhead box O (FoxO) 3a, catalase, and anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) in the neurons. In addition, the expression levels of sirtuin 1 (SIRT1) were also increased while acetylated lysine levels were decreased, indicating that SIRT1 activity was stimulated by stigmasterol, and the result was comparable with the known SIRT1 activator, resveratrol. Conclusion: Taken together, these results suggest that stigmasterol could be potentially useful to alleviate neurodegeneration induced by oxidative stress.
Collapse
Affiliation(s)
- Reny Pratiwi
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Department of Medical Laboratory Technology, Faculty of Health Science, Setia Budi University, Surakarta, Indonesia
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Waralee Ruankham
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
55
|
Liu Y, Zhang Y, Muema FW, Kimutai F, Chen G, Guo M. Phenolic Compounds from Carissa spinarum Are Characterized by Their Antioxidant, Anti-Inflammatory and Hepatoprotective Activities. Antioxidants (Basel) 2021; 10:antiox10050652. [PMID: 33922451 PMCID: PMC8145564 DOI: 10.3390/antiox10050652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Carissa spinarum has been traditionally used for the treatment of various diseases due to its different pharmacological activities. However, the active compounds responsible for its potentially specific activities have rarely been explored. To this end, the ethyl acetate (EA) fraction was screened out and selected for further phytochemical isolation because of its promising activities in preliminary 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and COX-2 inhibition assays. As a result, 10 compounds (1−10), including a new one (5), were isolated, with eight of these being identified as phenolic compounds, as expected. Compound 9 possessed an IC50 value of 16.5 ± 1.2 µM, which was lower than that of positive control (vitamin C, 25.5 ± 0.3 µM) in the DPPH assay, and compounds 2, 6, 7 and 9 showed better total antioxidant capacity than vitamin C in the FRAP assay. Meanwhile, compounds 1−6 and 9 also had IC50 values of less than 1.0 µM, which was even better than the positive control indomethacin in the COX-2 inhibition assay. In this context, compounds 2 and 9 were further evaluated to exhibit clear hepatoprotective activities by improving the L02 cell viability and reducing ROS production using a H2O2-induced L02 cell injury model. This study provides initial evidence revealing the most potent phenolic compounds from the root bark of C. spinarum responsible for its antioxidant, anti-inflammatory and hepatoprotective activities.
Collapse
Affiliation(s)
- Ye Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongli Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Felix Wambua Muema
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Festus Kimutai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guilin Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingquan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence: ; Tel.: +86-027-87700850
| |
Collapse
|
56
|
Chiang MC, Nicol CJB, Lin CH, Chen SJ, Yen C, Huang RN. Nanogold induces anti-inflammation against oxidative stress induced in human neural stem cells exposed to amyloid-beta peptide. Neurochem Int 2021; 145:104992. [PMID: 33609598 DOI: 10.1016/j.neuint.2021.104992] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/13/2021] [Accepted: 02/13/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with progressive memory loss resulting in dementia. Amyloid-beta (Aβ) peptides play a critical role in the pathogenesis of the disease by promoting inflammation and oxidative stress, leading to neurodegeneration in the brains of AD patients. Numerous in vitro 3D cell culture models are useful mimics for understanding cellular changes that occur during AD under in vivo conditions. The 3D Bioprinter developed at the CELLINK INKREDIBLE was used in this study to directly investigate the influence of 3D conditions on human neural stem cells (hNSCs) exposed to Aβ. The development of anti-AD drugs is usually difficult, mainly due to a lack of therapeutic efficacy and enhanced serious side effects. Gold nanoparticles (AuNPs) demonstrate benefits in the treatment of several diseases, including AD, and may provide a novel therapeutic approach for AD patients. However, the neuroprotective mechanisms by which AuNPs exert these beneficial effects in hNSCs treated with Aβ are still not well understood. Therefore, we tested the hypothesis that AuNPs protect against Aβ-induced inflammation and oxidative stress in hNSCs under 3D conditions. Here, we showed that AuNPs improved the viability of hNSCs exposed to Aβ, which was correlated with the reduction in the expression of inflammatory cytokines, such as TNF-α and IL-1β. In addition, AuNPs rescued the levels of the transcripts of inhibitory kappa B kinase (IKK) in Aβ-treated hNSCs. The Aβ-mediated increases in mRNA, protein, and nuclear translocation levels of NF-κB (p65), a key transcription factor involved in inflammatory responses, were all significantly abrogated following co-treatment of hNSCs with AuNPs. In addition, treatment with AuNPs significantly restored iNOS and COX-2 levels in Aβ-treated hNSCs. Importantly, hNSCs co-treated with AuNPs were significantly protected from Aβ-induced oxidative stress, as detected using the DCFH-DA and DHE staining assays. Furthermore, hNSCs co-treated with AuNPs were significantly protected from the Aβ-induced reduction in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2 downstream antioxidant target genes (SOD-1, SOD-2, Gpx1, GSH, Catalase, and HO-1). Moreover, AuNPs reduced the aggregates and increased the proteasome activity and the expression of HSP27 and HSP70 genes in Aβ-treated hNSCs. Taken together, these findings provide the first evidence extending our understanding of the molecular mechanisms under 3D scaffold conditions by which AuNPs reverse the inflammation and oxidative stress-induced in hNSCs exposed to Aβ. These findings may facilitate the development of novel treatments for AD.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
| | - Christopher J B Nicol
- Department of Pathology & Molecular Medicine, Cancer Biology and Genetics Division, Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada; Department of Biomedical & Molecular Sciences, Cancer Biology and Genetics Division, Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Chien-Hung Lin
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Pediatrics, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; College of Science and Engineering, Fu Jen Catholic University, New Taipei, Taiwan
| | - Shiang-Jiuun Chen
- Department of Life Science, Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chiahui Yen
- Department of International Business, Ming Chuan University, Taipei, 111, Taiwan
| | - Rong-Nan Huang
- Department of Entomology and Research Center for Plant-Medicine, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
57
|
Platycodon grandiflorum Root Protects against Aβ-Induced Cognitive Dysfunction and Pathology in Female Models of Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10020207. [PMID: 33535469 PMCID: PMC7912782 DOI: 10.3390/antiox10020207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by irreversible cognitive dysfunction. Amyloid beta (Aβ) peptide is an important pathological factor that triggers the progression of AD through accumulation and aggregation, which leads to AD-related pathologies that consequently affect cognitive functions. Interestingly, several studies have reported that Platycodon grandiflorum root extract (PGE), besides exhibiting other bioactive effects, displays neuroprotective, anti-neuroinflammatory, and cognitive-enhancing effects. However, to date, it is not clear whether PGE can affect AD-related cognitive dysfunction and pathogenesis. Therefore, to investigate whether PGE influences cognitive impairment in an animal model of AD, we conducted a Y-maze test using a 5XFAD mouse model. Oral administration of PGE for 3 weeks at a daily dose of 100 mg/kg significantly ameliorated cognitive impairment in 5XFAD mice. Moreover, to elucidate the neurohistological mechanisms underlying the PGE-mediated alleviative effect on cognitive dysfunction, we performed histological analysis of hippocampal formation in these mice. Histopathological analysis showed that PGE significantly alleviated AD-related pathologies such as Aβ accumulation, neurodegeneration, oxidative stress, and neuroinflammation. In addition, we observed a neuroprotective and antioxidant effect of PGE in mouse hippocampal neurons. Our findings suggest that administration of PGE might act as one of the therapeutic agents for AD by decreasing Aβ related pathology and ameliorating Aβ induced cognitive impairment.
Collapse
|
58
|
Activity of Lipoperoxidation – Antioxidant Protection Reactions in Patients with HIV Infection (Review). ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
59
|
|
60
|
Hwang JS, Cha EH, Park B, Ha E, Seo JH. PBN inhibits a detrimental effect of methamphetamine on brain endothelial cells by alleviating the generation of reactive oxygen species. Arch Pharm Res 2020; 43:1347-1355. [PMID: 33200316 DOI: 10.1007/s12272-020-01284-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022]
Abstract
Methamphetamine (METH) is a powerful psychostimulant that is causing serious health problems worldwide owing to imprudent abuses. Recent studies have suggested that METH has deleterious effects on the blood-brain barrier (BBB). A few studies have also been conducted on the mechanisms whereby METH-induced oxidative stress causes BBB dysfunction. We investigated whether N-tert-butyl-α-phenylnitrone (PBN) has protective effects on BBB function against METH exposure in primary human brain microvascular endothelial cells (HBMECs). We found that METH significantly increased reactive oxygen species (ROS) generation in HBMECs. Pretreatment with PBN decreased METH-induced ROS production. With regard to BBB functional integrity, METH exposure elevated the paracellular permeability and reduced the monolayer integrity; PBN treatment reversed these effects. An analysis of the BBB structural properties, by immunostaining junction proteins and cytoskeleton in HBMECs, indicated that METH treatment changed the cellular localization of the tight (ZO-1) and adherens junctions (VE-cadherin) from the membrane to cytoplasm. Furthermore, METH induced cytoskeletal reorganization via the formation of robust stress fibers. METH-induced junctional protein redistribution and cytoskeletal reorganization were attenuated by PBN treatment. Our results suggest that PBN can act as a therapeutic reagent for METH-induced BBB dysfunction by inhibiting excess ROS generation.
Collapse
Affiliation(s)
- Jong Su Hwang
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Eun Hye Cha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
61
|
Shayganfard M. Molecular and biological functions of resveratrol in psychiatric disorders: a review of recent evidence. Cell Biosci 2020; 10:128. [PMID: 33292508 PMCID: PMC7648996 DOI: 10.1186/s13578-020-00491-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Mental disorders including depression, anxiety, schizophrenia, autism spectrum disorders, bipolar and etc. have a considerable proportion of global disorder burden. Many nutritional psychiatry investigations have been conducted to evaluate the relationship between several individual nutrients such as herbal compounds with mental health. Resveratrol, a famous polyphenol compound, is known as an antioxidant, anti-inflammatory, anti-apoptotic, and neuroprotective agent regulating the function of brain and improves the behavioral factors associated with learning, anxiety, depression, and memory. In addition, this natural compound can cross the blood–brain barrier representing neurological influences. The pharmacological interest of utilizing resveratrol in mental disorders is due to its anti-inflammatory and antioxidant features. The aim of this paper was to review the studies evaluated the potential effects of resveratrol on mental disorders.
Collapse
Affiliation(s)
- Mehran Shayganfard
- Department of Psychiatry, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
62
|
Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer's disease. Free Radic Biol Med 2020; 159:87-102. [PMID: 32730855 DOI: 10.1016/j.freeradbiomed.2020.06.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress is considered as one of the pathogenesis of Alzheimer's disease (AD) and plays an important role in the occurrence and development of AD. Nuclear factor erythroid 2 related factor 2 (NRF2) is a key regulatory of oxidative stress defence. There is growing evidence indicating the relationship between NRF2 and AD. NRF2 activation mitigates multiple pathogenic processes involved in AD by upregulating antioxidative defense, inhibiting neuroinflammation, improving mitochondrial function, maintaining proteostasis, and inhibiting ferroptosis. In addition, several NRF2 activators are currently being evaluated as AD therapeutic agents in clinical trials. Thus, targeting NRF2 has been the focus of a new strategy for prevention and treatment of AD. In this review, the role of NRF2 in AD and the NRF2 activators advanced into clinical and preclinical studies will be summarized.
Collapse
Affiliation(s)
- Zhuo Qu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, 409 Guangrong Road, Tianjin, 300134, China
| | - Wannian Zhang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Jianqiang Yu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Chunlin Zhuang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
63
|
Rahim NS, Lim SM, Mani V, Hazalin NAMN, Majeed ABA, Ramasamy K. Virgin Coconut Oil-Induced Neuroprotection in Lipopolysaccharide-Challenged Rats is Mediated, in Part, Through Cholinergic, Anti-Oxidative and Anti-Inflammatory Pathways. J Diet Suppl 2020; 18:655-681. [PMID: 33962540 DOI: 10.1080/19390211.2020.1830223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neuroinflammation is associated with neuronal cell death and could lead to chronic neurodegeneration. This study investigated the neuroprotective potential of virgin coconut oil (VCO) against lipopolysaccharide (LPS)-induced cytotoxicity of neuroblastoma SK-N-SH cells. The findings were validated using Wistar rats, which were fed with 1-10 g/kg VCO for 31 days, exposed to LPS (0.25 mg/kg) and subjected to the Morris Water Maze Test. Brain homogenate was subjected to biochemical analyses and gene expression studies. α-Tocopherol (α-T; 150 mg/kg) served as the positive control. VCO (100 µg/mL) significantly (p < 0.01) improved SK-N-SH viability (+57%) and inhibited reactive oxygen species (-31%) in the presence of LPS. VCO (especially 10 g/kg) also significantly (p < 0.05) enhanced spatial memory of LPS-challenged rats. Brain homogenate of VCO-fed rats was presented with increased acetylcholine (+33%) and reduced acetylcholinesterase (-43%). The upregulated antioxidants may have reduced neuroinflammation [malondialdehyde (-51%), nitric oxide (-49%), Cox-2 (-64%) and iNos (-63%)] through upregulation of IL-10 (+30%) and downregulation of IL-1β (-65%) and Interferon-γ (-25%). There was also reduced expression of Bace-1 (-77%). VCO-induced neuroprotection, which was comparable to α-T, could be mediated, in part, through inflammatory, cholinergic and amyloidogenic pathways.
Collapse
Affiliation(s)
- Nur Syafiqah Rahim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau, Perlis, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Nurul Aqmar Mohamad Nor Hazalin
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Abu Bakar Abdul Majeed
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
64
|
Henríquez G, Gomez A, Guerrero E, Narayan M. Potential Role of Natural Polyphenols against Protein Aggregation Toxicity: In Vitro, In Vivo, and Clinical Studies. ACS Chem Neurosci 2020; 11:2915-2934. [PMID: 32822152 DOI: 10.1021/acschemneuro.0c00381] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One of the main features of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease is the amyloidogenic behavior of disease-specific proteins including amyloid β, tau, α-synuclein, and mutant Huntingtin which participate in the formation, accumulation, and deposition of toxic misfolded aggregates. Consequently, these proteins not only associated with the progress of their respective neurodegenerative pathologies but also qualify as disease-specific biomarkers. The aim of using natural polyphenols is to target amyloid-dependent proteopathies by decreasing free radical damage and inhibiting and dissolving amyloid fibrils. We explore the effectiveness of the polyphenols epigallocatechin-3-gallate, oleuropein aglycone, and quercetin on their ability to inhibit aggregation of amyloid β, tau, and α-synuclein and mitigate other pathological features for Alzheimer's disease and Parkinson's disease. The analysis was carried from in vitro and cell line studies to animal models and clinical trials. This Review describes the use of phytochemical compounds as prophylactic agents for Alzheimer's disease, Parkinson's disease, and other proteopathies.
Collapse
Affiliation(s)
- Gabriela Henríquez
- Department of Environmental Science and Engineering, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Alejandra Gomez
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Erick Guerrero
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
65
|
Amarogentin from Gentiana rigescens Franch Exhibits Antiaging and Neuroprotective Effects through Antioxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3184019. [PMID: 32831994 PMCID: PMC7421772 DOI: 10.1155/2020/3184019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/26/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022]
Abstract
In the present study, the replicative lifespan assay of yeast was used to guide the isolation of antiaging substance from Gentiana rigescens Franch, a traditional Chinese medicine. A compound with antiaging effect was isolated, and the chemical structure of this molecule as amarogentin was identified by spectral analysis and compared with the reported data. It significantly extended the replicative lifespan of K6001 yeast at doses of 1, 3, and 10 μM. Furthermore, amarogentin improved the survival rate of yeast under oxidative stress by increasing the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), and these enzymes' gene expression. In addition, this compound did not extend the replicative lifespan of sod1, sod2, uth1, and skn7 mutants with K6001 background. These results suggested that amarogentin exhibited antiaging effect on yeast via increase of SOD2, CAT, GPx gene expression, enzyme activity, and antioxidative stress. Moreover, we evaluated antioxidant activity of this natural products using PC12 cell system, a useful model for studying the nervous system at the cellular level. Amarogentin significantly improved the survival rate of PC12 cells under H2O2-induced oxidative stress and increased the activities of SOD and SOD2, and gene expression of SOD2, CAT, GPx, Nrf2, and Bcl-x1. Meanwhile, the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) of PC12 cells were significantly reduced after treatment of the amarogentin. These results indicated that antioxidative stress play an important role for antiaging and neuroprotection of amarogentin. Interestingly, amarogentin exhibited neuritogenic activity in PC12 cells. Therefore, the natural products, amarogentin from G. rigescens with antioxidant activity could be a good candidate molecule to develop drug for treating neurodegenerative diseases.
Collapse
|
66
|
El-Hawary SS, Sobeh M, Badr WK, Abdelfattah MAO, Ali ZY, El-Tantawy ME, Rabeh MA, Wink M. HPLC-PDA-MS/MS profiling of secondary metabolites from Opuntia ficus-indica cladode, peel and fruit pulp extracts and their antioxidant, neuroprotective effect in rats with aluminum chloride induced neurotoxicity. Saudi J Biol Sci 2020; 27:2829-2838. [PMID: 32994743 PMCID: PMC7499283 DOI: 10.1016/j.sjbs.2020.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Opuntia ficus-indica (L.) Mill. (OFI), also known as Indian fig Opuntia or prickly pear, is a member of the family Cactaceae that produces edible, nutritionally rich sweet fruits. It has been traditionally used to treat several health disorders and is considered to possess various therapeutic properties. In this work, we have characterized 37 secondary metabolites using HPLC-MS/MS, identified the polysaccharide from the fruits and cladodes pulp, and estimated the neuroprotective activity. All tested extracts exhibited substantial antioxidant activities in-vitro and neuroprotective potential in AlCl3 induced Alzheimer's condition. Administration of OFI extracts attenuated AlCl3 induced learning and memory impairment as confirmed from passive avoidance test and counteracted the oxidative stress as manifested from decreasein the elevated MDA level, increased TAC, GSH, SOD and CAT levels. OFI extracts significantly decreased the elevated brain levels of proinflammatory cytokines (NF-κβ and TNF-α), increased anti-inflammatory cytokine (IL-10), and monoamine neurotransmitters (NE, DA, 5-HT) as compared to positive control group. The extracts showed a significant decrease in acetylcholinesterase level (AChE) as compared with AlCl3. Furthermore, molecular docking was performed to investigate the ability of the major constituents of OFI extracts to interact with acetylcholinesterase (AChE) and serotonin transporter (SERT). Among the tested extracts, cladodes contain highest phenolic content and exhibited the highest antioxidant, anti-inflammatory and neuroprotective activities, which could be attributed to presence of several polyphenols, which could function as AChE and SERT inhibitors. Opuntia ficus-indica might be promising candidate for treating Alzheimer disease, which makes it a subject for more detailed studies.
Collapse
Affiliation(s)
- Seham S El-Hawary
- Department of Pharmacogosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mansour Sobeh
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120-Heidelberg, Germany.,AgroBiosciences Research Division, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben-Guerir, Morocco
| | - Wafaa K Badr
- Department of Medicinal plants and natural products, National Organization of Drug Control and Research, Giza, Egypt
| | | | - Zeinab Y Ali
- Department of Biochemistry, National Organization of Drug Control and Research, 12553 Giza, Egypt
| | - Mona E El-Tantawy
- Department of Medicinal plants and natural products, National Organization of Drug Control and Research, Giza, Egypt
| | - Mohamed A Rabeh
- Department of Pharmacogosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120-Heidelberg, Germany
| |
Collapse
|
67
|
Azib L, Debbache-Benaida N, Da Costa G, Atmani-Kilani D, Saidene N, Bouguellid G, Ourabah A, Krisa S, Richard T, Atmani D. Neuroprotective effects of Fraxinus angustifolia Vahl. bark extract against Alzheimer's disease. J Chem Neuroanat 2020; 109:101848. [PMID: 32645433 DOI: 10.1016/j.jchemneu.2020.101848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/26/2020] [Accepted: 07/03/2020] [Indexed: 01/18/2023]
Abstract
Alzheimer disease's (AD) is a neurodegenerative disease induced by amyloid-β (Aβ) aggregation and accumulation of neurotoxic metals in the brain. Fraxinus angustifolia Vahl. (Oleaceae) is a Mediterranean plant traditionally used to treat several human problems as nervous system problems. This study aimed to evaluate the neuroprotective effects of F. angustifolia Vahl. bark extract (FAB) in vitro and in vivo against Aβ-aggregation and aluminium induced-neurotoxicity in mice. FAB was characterized by colorimetric methods and its individual compounds were identified and quantified by LC-MS. First, the neuroprotective effect of FAB was evaluated against Aβ25-35-aggregation where it was directly incubated with Aβ25-35 and the kinetic of aggregation was measured by spectrophotometer at 200 nm. Then, the extract was tested against Aβ25-35-induced cytotoxicity on PC12 cells and the cells viability was determined by MTT test. On the other hand, FAB (0.01-0.5 mg/mL) was tested against aluminium-activated lipid peroxidation in mice synaptosomal membranes, and in vivo against aluminium-caused neurotoxicity in male N.M.R.I. (Naval Medical Research Institute) mice; this test consisted of daily co-administration of the extract with Al for 60 days. At the end of the treatment, behavioral and memory tests (locomotor activity, black and white and Morris water maze tests) and histological analysis were realized. The identification and quantification of FAB phenolics revealed the presence of different phenolic classes with high concentration of phenylethanoids and hydroxycoumarins. FAB showed a high Aβ25-35 anti-aggregative effect and a dose dependent protective effect on PC12 cells. The extract also demonstrated a significant inhibition of lipid peroxidation and was found to prevent the Al harmful effects where it significantly increased the locomotor activity, decreased the anxiety, improved memory and reduced histological alterations. In conclusion, FAB is rich of bioactive compounds that gave it the ability to inhibit Aβ-aggregation and Al-caused neurotoxicity in mice.
Collapse
Affiliation(s)
- Lila Azib
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria.
| | - Nadjet Debbache-Benaida
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Gregory Da Costa
- Univ. Bordeaux, ISVV, EA 4577, Unité de Recherche Oenologie, F-33882, Villenave d'Ornon, France; INRA, USC 1366, ISVV, Unité de Recherche Oenologie, Villenave d'Ornon, France
| | - Dina Atmani-Kilani
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Naima Saidene
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Ghania Bouguellid
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Asma Ourabah
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Stephanie Krisa
- Univ. Bordeaux, ISVV, EA 4577, Unité de Recherche Oenologie, F-33882, Villenave d'Ornon, France; INRA, USC 1366, ISVV, Unité de Recherche Oenologie, Villenave d'Ornon, France
| | - Tristan Richard
- Univ. Bordeaux, ISVV, EA 4577, Unité de Recherche Oenologie, F-33882, Villenave d'Ornon, France; INRA, USC 1366, ISVV, Unité de Recherche Oenologie, Villenave d'Ornon, France
| | - Djebbar Atmani
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| |
Collapse
|
68
|
Leporini M, Bonesi M, Loizzo MR, Passalacqua NG, Tundis R. The Essential Oil of Salvia rosmarinus Spenn. from Italy as a Source of Health-Promoting Compounds: Chemical Profile and Antioxidant and Cholinesterase Inhibitory Activity. PLANTS (BASEL, SWITZERLAND) 2020; 9:E798. [PMID: 32604753 PMCID: PMC7356759 DOI: 10.3390/plants9060798] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
Abstract
The chemical composition of the essential oil from Salvia rosmarinus Spenn. collected in Calabrian Ionian (R1) and Tyrrhenian (R2) coast (Southern Italy) was examined by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Essential oils are mainly characterized by monoterpene hydrocarbons (39.32-40.70%) and oxygenated monoterpenes (36.08-39.47%). The 1,8-cineole, α-pinene, camphor, and trans-caryophyllene are the most representative compounds. S. rosmarinus essential oils were investigated for their antioxidant activity by using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing ability power (FRAP), and β-carotene bleaching tests. Additionally, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity assays were used to screen the neuroprotective effects of S. rosmarinus. R2 showed the highest antioxidant potential as confirmed by relative antioxidant capacity index (RACI) and exhibited a selective activity against AChE (half maximal inhibitory concentration, IC50, value of 41.86 μg/mL). These results suggest S. rosmarinus essential oil as a potential source of bioactive compounds.
Collapse
Affiliation(s)
- Mariarosaria Leporini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.L.); (M.B.); (M.R.L.)
| | - Marco Bonesi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.L.); (M.B.); (M.R.L.)
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.L.); (M.B.); (M.R.L.)
| | | | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.L.); (M.B.); (M.R.L.)
| |
Collapse
|
69
|
Zhang W, Hua H, Guo Y, Cheng Y, Pi F, Yao W, Xie Y, Qian H. Torularhodin from Sporidiobolus pararoseus Attenuates d-galactose/AlCl 3-Induced Cognitive Impairment, Oxidative Stress, and Neuroinflammation via the Nrf2/NF-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6604-6614. [PMID: 32476418 DOI: 10.1021/acs.jafc.0c01892] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxidative stress and neuroinflammation are considered as crucial culprits in Alzheimer's disease (AD). Torularhodin, a carotenoid pigment, possesses powerful antioxidant activity. This study aimed to elucidate the protective effects of torularhodin in the AD-like mouse model and investigated the underlying mechanisms. Behavioral and histopathological results suggested that torularhodin relieved cognitive impairments, attenuated Aβ accumulation, and inhibited glial overactivation in d-gal/AlCl3-induced ICR mice. Simultaneously, torularhodin also markedly increased antioxidant enzyme capacities, lowered the contents of RAGE, and reduced levels of inflammatory cytokines. Western blot results showed that torularhodin ameliorated neuronal oxidative damage via activation of Nrf2 translocation, upregulation of HO-1, and inactivation of NF-κB in vivo and in vitro. Thus, torularhodin effectively ameliorated cognitive impairment, oxidative stress, and neuroinflammation, possibly through the Nrf2/NF-κB signaling pathways, suggesting torularhodin might offer a promising prevention strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Hanyi Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Fuwei Pi
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Weirong Yao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Yunfei Xie
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| |
Collapse
|
70
|
Peng Y, Gao P, Shi L, Chen L, Liu J, Long J. Central and Peripheral Metabolic Defects Contribute to the Pathogenesis of Alzheimer's Disease: Targeting Mitochondria for Diagnosis and Prevention. Antioxid Redox Signal 2020; 32:1188-1236. [PMID: 32050773 PMCID: PMC7196371 DOI: 10.1089/ars.2019.7763] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Significance: Epidemiological studies indicate that metabolic disorders are associated with an increased risk for Alzheimer's disease (AD). Metabolic remodeling occurs in the central nervous system (CNS) and periphery, even in the early stages of AD. Mitochondrial dysfunction has been widely accepted as a molecular mechanism underlying metabolic disorders. Therefore, focusing on early metabolic changes, especially from the perspective of mitochondria, could be of interest for early AD diagnosis and intervention. Recent Advances: We and others have identified that the levels of several metabolites are fluctuated in the periphery before their accumulation in the CNS, which plays an important role in the pathogenesis of AD. Mitochondrial remodeling is likely one of the earliest signs of AD, linking nutritional imbalance to cognitive deficits. Notably, by improving mitochondrial function, mitochondrial nutrients efficiently rescue cellular metabolic dysfunction in the CNS and periphery in individuals with AD. Critical Issues: Peripheral metabolic disorders should be intensively explored and evaluated for the early diagnosis of AD. The circulating metabolites derived from mitochondrial remodeling represent novel potential diagnostic biomarkers for AD that are more readily detected than CNS-oriented biomarkers. Moreover, mitochondrial nutrients provide a promising approach to preventing and delaying AD progression. Future Directions: Abnormal mitochondrial metabolism in the CNS and periphery is involved in AD pathogenesis. More clinical studies provide evidence for the suitability and reliability of circulating metabolites and cytokines for the early diagnosis of AD. Targeting mitochondria to rewire cellular metabolism is a promising approach to preventing AD and ameliorating AD-related metabolic disorders.
Collapse
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Peipei Gao
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Le Shi
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Chen
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiangang Long
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
71
|
Manabe T, Matsumura A, Yokokawa K, Saito T, Fujikura M, Iwahara N, Matsushita T, Suzuki S, Hisahara S, Kawamata J, Suzuki H, Emoto MC, Fujii HG, Shimohama S. Evaluation of Mitochondrial Oxidative Stress in the Brain of a Transgenic Mouse Model of Alzheimer's Disease by in vitro Electron Paramagnetic Resonance Spectroscopy. J Alzheimers Dis 2020; 67:1079-1087. [PMID: 30714961 DOI: 10.3233/jad-180985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases responsible for progressive dementia. Deposition of amyloid-β (Aβ) in the brain is the most important pathophysiological hallmark of AD. In addition, recent evidence indicates that reactive oxygen species (ROS) derived from mitochondria contribute to progression of AD pathology. We thus hypothesized that Aβ accumulates and oxidative stress increases in the brain mitochondria of a transgenic mouse model of AD (APdE9). We measured the quantity of Aβ and the activity of the antioxidant enzyme superoxide dismutase (SOD) in brain mitochondrial fractions prepared from APdE9 and wild-type (WT) mice aged 6, 9, 15, and 18 months. We also quantified the age-related changes in redox status in the mitochondrial fractions obtained from both APdE9 and WT mouse brains by electron paramagnetic resonance (EPR) spectrometry using a paramagnetic nitroxide "Mito-Tempo" [(2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride monohydrate] as a mitochondria-targeted redox-sensitive probe. In APdE9 mice, Aβ accumulated in brain mitochondria earlier than in the non-mitochondrial fraction of the brain. Furthermore, increased oxidative stress was demonstrated in brain mitochondria of APdE9 mice by in vitro SOD assay as well as EPR spectroscopy. EPR combined with a mitochondria-targeted redox-sensitive nitroxide probe is a potentially powerful tool to elucidate the etiology of AD and facilitate the development of new therapeutic strategies for AD.
Collapse
Affiliation(s)
- Tatsuo Manabe
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Akihiro Matsumura
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Kazuki Yokokawa
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Taro Saito
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Mai Fujikura
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Naotoshi Iwahara
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takashi Matsushita
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Syuuichirou Suzuki
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Shin Hisahara
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Jun Kawamata
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Hiromi Suzuki
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Miho C Emoto
- Health Sciences University of Hokkaido, Sapporo, Japan
| | | | - Shun Shimohama
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
72
|
Shi D, Yang J, Jiang Y, Wen L, Wang Z, Yang B. The antioxidant activity and neuroprotective mechanism of isoliquiritigenin. Free Radic Biol Med 2020; 152:207-215. [PMID: 32220625 DOI: 10.1016/j.freeradbiomed.2020.03.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Abstract
Glycyrrhizae radix has been widely accepted as a functional food in Asia. Isoliquiritigenin is a characteristic bioactive chemical in this medicinal plant. In this work, the neuroprotective effect of isoliquiritigenin and the possible mechanisms were investigated. The results revealed that isoliquiritigenin exhibited better neuroprotective and antioxidant activities than quercetin, a commercial natural antioxidant. Isoliquiritigenin significantly inhibited the release of lactate dehydrogenase, and the generation of reactive oxygen species in H2O2-treated cells. The activities of superoxide dismutase, glutathione peroxidase and catalase were improved. The mRNA expression levels related to oxidative defense and cell apoptosis were reversed by isoliquiritigenin. Moreover, isoliquiritigenin might inhibit the cell apoptosis via ameliorating the loss of mitochondrial membrane potential and the change of nucleus morphology.
Collapse
Affiliation(s)
- Dingding Shi
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiali Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingrong Wen
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhubin Wang
- Nuspower Greatsun (Guangdong) Biotechnology Co., Ltd., Guangzhou, 510900, China
| | - Bao Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
73
|
Ko J, Rounds S, Lu Q. Sustained adenosine exposure causes endothelial mitochondrial dysfunction via equilibrative nucleoside transporters. Pulm Circ 2020; 10:2045894020924994. [PMID: 32523687 PMCID: PMC7235668 DOI: 10.1177/2045894020924994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine is a potent signaling molecule that has paradoxical effects on lung diseases. We have previously demonstrated that sustained adenosine exposure by inhibition of adenosine degradation impairs lung endothelial barrier integrity and causes intrinsic apoptosis through equilibrative nucleoside transporter1/2-mediated intracellular adenosine signaling. In this study, we further demonstrated that sustained adenosine exposure increased mitochondrial reactive oxygen species and reduced mitochondrial respiration via equilibrative nucleoside transporter1/2, but not via adenosine receptor-mediated signaling. We have previously shown that sustained adenosine exposure activates p38 and c-Jun N-terminal kinases in mitochondria. Here, we show that activation of p38 and JNK partially contributed to sustained adenosine-induced mitochondrial reactive oxygen species production. We also found that sustained adenosine exposure promoted mitochondrial fission and increased mitophagy. Finally, mitochondria-targeted antioxidants prevented sustained adenosine exposure-induced mitochondrial fission and improved cell survival. Our results suggest that inhibition of equilibrative nucleoside transporter1/2 and mitochondria-targeted antioxidants may be potential therapeutic approaches for lung diseases associated with sustained elevated adenosine.
Collapse
Affiliation(s)
- Junsuk Ko
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA.,MD Anderson Cancer Center and University of Texas Health Science at Houston Graduate School, Houston, TX, USA.,Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, TX, USA
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
74
|
Ooi TC, Ahmad Munawar M, Mohd Rosli NH, Abdul Malek SNA, Rosli H, Ibrahim FW, Azmi N, Haron H, Sharif R, Shahar S, Rajab NF. Neuroprotection of Tropical Fruit Juice Mixture via the Reduction of iNOS Expression and CRH Level in β-Amyloid-Induced Rats Model of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5126457. [PMID: 32382294 PMCID: PMC7180421 DOI: 10.1155/2020/5126457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 01/08/2023]
Abstract
This study aimed to determine the effects of tropical fruit juice mixture (pomegranate, white guava, and Roselle) on biochemical, behavioral, and histopathological changes of β-amyloid- (Aβ-) induced rats. Formulation 8 (F8) of tropical fruit juice mixture was chosen for this present study due to its high phenolic content and antioxidant capacity. Forty Wistar male rats were divided into five groups: dPBS (sham-operated control), dAβ (Aβ control), JPBS (F8 and PBS), JAβ (F8 and Aβ), and IBFAβ (ibuprofen and Aβ). F8 (5 ml/kg BW), and ibuprofen (10 ml/kg BW) was given orally daily for four weeks before the intracerebroventricular infusion of Aβ for two weeks. Histological analysis and neuronal count of hippocampus tissue in the Cornu Ammonis (CA1) region showed that supplementation with F8 was able to prevent Aβ-induced tissue damage and neuronal shrinkage. However, no significant difference in locomotor activity and novel object recognition (NOR) percentage was detected among different groups at day 7 and day 14 following Aβ infusion. Only effect of time differences (main effect of day) was observed at day 7 as compared to day 14, where reduction in locomotor activity and NOR percentage was observed in all groups, with F (1, 7) = 6.940, p < 0.05 and F (1, 7) = 7.152, p < 0.05, respectively. Besides, the MDA level of the JAβ group was significantly lower (p < 0.01) than that of the dPBS group. However, no significant changes in SOD activity were detected among different groups. Significant reduction in plasma CRH level (p < 0.05) and iNOS expression (p < 0.01) in the brain was detected in the JAβ group as compared to the dAβ group. Hence, our current findings suggest that the tropical fruit juice mixture (F8) has the potential to protect the rats from Aβ-induced neurotoxicity in brain hippocampus tissue possibly via its antioxidant properties and the suppression of iNOS expression and CRH production.
Collapse
Affiliation(s)
- Theng Choon Ooi
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Munirah Ahmad Munawar
- Biomedical Sciences Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Nur Hasnieza Mohd Rosli
- Biomedical Sciences Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Siti Nur Aqilah Abdul Malek
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Hanisah Rosli
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Farah Wahida Ibrahim
- Biomedical Sciences Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Norazrina Azmi
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Hasnah Haron
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Razinah Sharif
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Suzana Shahar
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
- Biomedical Sciences Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
75
|
Emokpae O, Ben-Azu B, Ajayi AM, Umukoro S. D-ribose-L-cysteine enhances memory task, attenuates oxidative stress and acetyl-cholinesterase activity in scopolamine amnesic mice. Drug Dev Res 2020; 81:620-627. [PMID: 32219881 DOI: 10.1002/ddr.21663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/29/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022]
Abstract
d-Ribose-l-cysteine (DRLC) is an analogue of cysteine that has been shown to boost cellular antioxidant capacity by enhancing intracellular biosynthesis of glutathione (GSH). Deficiency of GSH has been implicated in the pathogenesis of Alzheimer's disease (AD), a neurodegenerative disorder associated with loss of memory. Thus, the use of antioxidants to prevent or retard the progression of memory deteriorations in persons with AD has been the focus of intense investigations. This study was carried out to evaluate the effects of DRLC on memory and scopolamine-induced amnesia, acetyl-cholinesterase activity, and oxidative stress in mice. Male Swiss mice were given oral administration of saline (10 ml/kg), DRLC (25, 50, and 100 mg/kg) or donepezil (1 mg/kg) 30 min before testing for memory performance using Y-maze and object recognition models. Another set of mice were also pretreated orally with saline, DRLC (25, 50, and 100 mg/kg) or donepezil (1 mg/kg) but in combination with scopolamine (3 mg/kg, i.p.) daily for 7 days. Thirty minutes after treatment on Day 7, memory function was then evaluated. The brain levels of acetyl-cholinesterase and oxidative stress parameters were assayed. DRLC significantly (p < .05) enhanced memory performance and attenuated scopolamine-induced amnesia. Increased acetyl-cholinesterase activity and oxidative stress, as shown by decreased antioxidant substrates (glutathione and catalase) and elevated malondialdehyde contents in mice with scopolamine amnesia were also attenuated by DRLC. Our findings suggest that inhibition of oxidative stress and acetyl-cholinesterase activity might contribute to the potential benefit of DRLC in persons with amnesia.
Collapse
Affiliation(s)
- Osagie Emokpae
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, River States, Nigeria
| | - Abayomi M Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
76
|
Omidi G, Rezvani-Kamran A, Ganji A, Komaki S, Etaee F, Asadbegi M, Komaki A. Effects of Hypericum scabrum extract on dentate gyrus synaptic plasticity in high fat diet-fed rats. J Physiol Sci 2020; 70:19. [PMID: 32209056 PMCID: PMC7093352 DOI: 10.1186/s12576-020-00747-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 03/09/2020] [Indexed: 01/09/2023]
Abstract
High-fat diet (HFD) can induce deficits in neural function, oxidative stress, and decrease hippocampal neurogenesis. Hypericum (H.) scabrum extract (Ext) contains compounds that could treat neurological disorders. This study aimed to examine the neuroprotective impacts of the H. scabrum Ext on hippocampal synaptic plasticity in rats that were fed HFD. Fifty-four male Wistar rats (220 ± 10 g) were randomly arranged in six groups: (1) HFD group; (2) HFD + Ext300 group; (3) HFD + Ext100 group; (4) Control group; (5) Ext 300 mg/kg group; (6) Ext 100 mg/kg group. These protocols were administrated for 3 months. After this stage, a stimulating electrode was implanted in the perforant pathway (PP), and a bipolar recording electrode was embedded into the dentate gyrus (DG). Long-term potentiation (LTP) was provoked by high-frequency stimulation (HFS) of the PP. Field excitatory postsynaptic potentials (EPSP) and population spikes (PS) were recorded at 5, 30, and 60 min after HFS. The HFD group exhibited a large and significant decrease in their PS amplitude and EPSP slope as compared to the control and extract groups. In reverse, H. scabrum administration in the HFD + Ext rats reversed the effect of HFD on the PS amplitude and EPSP slope. The results of the study support that H. scabrum Ext can inhibit diminished synaptic plasticity caused by the HFD. These effects are probably due to the extreme antioxidant impacts of the Ext and its capability to scavenge free radicals.
Collapse
Affiliation(s)
- Ghazaleh Omidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezoo Rezvani-Kamran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Ganji
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Somayeh Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farshid Etaee
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Rahe Sabz Addiction Rehabilitation Clinic, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Asadbegi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178/518, Hamadan, Iran.
| |
Collapse
|
77
|
Optimizing the Extraction of Polysaccharides from Bletilla ochracea Schltr. Using Response Surface Methodology (RSM) and Evaluating their Antioxidant Activity. Processes (Basel) 2020. [DOI: 10.3390/pr8030341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bletilla ochracea Schltr. polysaccharides (BOP) have a similar structure to Bletilla striata (Thunb.) Reichb.f. (Orchidaceae) polysaccharides (BSP). Therefore, BOP can be considered as a substitute for BSP in the food, pharmaceuticals and cosmetics fields. To the best of our knowledge, little information is available regarding the optimization of extraction and antioxidant activity of BOP. In this study, response surface methodology (RSM) was firstly used for optimizing the extraction parameters of BOP. The results suggested that the optimal conditions included a temperature of 82 °C, a duration of 85 min and a liquid/material ratio of 30 mL/g. In these conditions, we received 26.45% ± 0.18% as the experimental yield. In addition, BOP exhibited strong concentration-dependent antioxidant abilities in vitro. The half-maximal effective concentration (EC50) values of BOP against 1,1-diphenyl-2-picrylhydrazyl (DPPH·), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonate) (ABTS+·), hydroxyl (·OH) and superoxide anion (·O2−) radicals and ferrous ions (Fe2+) were determined as 692.16, 224.09, 542.22, 600.53 and 515.70 µg/mL, respectively. In conclusion, our results indicate that BOP can be a potential natural antioxidant, deserving further investigation.
Collapse
|
78
|
Im JH, Yeo IJ, Hwang CJ, Lee KS, Hong JT. PEGylated Erythropoietin Protects against Brain Injury in the MCAO-Induced Stroke Model by Blocking NF-κB Activation. Biomol Ther (Seoul) 2020; 28:152-162. [PMID: 31813204 PMCID: PMC7059808 DOI: 10.4062/biomolther.2019.147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/12/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. During ischemic stroke, the reactive oxygen species (ROS) concentration rises to a peak during reperfusion, possibly underlying neuronal death. Recombinant human erythropoietin (EPO) supplementation is one method of treating neurodegenerative disease by reducing the generation of ROS. We investigated the therapeutic effect of PEGylated EPO (P-EPO) on ischemic stroke. Mice were administered P-EPO (5,000 U/kg) via intravenous injection, and middle cerebral artery occlusion (MCAO) followed by reperfusion was performed to induce in vivo ischemic stroke. P-EPO ameliorated MCAO-induced neurological deficit and reduced behavioral disorder and the infarct area. Moreover, lipid peroxidation, expression of inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), and cytokine levels in blood were reduced by the P-EPO treatment. In addition, higher activation of nuclear factor kappa B (NF-κB) was found in the brain after MCAO, but NF-κB activation was reduced in the P-EPO-injected group. Treatment with the NF-κB inhibitor PS-1145 (5 mg/kg) abolished the P-EPO-induced reduction of infarct volume, neuronal death, neuroinflammation, and oxidative stress. Moreover, P-EPO was more effective than EPO (5,000 U/kg) and similar to a tissue plasminogen activator (10 mg/kg). An in vitro study revealed that P-EPO (25, 50, and 100 U/mL) treatment protected against rotenone (100 nM)-induced neuronal loss, neuroinflammation, oxidative stress, and NF-κB activity. These results indicate that the administration of P-EPO exerted neuroprotective effects on cerebral ischemia damage through anti-oxidant and anti-inflammatory properties by inhibiting NF-κB activation.
Collapse
Affiliation(s)
- Jun Hyung Im
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Kyung Sun Lee
- R&D Center, Ts Corporation, Incheon 22300, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
79
|
Jang M, Kim KH, Kim GH. Antioxidant Capacity of Thistle (Cirsium japonicum) in Various Drying Methods and their Protection Effect on Neuronal PC12 Cells and Caenorhabditis elegans. Antioxidants (Basel) 2020; 9:antiox9030200. [PMID: 32121091 PMCID: PMC7139455 DOI: 10.3390/antiox9030200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was, firstly, to evaluate the phenol profile of thistle (Cirsium japonicum, CJ) by High performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS), dried by different methods (90 °C hot-air, 70 °C hot-air, shade-, and freeze-drying). Secondly, we aimed to evaluate the relationship between phenolic compounds content and antioxidant properties. CJ contained chlorogenic acid, linarin, and pectolinarin. Total phenolic contents of CJ significantly decreased under hot-air-drying condition, especially chlorogenic acid contents in CJ have been reduced by 85% and 60% for 90 °C and 70 °C hot-air-drying, respectively. We evaluated the protective effect on adrenal pheochromocytoma (PC12) cells and Caenorhabditis elegans using shade-dried CJ, which has the largest phenolic contents and the strongest antioxidant property. CJ-treated PC 12 cells dose-dependently exhibited the protective effects against reactive oxygen species (ROS), while cell viability increases, lactate dehydrogenase release decreases, and ROS formation decreases. Furthermore, CJ has also shown protection against ROS in C. elegans. Consequently, CJ contributed to lifespan extension under ROS stress without influencing the physiological growth.
Collapse
Affiliation(s)
- Miran Jang
- Department of Food Science, Purdue University, West Lafayette, IN 47906, USA; (M.J.); (K.-H.K.)
- Plant Resources Research Institute, Duksung Women’s University, Seoul 01370, Korea
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47906, USA; (M.J.); (K.-H.K.)
| | - Gun-Hee Kim
- Plant Resources Research Institute, Duksung Women’s University, Seoul 01370, Korea
- Department of Food and Nutrition, Duksung Women’s University, Seoul 01370, Korea
- Correspondence: ; Tel.: +82-2-901-8496; Fax: +82-2-901-8474
| |
Collapse
|
80
|
Niemchick KL, Riemersma C, Lasker GA. Lipophilic Antioxidants and Cognitive Function in the Elderly. Nutr Metab Insights 2020; 13:1178638820903300. [PMID: 32071542 PMCID: PMC6997958 DOI: 10.1177/1178638820903300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 12/30/2022] Open
Abstract
Objective: To determine the relationship between blood serum lipophilic antioxidant levels and cognitive function (CF) in older adults aged 60 and above guided by the oxidative stress theory of aging. Methods: Cross-sectional data from the National Health and Nutrition Examination Survey (n = 291) for older adults aged 60 and above were examined using Pearson correlation coefficient and multiple linear regression to determine whether blood serum antioxidant status predicted CF while controlling for age, sex, race, hypertension, smoking status, and body mass index. Results: Alpha-tocopherol, retinyl palmitate, trans-lycopene, and retinyl stearate were all significantly correlated with CF. After controlling for covariates, α-tocopherol and retinyl palmitate were associated with CF. Age, sex, and current smoking status were significant predictors of CF. Conclusions: The benefits of antioxidants in CF may be a part of nutritional recommendations which include α-tocopherol and retinyl palmitate for delay of CI, and subsequently a better quality of life.
Collapse
Affiliation(s)
- Karen L Niemchick
- Department of Public Health, College of Health Professions, Grand Valley State University, Grand Rapids, MI, USA
| | - Carla Riemersma
- College of Health Sciences-Public Health, Walden University, Minneapolis, MN, USA
| | - Grace A Lasker
- School of Nursing and Health Studies, University of Washington-Bothell, Bothell, WA, USA
| |
Collapse
|
81
|
Identification of two novel prenylated flavonoids in mulberry leaf and their bioactivities. Food Chem 2020; 315:126236. [PMID: 32000079 DOI: 10.1016/j.foodchem.2020.126236] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022]
Abstract
Mulberry leaf is a vegetable used in daily diet. It can bring delicious taste and multiple health benefits. However, the chemicals responsible for these health benefits remain unveiled. In this work, two novel prenylated flavonoids were isolated from mulberry leaf. Their structures were identified and named as morachalcone D and morachalcone E. The protective effects of these two compounds were investigated, against endogenous oxidative damage (oxytosis/ferroptosis) induced by glutamate and erastin in HT22 cells. The results revealed that morachalcone D was much more potent in preventing from glutamate- and erastin-induced cell death than morachalcone E. The neuroprotective effect of morachalcone D was related to the prevention of ROS production, glutathione depletion, and iron accumulation. Morachalcone D upregulated the expression of genes involved in antioxidant defense, including GPx4, CAT, SOD2, Nrf2, HMOX1 and SLC7A11. These findings indicated that morachalcone D was responsible for the health benefits of mulberry leaf, and could be a potent neuroprotective agent for use in dietary supplements and functional foods.
Collapse
|
82
|
Lin H, Qiao Y, Yang H, Li Q, Chen Y, Qu W, Liu W, Feng F, Sun H. Design and evaluation of Nrf2 activators with 1,3,4-oxa/thiadiazole core as neuro-protective agents against oxidative stress in PC-12 cells. Bioorg Med Chem Lett 2019; 30:126853. [PMID: 31859162 DOI: 10.1016/j.bmcl.2019.126853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/02/2019] [Accepted: 11/21/2019] [Indexed: 01/18/2023]
Abstract
Oxidative stress plays vital roles in virous neurodegenerative diseases including Alzheimer's disease. Activation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), the key regulator of oxidative stress, may provide a new therapeutic strategy for these diseases. Herein we synthesized and evaluated a series of 1,3,4-oxa/thiadiazole core Nrf2 activators as neuroprotective agents. The representative compound 8 exhibited cytoprotective and Nrf2 activation effects in a neuron-like PC-12 cells. Additionally, compound 8 showed good membrane permeability, indicating this compound could penetrate blood-brain barrier (BBB) to reach central nervous system (CNS) as a neuro-protective agent. These results indicated that these Nrf2 activators with 1,3,4-oxa/thiadiazole core could serve as a new chemotype against oxidative stress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Hongzhi Lin
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yuting Qiao
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Hongyu Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qi Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Wenyuan Liu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Feng Feng
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, People's Republic of China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China.
| |
Collapse
|
83
|
Meng H, Yan WY, Lei YH, Wan Z, Hou YY, Sun LK, Zhou JP. SIRT3 Regulation of Mitochondrial Quality Control in Neurodegenerative Diseases. Front Aging Neurosci 2019; 11:313. [PMID: 31780922 PMCID: PMC6861177 DOI: 10.3389/fnagi.2019.00313] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases are disorders that are characterized by a progressive decline of motor and/or cognitive functions caused by the selective degeneration and loss of neurons within the central nervous system. The most common neurodegenerative diseases are Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Neurons have high energy demands, and dysregulation of mitochondrial quality and function is an important cause of neuronal degeneration. Mitochondrial quality control plays an important role in maintaining mitochondrial integrity and ensuring normal mitochondrial function; thus, defects in mitochondrial quality control are also significant causes of neurodegenerative diseases. The mitochondrial deacetylase SIRT3 has been found to have a large effect on mitochondrial function. Recent studies have also shown that SIRT3 has a role in mitochondrial quality control, including in the refolding or degradation of misfolded/unfolded proteins, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis, all of which are affected in neurodegenerative diseases.
Collapse
Affiliation(s)
- Hao Meng
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Wan-Yu Yan
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yu-Hong Lei
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Zheng Wan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Ye-Ye Hou
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Lian-Kun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jue-Pu Zhou
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
84
|
Wang MR, Zhang XJ, Liu HC, Ma WD, Zhang ML, Zhang Y, Li X, Dou MM, Jing YL, Chu YJ, Zhu L. Matrine protects oligodendrocytes by inhibiting their apoptosis and enhancing mitochondrial autophagy. Brain Res Bull 2019; 153:30-38. [DOI: 10.1016/j.brainresbull.2019.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/03/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
|
85
|
Rao SV, Hemalatha P, Yetish S, Muralidhara M, Rajini PS. Prophylactic neuroprotective propensity of Crocin, a carotenoid against rotenone induced neurotoxicity in mice: behavioural and biochemical evidence. Metab Brain Dis 2019; 34:1341-1353. [PMID: 31214956 DOI: 10.1007/s11011-019-00451-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022]
Abstract
Previously we have demonstrated the potential neuroprotective propensity of saffron and Crocin (CR) employing a Drosophila model of Parkinsonism. Rotenone (ROT) has been extensively used as a model neurotoxin to induce Parkinson's disease (PD) like symptoms in mice. In the present study, as a proof of concept we evaluated the efficacy of CR prophylaxis (25 mg/ kg bw/d, 7d) to attenuate ROT(0.5 mg/Kg bw/d,7d) -induced neurotoxic effects in male mice focussing on neurobehavioural assessments and biochemical determinants in the striatum. CR prophylaxis significantly alleviated ROT-induced behavioural alterations such as increased anxiety, diminished exploratory behaviour, decreased motor co-ordination, and grip strength. Concomitantly, we evidenced diminution of oxidative stress markers, enhanced levels of antioxidant enzyme and mitochondrial enzyme function in the striatal region. Further, varying degree of restoration of cholinergic function, dopamine and α-synuclein levels were discernible suggesting the possible mechanism/s of action of CR in this model. Based on our earlier data in flies and in worm model, we propose its use as an adjuvant therapeutic agent in oxidative stress-mediated neurodegenerative conditions such as PD.
Collapse
Affiliation(s)
- Sriranjini Venkata Rao
- Department of Biochemistry, Mysuru, India.
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570 020, India.
| | - P Hemalatha
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570 020, India
| | - S Yetish
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570 020, India
| | | | - Padmanabhan S Rajini
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570 020, India
| |
Collapse
|
86
|
Zhou XL, Xu MB, Jin TY, Rong PQ, Zheng GQ, Lin Y. Preclinical Evidence and Possible Mechanisms of Extracts or Compounds from Cistanches for Alzheimer's Disease. Aging Dis 2019; 10:1075-1093. [PMID: 31595204 PMCID: PMC6764737 DOI: 10.14336/ad.2018.0815-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
Currently, disease-modified strategies to prevent, halt or reverse the progress of Alzheimer's disease (AD) are still lacking. Previous studies indicated extracts or compounds from Cistanches (ECC) exert a potential neuroprotective effect against AD. Thus, we conducted a preclinical systematic review to assess preclinical evidence and possible mechanisms of ECC in experimental AD. A systematical searching strategy was carried out across seven databases from their inceptions to July 2018. Twenty studies with 1696 rats or mice were involved. Neurobehavioral function indices as primary outcome measures were established by the Morris water maze test (n = 11), step-down test (n = 10), electrical Y-maze test (n = 4), step-through test (n = 3), open field test (n = 2) and passage water maze test (n = 1). Compared with controls, the results of the meta-analysis showed ECC exerted a significant effect in decreasing the escape latency, error times and wrong reaction latency in both the training test and the retention test, and in increasing the exact time and the percentage of time in the platform-quadrant and the number of platform crossings (all P<0.01). In conclusion, ECC exert potential neuroprotective effects in experimental AD, mainly through mechanisms involving antioxidant stress and antiapoptosic effects, inhibiting Aβ deposition and tau protein hyperphosphorylation and promoting synapse protection. Thus, ECC could be a candidate for AD treatment and further clinical trials.
Collapse
Affiliation(s)
- Xiao-Li Zhou
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meng-Bei Xu
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ting-Yu Jin
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pei-Qing Rong
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Lin
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
87
|
Lanzillotta C, Di Domenico F, Perluigi M, Butterfield DA. Targeting Mitochondria in Alzheimer Disease: Rationale and Perspectives. CNS Drugs 2019; 33:957-969. [PMID: 31410665 PMCID: PMC6825561 DOI: 10.1007/s40263-019-00658-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A decline in mitochondrial function plays a key role in the aging process and increases the incidence of age-related disorders, including Alzheimer disease (AD). Mitochondria-the power station of the organism-can affect several different cellular activities, including abnormal cellular energy generation, response to toxic insults, regulation of metabolism, and execution of cell death. In AD subjects, mitochondria are characterized by impaired function such as lowered oxidative phosphorylation, decreased adenosine triphosphate production, significant increased reactive oxygen species generation, and compromised antioxidant defense. The current review discusses the most relevant mitochondrial defects that are considered to play a significant role in AD and that may offer promising therapeutic targets for the treatment/prevention of AD. In addition, we discuss mechanisms of action and translational potential of some promising mitochondrial and bioenergetic therapeutics for AD including compounds able to potentiate energy production, antioxidants to scavenge reactive oxygen species and reduce oxidative damage, glucose metabolism, and candidates that target mitophagy. While mitochondrial therapeutic strategies have shown promise at the preclinical stage, there has been little progress in clinical trials. Thus, there is an urgent need to better understand the mechanisms regulating mitochondrial homeostasis in order to identify powerful drug candidates that target 'in and out' the mitochondria to preserve cognitive functions.
Collapse
Affiliation(s)
- Chiara Lanzillotta
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506-0055, USA.
| |
Collapse
|
88
|
Svab G, Doczi J, Gerencser AA, Ambrus A, Gallyas F, Sümegi B, Tretter L. The Mitochondrial Targets of Neuroprotective Drug Vinpocetine on Primary Neuron Cultures, Brain Capillary Endothelial Cells, Synaptosomes, and Brain Mitochondria. Neurochem Res 2019; 44:2435-2447. [PMID: 31535355 PMCID: PMC6776483 DOI: 10.1007/s11064-019-02871-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
Vinpocetine is considered as neuroprotectant drug and used for treatment of brain ischemia and cognitive deficiencies for decades. A number of enzymes, channels and receptors can bind vinpocetine, however the mechanisms of many effects' are still not clear. The present study investigated the effects of vinpocetine from the mitochondrial bioenergetic aspects. In primary brain capillary endothelial cells the purinergic receptor-stimulated mitochondrial Ca2+ uptake and efflux were studied. Vinpocetine exerted a partial inhibition on the mitochondrial calcium efflux. In rodent brain synaptosomes vinpocetine (30 μM) inhibited respiration in uncoupler stimulated synaptosomes and decreased H2O2 release from the nerve terminals in resting and in complex I inhibited conditions, respectively. In isolated rat brain mitochondria using either complex I or complex II substrates leak respiration was stimulated, but ADP-induced respiration was inhibited by vinpocetine. The stimulation of oxidation was associated with a small extent of membrane depolarization. Mitochondrial H2O2 production was inhibited by vinpocetine under all conditions investigated. The most pronounced effects were detected with the complex II substrate succinate. Vinpocetine also mitigated both Ca2+-induced mitochondrial Ca2+-release and Ca2+-induced mitochondrial swelling. It lowered the rate of mitochondrial ATP synthesis, while increasing ATPase activity. These results indicate more than a single mitochondrial target of this vinca alkaloid. The relevance of the affected mitochondrial mechanisms in the anti ischemic effect of vinpocetine is discussed.
Collapse
Affiliation(s)
- Gergely Svab
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary
| | - Judit Doczi
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary
| | - Akos A Gerencser
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary.,Buck Institute for Research on Aging, Novato, CA, USA
| | - Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balazs Sümegi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Tretter
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary.
| |
Collapse
|
89
|
Gulcan HO, Mavideniz A, Sahin MF, Orhan IE. Benzimidazole-derived Compounds Designed for Different Targets of Alzheimer’s Disease. Curr Med Chem 2019; 26:3260-3278. [DOI: 10.2174/0929867326666190124123208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/22/2018] [Accepted: 01/01/2019] [Indexed: 12/21/2022]
Abstract
Benzimidazole scaffold has been efficiently used for the design of various pharmacologically active molecules. Indeed, there are various benzimidazole drugs, available today, employed for the treatment of different diseases. Although there is no benzimidazole moiety containing a drug used in clinic today for the treatment of Alzheimer’s Disease (AD), there have been many benzimidazole derivative compounds designed and synthesized to act on some of the validated and non-validated targets of AD. This paper aims to review the literature to describe these benzimidazole containing molecules designed to target some of the biochemical cascades shown to be involved in the development of AD.
Collapse
Affiliation(s)
- Hayrettin Ozan Gulcan
- Eastern Mediterranean University, Faculty of Pharmacy, Division of Pharmaceutical Chemistry, Famagusta, TRNC, via Mersin 10, Turkey
| | - Açelya Mavideniz
- Eastern Mediterranean University, Faculty of Pharmacy, Division of Pharmaceutical Chemistry, Famagusta, TRNC, via Mersin 10, Turkey
| | - Mustafa Fethi Sahin
- Eastern Mediterranean University, Faculty of Pharmacy, Division of Pharmaceutical Chemistry, Famagusta, TRNC, via Mersin 10, Turkey
| | - Ilkay Erdogan Orhan
- Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, Etiler, Ankara, Turkey
| |
Collapse
|
90
|
Hemonnot AL, Hua J, Ulmann L, Hirbec H. Microglia in Alzheimer Disease: Well-Known Targets and New Opportunities. Front Aging Neurosci 2019; 11:233. [PMID: 31543810 PMCID: PMC6730262 DOI: 10.3389/fnagi.2019.00233] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022] Open
Abstract
Microglia are the resident macrophages of the central nervous system. They play key roles in brain development, and physiology during life and aging. Equipped with a variety of molecular sensors and through the various functions they can fulfill, they are critically involved in maintaining the brain’s homeostasis. In Alzheimer disease (AD), microglia reaction was initially thought to be incidental and triggered by amyloid deposits and dystrophic neurites. However, recent genome-wide association studies have established that the majority of AD risk loci are found in or near genes that are highly and sometimes uniquely expressed in microglia. This leads to the concept of microglia being critically involved in the early steps of the disease and identified them as important potential therapeutic targets. Whether microglia reaction is beneficial, detrimental or both to AD progression is still unclear and the subject of intense debate. In this review, we are presenting a state-of-knowledge report intended to highlight the variety of microglial functions and pathways shown to be critically involved in AD progression. We first address both the acquisition of new functions and the alteration of their homeostatic roles by reactive microglia. Second, we propose a summary of new important parameters currently emerging in the field that need to be considered to identify relevant microglial targets. Finally, we discuss the many obstacles in designing efficient therapeutic strategies for AD and present innovative technologies that may foster our understanding of microglia roles in the pathology. Ultimately, this work aims to fly over various microglial functions to make a general and reliable report of the current knowledge regarding microglia’s involvement in AD and of the new research opportunities in the field.
Collapse
Affiliation(s)
- Anne-Laure Hemonnot
- Institute for Functional Genomics (IGF), University of Montpellier, Centre National de la Recherche Scientififique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Jennifer Hua
- Institute for Functional Genomics (IGF), University of Montpellier, Centre National de la Recherche Scientififique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Lauriane Ulmann
- Institute for Functional Genomics (IGF), University of Montpellier, Centre National de la Recherche Scientififique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Hélène Hirbec
- Institute for Functional Genomics (IGF), University of Montpellier, Centre National de la Recherche Scientififique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| |
Collapse
|
91
|
Effects of Eugenol on Alzheimer’s Disease-like Manifestations in Insulin- and Aβ-Induced Rat Models. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09801-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
92
|
Affiliation(s)
- Arthur Liesz
- Institute for Stroke and Dementia Research, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
93
|
Singh SK, Srivastav S, Castellani RJ, Plascencia-Villa G, Perry G. Neuroprotective and Antioxidant Effect of Ginkgo biloba Extract Against AD and Other Neurological Disorders. Neurotherapeutics 2019; 16:666-674. [PMID: 31376068 PMCID: PMC6694352 DOI: 10.1007/s13311-019-00767-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most common progressive human neurodegenerative disorder affecting elderly population worldwide. Hence, prevention of AD has been a priority of AD research worldwide. Based on understanding of disease mechanism, different therapeutic strategies involving synthetic and herbal approaches are being used against AD. Among the herbal extract, Ginkgo biloba extract (GBE) is one of the most investigated herbal remedy for cognitive disorders and Alzheimer's disease (AD). Standardized extract of Ginkgo biloba is a popular dietary supplement taken by the elderly population to improve memory and age-related loss of cognitive function. Nevertheless, its efficacy in the prevention and treatment of dementia remains controversial. Specifically, the added effects of GBE in subjects already receiving "conventional" anti-dementia treatments have been to date very scarcely investigated. This review summarizes recent advancements in our understanding of the potential use of Ginkgo biloba extract in the prevention of AD including its antioxidant property. A better understanding of the mechanisms of action of GBE against AD will be important for designing therapeutic strategies, for basic understanding of the underlying neurodegenerative processes, and for a better understanding of the effectiveness and complexity of this herbal medicine.
Collapse
Affiliation(s)
- Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow, 226002, India.
| | - Saurabh Srivastav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | - George Perry
- College of Sciences, The University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
94
|
Ayaz M, Sadiq A, Junaid M, Ullah F, Ovais M, Ullah I, Ahmed J, Shahid M. Flavonoids as Prospective Neuroprotectants and Their Therapeutic Propensity in Aging Associated Neurological Disorders. Front Aging Neurosci 2019; 11:155. [PMID: 31293414 PMCID: PMC6606780 DOI: 10.3389/fnagi.2019.00155] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/11/2019] [Indexed: 01/13/2023] Open
Abstract
Modern research has revealed that dietary consumption of flavonoids and flavonoids-rich foods significantly improve cognitive capabilities, inhibit or delay the senescence process and related neurodegenerative disorders including Alzheimer’s disease (AD). The flavonoids rich foods such as green tea, cocoa, blue berry and other foods improve the various states of cognitive dysfunction, AD and dementia-like pathological alterations in different animal models. The mechanisms of flavonoids have been shown to be mediated through the inhibition of cholinesterases including acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), β-secretase (BACE1), free radicals and modulation of signaling pathways, that are implicated in cognitive and neuroprotective functions. Flavonoids interact with various signaling protein pathways like ERK and PI3-kinase/Akt and modulate their actions, thereby leading to beneficial neuroprotective effects. Moreover, they enhance vascular blood flow and instigate neurogenesis particularly in the hippocampus. Flavonoids also hamper the progression of pathological symptoms of neurodegenerative diseases by inhibiting neuronal apoptosis induced by neurotoxic substances including free radicals and β-amyloid proteins (Aβ). All these protective mechanisms contribute to the maintenance of number, quality of neurons and their synaptic connectivity in the brain. Thus flavonoids can thwart the progression of age-related disorders and can be a potential source for the design and development of new drugs effective in cognitive disorders.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Junaid
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan.,Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Ovais
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Ikram Ullah
- Suliman Bin Abdullah Aba-Alkhail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Jawad Ahmed
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology (SUIT), Peshawar, Pakistan
| |
Collapse
|
95
|
Kam MK, Lee DG, Kim B, Lee HS, Lee SR, Bae YC, Lee DS. Peroxiredoxin 4 ameliorates amyloid beta oligomer-mediated apoptosis by inhibiting ER-stress in HT-22 hippocampal neuron cells. Cell Biol Toxicol 2019; 35:573-588. [PMID: 31147869 DOI: 10.1007/s10565-019-09477-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder caused by amyloid beta oligomers (AβO), which induce cell death by triggering oxidative stress and endoplasmic reticulum (ER) stress. Oxidative stress is regulated by antioxidant enzymes, including peroxiredoxins. Peroxiredoxins (Prx) are classified into six subtypes, based on their localization and cysteine residues, and protect cells by scavenging hydrogen peroxide (H2O2). Peroxiredoxin 4 (Prx4) is unique in being localized to the ER; however, whether Prx4 protects neuronal cells from AβO-induced toxicity remains unclear, although Prx4 expression is upregulated in AβO-induced oxidative stress and ER stress. In this study, we established HT-22 cells in which Prx4 was either overexpressed or silenced to investigate its role in AβO-induced toxicity. AβO-stimulation of HT-22 cells with overexpressed Prx4 caused decreases in both AβO-induced ROS and ER stress (followed by ER expansion). In contrast, AβO stimulation caused increases in both ROS and ER stress that were notably higher in HT-22 cells with silenced Prx4 expression than in HT-22 cells. Consequently, Prx4 overexpression decreased apoptotic cell death and ameliorated the AβO-induced increase in intracellular Ca2+. Therefore, we conclude that Prx4 has a protective effect against AβO-mediated oxidative stress, ER stress, and neuronal cell death. Furthermore, these results suggest that Prx4 may be a target for preventing AβO toxicity in AD. Graphical abstract .
Collapse
Affiliation(s)
- Min Kyoung Kam
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Gil Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Bokyung Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children/UC Davis School of Medicine, Sacramento, CA, 95817, USA.,Department of Neurology, School of Medicine, UC Davis, Davis, CA, 95817, USA
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheonbuk-do, Republic of Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
96
|
Hernández Espinosa DR, Barrera Morín V, Briz Tena O, González Herrera EA, Laguna Maldonado KD, Jardinez Díaz AS, Sánchez Olivares M, Matuz Mares D. El papel de las especies reactivas de oxígeno y nitrógeno en algunas enfermedades neurodegenerativas. REVISTA DE LA FACULTAD DE MEDICINA 2019. [DOI: 10.22201/fm.24484865e.2019.62.3.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Se analiza el importante papel de las especies reactivas de las moléculas de oxígeno y nitrógeno generadas a partir del metabolismo celular fisiológico en los procesos neurodegenerativos con el fin de tener indicios sólidos sobre los posibles tratamientos y prevenir el daño progresivo de enfermedades neurodegenerativas.
Collapse
Affiliation(s)
| | - Vanessa Barrera Morín
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina, Departamento de Bioquímica. Ciudad de México, México
| | - Oliva Briz Tena
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina, Departamento de Bioquímica. Ciudad de México, México
| | - Esli Abril González Herrera
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina, Departamento de Bioquímica. Ciudad de México, México
| | - Kevin David Laguna Maldonado
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina, Departamento de Bioquímica. Ciudad de México, México
| | - Alicia Sofía Jardinez Díaz
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina, Departamento de Bioquímica. Ciudad de México, México
| | - Mijaíl Sánchez Olivares
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina, Departamento de Bioquímica. Ciudad de México, México
| | - Deyamira Matuz Mares
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina, Departamento de Bioquímica. Ciudad de México, México
| |
Collapse
|
97
|
Fine-tuning the neuroprotective and blood-brain barrier permeability profile of multi-target agents designed to prevent progressive mitochondrial dysfunction. Eur J Med Chem 2019; 167:525-545. [DOI: 10.1016/j.ejmech.2019.01.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
|
98
|
Choi J, Kwon HJ, Lee JE, Lee Y, Seoh JY, Han PL. Hyperoxygenation revitalizes Alzheimer's disease pathology through the upregulation of neurotrophic factors. Aging Cell 2019; 18:e12888. [PMID: 30746828 PMCID: PMC6413661 DOI: 10.1111/acel.12888] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/28/2018] [Accepted: 11/18/2018] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by Aβ‐induced pathology and progressive cognitive decline. The incidence of AD is growing globally, yet a prompt and effective remedy is not available. Aging is the greatest risk factor for AD. Brain aging proceeds with reduced vascularization, which can cause low oxygen (O2) availability. Accordingly, the question may be raised whether O2 availability in the brain affects AD pathology. We found that Tg‐APP/PS1 mice treated with 100% O2 at increased atmospheric pressure in a chamber exhibited markedly reduced Aβ accumulation and hippocampal neuritic atrophy, increased hippocampal neurogenesis, and profoundly improved the cognitive deficits on the multiple behavioral test paradigms. Hyperoxygenation treatment increased the expression of BDNF, NT3, and NT4/5 through the upregulation of MeCP2/p‐CREB activity in HT22 cells in vitro and in the hippocampus of mice. In contrast, siRNA‐mediated inhibition of MeCP2 or TrkB neurotrophin receptors in the hippocampal subregion, which suppresses neurotrophin expression and neurotrophin action, respectively, blocked the therapeutic effects of hyperoxygenation on the cognitive impairments of Tg‐APP/PS1 mice. Our results highlight the importance of the O2‐related mechanisms in AD pathology, which can be revitalized by hyperoxygenation treatment, and the therapeutic potential of hyperoxygenation for AD.
Collapse
Affiliation(s)
- Juli Choi
- Department of Brain and Cognitive Sciences; Ewha Womans University; Seoul Korea
| | - Hye-Jin Kwon
- Department of Brain and Cognitive Sciences; Ewha Womans University; Seoul Korea
| | - Jung-Eun Lee
- Department of Brain and Cognitive Sciences; Ewha Womans University; Seoul Korea
| | - Yunjin Lee
- Department of Brain and Cognitive Sciences; Ewha Womans University; Seoul Korea
| | - Ju-Young Seoh
- Department of Microbiology, College of Medicine; Ewha Womans University; Seoul Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences; Ewha Womans University; Seoul Korea
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul Korea
| |
Collapse
|
99
|
Xu J, Yu X, Zhang Y, Liu N, Guan S, Wang L. Extending Lifespan of Alzheimer’s Mode Nematode CL4176 Using a Novel Bifunctional Peptide with Inhibition of β-Amyloid Aggregation and Anti-oxidation. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
100
|
Kam A, Loo S, Dutta B, Sze SK, Tam JP. Plant-derived mitochondria-targeting cysteine-rich peptide modulates cellular bioenergetics. J Biol Chem 2019; 294:4000-4011. [PMID: 30674551 PMCID: PMC6422099 DOI: 10.1074/jbc.ra118.006693] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are attractive therapeutic targets for developing agents to delay age-related frailty and diseases. However, few promising leads have been identified from natural products. Previously, we identified roseltide rT1, a hyperstable 27-residue cysteine-rich peptide from Hibiscus sabdariffa, as a knottin-type neutrophil elastase inhibitor. Here, we show that roseltide rT1 is also a cell-penetrating, mitochondria-targeting peptide that increases ATP production. Results from flow cytometry, live-cell imaging, pulldown assays, and genetically-modified cell lines supported that roseltide rT1 enters cells via glycosaminoglycan-dependent endocytosis, and enters the mitochondria through TOM20, a mitochondrial protein import receptor. We further showed that roseltide rT1 increases cellular ATP production via mitochondrial membrane hyperpolarization. Using biotinylated roseltide rT1 for target identification and proteomic analysis, we showed that human mitochondrial membrane ATP synthase subunit O is an intramitochondrial target. Collectively, these data support our discovery that roseltide rT1 is a first-in-class mitochondria-targeting, cysteine-rich peptide with potentials to be developed into tools to further our understanding of mitochrondria-related diseases.
Collapse
Affiliation(s)
- Antony Kam
- From the School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Shining Loo
- From the School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Bamaprasad Dutta
- From the School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Siu Kwan Sze
- From the School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - James P Tam
- From the School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| |
Collapse
|