51
|
Papa EV, Dong X, Hassan M. Skeletal Muscle Function Deficits in the Elderly: Current Perspectives on Resistance Training. JOURNAL OF NATURE AND SCIENCE 2017; 3:e272. [PMID: 28191501 PMCID: PMC5303008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A variety of changes in skeletal muscle occur with aging. Sarcopenia is the age-associated loss of muscle mass and is one of the main contributors to musculoskeletal impairments in the elderly. Traditional definitions of sarcopenia focused on the size of human skeletal muscle. However, increasing evidence in older adults suggests that low muscle mass is associated with weakness, and weakness is strongly associated with function and disability. In recent years a global trend has shifted toward more encompassing definitions for the loss of muscle mass which include decreases in physical function. This review focuses on skeletal muscle function deficits in the elderly and how these age-associated deficits can be ameliorated by resistance training. We set forth evidence that skeletal muscle deficits arise from changes within the muscle, including reduced fiber size, decreased satellite cell and fiber numbers, and decreased expression of myosin heavy chain (MHC) isoform IIa. Finally, we provide recommendations for clinical geriatric practice regarding how resistance training can attenuate the increase in age-associated skeletal muscle function deficits. Practitioners should consider encouraging patients who are reluctant to exercise to move along a continuum of activity between "no acticity" on one end and "recommended daily amounts" on the other.
Collapse
Affiliation(s)
- Evan V. Papa
- Department of Physical Therapy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Xiaoyang Dong
- Department of Physical Therapy, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University; Nanchang, Jiangxi Province, China
| | - Mahdi Hassan
- Department of Physical Therapy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
52
|
Done AJ, Traustadóttir T. Nrf2 mediates redox adaptations to exercise. Redox Biol 2016; 10:191-199. [PMID: 27770706 PMCID: PMC5078682 DOI: 10.1016/j.redox.2016.10.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022] Open
Abstract
The primary aim of this review is to summarize the current literature on the effects of acute exercise and regular exercise on nuclear factor erythroid 2-related factor 2 (Nrf2) activity and downstream targets of Nrf2 signaling. Nrf2 (encoded in humans by the NFE2L2 gene) is the master regulator of antioxidant defenses, a transcription factor that regulates expression of more than 200 cytoprotective genes. Increasing evidence indicates that Nrf2 signaling plays a key role in how oxidative stress mediates the beneficial effects of exercise. Episodic increases in oxidative stress induced through bouts of acute exercise stimulate Nrf2 activation and when applied repeatedly, as with regular exercise, leads to upregulation of endogenous antioxidant defenses and overall greater ability to counteract the damaging effects of oxidative stress. The evidence of Nrf2 activation in response to exercise across variety of tissues may be an important mechanism of how exercise exerts its well-known systemic effects that are not limited to skeletal muscle and myocardium. Additionally there are emerging data that results from animal studies translate to humans.
Collapse
Affiliation(s)
- Aaron J Done
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Tinna Traustadóttir
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
53
|
Wende AR, Young ME, Chatham J, Zhang J, Rajasekaran NS, Darley-Usmar VM. Redox biology and the interface between bioenergetics, autophagy and circadian control of metabolism. Free Radic Biol Med 2016; 100:94-107. [PMID: 27242268 PMCID: PMC5124549 DOI: 10.1016/j.freeradbiomed.2016.05.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/01/2022]
Abstract
Understanding molecular mechanisms that underlie the recent emergence of metabolic diseases such as diabetes and heart failure has revealed the need for a multi-disciplinary research integrating the key metabolic pathways which change the susceptibility to environmental or pathologic stress. At the physiological level these include the circadian control of metabolism which aligns metabolism with temporal demand. The mitochondria play an important role in integrating the redox signals and metabolic flux in response to the changing activities associated with chronobiology, exercise and diet. At the molecular level this involves dynamic post-translational modifications regulating transcription, metabolism and autophagy. In this review we will discuss different examples of mechanisms which link these processes together. An important pathway capable of linking signaling to metabolism is the post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc). This is a nutrient regulated protein modification that plays an important role in impaired cellular stress responses. Circadian clocks have also emerged as critical regulators of numerous cardiometabolic processes, including glucose/lipid homeostasis, hormone secretion, redox status and cardiovascular function. Central to these pathways are the response of autophagy, bioenergetics to oxidative stress, regulated by Keap1/Nrf2 and mechanisms of metabolic control. The extension of these ideas to the emerging concept of bioenergetic health will be discussed.
Collapse
Affiliation(s)
- Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John Chatham
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namakkal S Rajasekaran
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
54
|
Hunter SK, Pereira HM, Keenan KG. The aging neuromuscular system and motor performance. J Appl Physiol (1985) 2016; 121:982-995. [PMID: 27516536 PMCID: PMC5142309 DOI: 10.1152/japplphysiol.00475.2016] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022] Open
Abstract
Age-related changes in the basic functional unit of the neuromuscular system, the motor unit, and its neural inputs have a profound effect on motor function, especially among the expanding number of old (older than ∼60 yr) and very old (older than ∼80 yr) adults. This review presents evidence that age-related changes in motor unit morphology and properties lead to impaired motor performance that includes 1) reduced maximal strength and power, slower contractile velocity, and increased fatigability; and 2) increased variability during and between motor tasks, including decreased force steadiness and increased variability of contraction velocity and torque over repeat contractions. The age-related increase in variability of motor performance with aging appears to involve reduced and more variable synaptic inputs that drive motor neuron activation, fewer and larger motor units, less stable neuromuscular junctions, lower and more variable motor unit action potential discharge rates, and smaller and slower skeletal muscle fibers that coexpress different myosin heavy chain isoforms in the muscle of older adults. Physical activity may modify motor unit properties and function in old men and women, although the effects on variability of motor performance are largely unknown. Many studies are of cross-sectional design, so there is a tremendous opportunity to perform high-impact and longitudinal studies along the continuum of aging that determine 1) the influence and cause of the increased variability with aging on functional performance tasks, and 2) whether lifestyle factors such as physical exercise can minimize this age-related variability in motor performance in the rapidly expanding numbers of very old adults.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin; and
| | - Hugo M Pereira
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin; and
| | - Kevin G Keenan
- Department of Kinesiology, College of Health Sciences, University of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
55
|
Ren YY, Koch LG, Britton SL, Qi NR, Treutelaar MK, Burant CF, Li JZ. Selection-, age-, and exercise-dependence of skeletal muscle gene expression patterns in a rat model of metabolic fitness. Physiol Genomics 2016; 48:816-825. [PMID: 27637250 DOI: 10.1152/physiolgenomics.00118.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 09/09/2016] [Indexed: 11/22/2022] Open
Abstract
Intrinsic aerobic exercise capacity can influence many complex traits including obesity and aging. To study this connection we established two rat lines by divergent selection of untrained aerobic capacity. After 32 generations the high capacity runners (HCR) and low capacity runners (LCR) differed in endurance running distance and body fat, blood glucose, other health indicators, and natural life span. To understand the interplay among genetic differences, chronological age, and acute exercise we performed microarray-based gene expression analyses in skeletal muscle with a 2×2×2 design to simultaneously compare HCR and LCR, old and young animals, and rest and exhaustion. Transcripts for mitochondrial function are expressed higher in HCRs than LCRs at both rest and exhaustion and for both age groups. Expression of cell adhesion and extracellular matrix genes tend to decrease with age. This and other age effects are more prominent in LCRs than HCRs, suggesting that HCRs have a slower aging process and this may be partly due to their better metabolic health. Strenuous exercise mainly affects transcription regulation and cellular response. The effects of any one factor often depend on the other two. For example, there are ∼140 and ∼110 line-exercise "interacting" genes for old and young animals, respectively. Many genes highlighted in our study are consistent with prior reports, but many others are novel. The gene- and pathway-level statistics for the main effects, either overall or stratified, and for all possible interactions, represent a rich reference dataset for understanding the interdependence among lines, aging, and exercise.
Collapse
Affiliation(s)
- Yu-Yu Ren
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan; and
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan; and
| | - Nathan R Qi
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Mary K Treutelaar
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan;
| |
Collapse
|
56
|
Merry TL, Ristow M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol 2016; 594:5135-47. [PMID: 26638792 PMCID: PMC5023714 DOI: 10.1113/jp270654] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022] Open
Abstract
A popular belief is that reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced during exercise by the mitochondria and other subcellular compartments ubiquitously cause skeletal muscle damage, fatigue and impair recovery. However, the importance of ROS and RNS as signals in the cellular adaptation process to stress is now evident. In an effort to combat the perceived deleterious effects of ROS and RNS it has become common practice for active individuals to ingest supplements with antioxidant properties, but interfering with ROS/RNS signalling in skeletal muscle during acute exercise may blunt favourable adaptation. There is building evidence that antioxidant supplementation can attenuate endurance training-induced and ROS/RNS-mediated enhancements in antioxidant capacity, mitochondrial biogenesis, cellular defence mechanisms and insulin sensitivity. However, this is not a universal finding, potentially indicating that there is redundancy in the mechanisms controlling skeletal muscle adaptation to exercise, meaning that in some circumstances the negative impact of antioxidants on acute exercise response can be overcome by training. Antioxidant supplementation has been more consistently reported to have deleterious effects on the response to overload stress and high-intensity training, suggesting that remodelling of skeletal muscle following resistance and high-intensity exercise is more dependent on ROS/RNS signalling. Importantly there is no convincing evidence to suggest that antioxidant supplementation enhances exercise-training adaptions. Overall, ROS/RNS are likely to exhibit a non-linear (hormetic) pattern on exercise adaptations, where physiological doses are beneficial and high exposure (which would seldom be achieved during normal exercise training) may be detrimental.
Collapse
Affiliation(s)
- Troy L Merry
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH), 8603, Zurich, Switzerland.
| | - Michael Ristow
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH), 8603, Zurich, Switzerland
| |
Collapse
|
57
|
Crilly MJ, Tryon LD, Erlich AT, Hood DA. The role of Nrf2 in skeletal muscle contractile and mitochondrial function. J Appl Physiol (1985) 2016; 121:730-40. [PMID: 27471236 PMCID: PMC5142253 DOI: 10.1152/japplphysiol.00042.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/20/2016] [Indexed: 01/08/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that confers cellular protection by upregulating antioxidant enzymes in response to oxidative stress. However, Nrf2 function within skeletal muscle remains to be further elucidated. We examined the role of Nrf2 in determining muscle phenotype using young (3 mo) and older (12 mo) Nrf2 wild-type (WT) and knockout (KO) mice. Basally, the absence of Nrf2 did not impact mitochondrial content. In intermyofibrillar mitochondria, lack of Nrf2 resulted in a 40% reduction in state 4 respiration, which coincided with a 68% increase in reactive oxygen species (ROS) emission. Nrf2 abrogation impaired in situ muscle performance, characterized by a 48% greater rate of fatigue and a 35% decrease in force within the first 5 min of stimulation. Acute treadmill exercise resulted in a 1.5-fold increase in Nrf2 activation via enhanced DNA binding in WT animals. In response to training, cytochrome-c oxidase activity increased by 20% in the WT animals; however, this response was attenuated in KO mice. Nrf2 protein was reduced 30% by training. Despite this, exercise training normalized respiration, ROS production, and muscle performance in KO mice. Our results suggest that Nrf2 transcriptional activity is increased by exercise and that Nrf2 is required for the maintenance of basal mitochondrial function as well as for the normal increase in specific mitochondrial proteins in response to training. Nonetheless, the decrements in mitochondrial function in Nrf2 KO muscle can be rescued by exercise training, suggesting that this restorative function operates via a pathway independent of Nrf2.
Collapse
Affiliation(s)
- Matthew J Crilly
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Liam D Tryon
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Avigail T Erlich
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - David A Hood
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
58
|
Done AJ, Gage MJ, Nieto NC, Traustadóttir T. Exercise-induced Nrf2-signaling is impaired in aging. Free Radic Biol Med 2016; 96:130-8. [PMID: 27109910 DOI: 10.1016/j.freeradbiomed.2016.04.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 01/03/2023]
Abstract
PURPOSE The transcription factor nuclear erythroid-2 like factor-2 (Nrf2) is the master regulator of antioxidant defense. Data from animal studies suggest exercise elicits significant increases in Nrf2 signaling, and that signaling is impaired with aging resulting in decreased induction of phase II detoxifying enzymes and greater susceptibility to oxidative damage. We have previously shown that older adults have lower resistance to an oxidative challenge as compared to young, and that this response is modified with physical fitness and phytonutrient intervention. We hypothesized that a single bout of submaximal exercise would elicit increased nuclear accumulation of Nrf2, and that this response to exercise would be attenuated with aging. METHODS Nrf2 signaling in response to 30-min cycling at 70% VO2max was compared in young (23±1y, n=10) and older (63±1, n=10) men. Blood was collected at six time points; pre-exercise, and 10min, 30min, 1h, 4h, and 24h post-exercise. Nrf2 signaling was determined in peripheral blood mononuclear cells by measuring protein expression by western blot of Nrf2 in whole cell and nuclear fractions, and whole cell SOD1, and HMOX, as well as gene expression (RT-PCR) of downstream Nrf2-ARE antioxidants SOD1, HMOX, and NQO1. RESULTS Baseline differences in protein expression did not differ between groups. The exercise trial elicited significant increase in whole cell Nrf2 (P=0.003) for both young and older groups. Nuclear Nrf2 levels were increased significantly in the young but not older group (P=0.031). Exercise elicited significant increases in gene expression of HMOX1 and NQO1 in the young (P=0.006, and P=0.055, respectively) whereas gene expression in the older adults was repressed. There were no significant differences in SOD1 or HMOX1 protein expression. CONCLUSION These findings indicate a single session of submaximal aerobic exercise is sufficient to activate Nrf2 at the whole cell level in both young and older adults, but that nuclear import is impaired with aging. Additionally we have shown repressed gene expression of downstream antioxidant targets of Nrf2 in older adults. Together these translational data demonstrate for the first time the attenuation of Nrf2 activity in response to exercise in older adults.
Collapse
Affiliation(s)
- Aaron J Done
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| | - Matthew J Gage
- Department of Chemistry, University of Massachusetts, Lowell, United States
| | - Nathan C Nieto
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| | - Tinna Traustadóttir
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States.
| |
Collapse
|
59
|
Narasimhan M, Rajasekaran NS. Exercise, Nrf2 and Antioxidant Signaling in Cardiac Aging. Front Physiol 2016; 7:241. [PMID: 27378947 PMCID: PMC4911351 DOI: 10.3389/fphys.2016.00241] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/03/2016] [Indexed: 12/16/2022] Open
Abstract
Aging is represented by a progressive decline in cellular functions. The age-related deformities in cardiac behaviors are the loss of cardiac myocytes through apoptosis or programmed cell death. Oxidative stress (OS) and its deleterious consequence contribute to age-related mechanical remodeling, reduced regenerative capacity, and apoptosis in cardiac tissue. The pathogenesis of OS in the elderly can predispose the heart to other cardiac complications such as atherosclerosis, hypertension, ischemic heart disease, cardiac myopathy, and so on. At the molecular level, oxidant-induced activation of Nrf2 (Nuclear erythroid-2-p45-related factor-2), a transcription factor, regulates several genes containing AREs (Antioxidant Response Element) and bring the respective translates to counteract the reactive radicals and establish homeostasis. Myriad of Nrf2 gene knockout studies in various organs such as lung, liver, kidney, brain, etc. have shown that dysregulation of Nrf2 severely affects the oxidant/ROS sensitivity and predispose the system to several pathological changes with aberrant cellular lesions. On the other hand, its gain of function chemical interventions exhibited oxidant stress resistance and cytoprotection. However, thus far, only a few investigations have shown the potential role of Nrf2 and its non-pharmacological induction in cardiac aging. Therefore, here we review the involvement of Nrf2 signaling along with its responses and ramifications on the cascade of OS under acute exercise stress (AES), moderate exercise training (MET), and endurance exercise stress (EES) conditions in the aging heart.
Collapse
Affiliation(s)
- Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Namakkal S Rajasekaran
- Cardiac Aging and Redox Signaling Laboratory, Center for Free Radical Biology, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at BirminghamBirmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of MedicineSalt Lake City, UT, USA; Department of Exercise Physiology, College of Health, University of Utah School of MedicineSalt Lake City, UT, USA
| |
Collapse
|
60
|
Ariza J, González-Reyes JA, Jódar L, Díaz-Ruiz A, de Cabo R, Villalba JM. Mitochondrial permeabilization without caspase activation mediates the increase of basal apoptosis in cells lacking Nrf2. Free Radic Biol Med 2016; 95:82-95. [PMID: 27016073 PMCID: PMC4906443 DOI: 10.1016/j.freeradbiomed.2016.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/09/2016] [Accepted: 03/18/2016] [Indexed: 12/27/2022]
Abstract
Nuclear factor E2-related factor-2 (Nrf2) is a cap'n'collar/basic leucine zipper (b-ZIP) transcription factor which acts as sensor of oxidative and electrophilic stress. Low levels of Nrf2 predispose cells to chemical carcinogenesis but a dark side of Nrf2 function also exists because its unrestrained activation may allow the survival of potentially dangerous damaged cells. Since Nrf2 inhibition may be of therapeutic interest in cancer, and a decrease of Nrf2 activity may be related with degenerative changes associated with aging, it is important to investigate how the lack of Nrf2 function activates molecular mechanisms mediating cell death. Murine Embryonic Fibroblasts (MEFs) bearing a Nrf2 deletion (Nrf2KO) displayed diminished cellular growth rate and shortened lifespan compared with wild-type MEFs. Basal rates of DNA fragmentation and histone H2A.X phosphorylation were higher in Nrf2KO MEFs, although steady-state levels of reactive oxygen species were not significantly increased. Enhanced rates of apoptotic DNA fragmentation were confirmed in liver and lung tissues from Nrf2KO mice. Apoptosis in Nrf2KO MEFs was associated with a decrease of Bcl-2 but not Bax levels, and with the release of the mitochondrial pro-apoptotic factors cytochrome c and AIF. Procaspase-9 and Apaf-1 were also increased in Nrf2KO MEFs but caspase-3 was not activated. Inhibition of XIAP increased death in Nrf2KO but not in wild-type MEFs. Mitochondrial ultrastructure was also altered in Nrf2KO MEFs. Our results support that Nrf2 deletion produces mitochondrial dysfunction associated with mitochondrial permeabilization, increasing basal apoptosis through a caspase-independent and AIF-dependent pathway.
Collapse
Affiliation(s)
- Julia Ariza
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Laura Jódar
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Alberto Díaz-Ruiz
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| |
Collapse
|
61
|
Merry TL, Ristow M. Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice. J Physiol 2016; 594:5195-207. [PMID: 27094017 DOI: 10.1113/jp271957] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Reactive oxygen species (ROS) and nitric oxide (NO) regulate exercise-induced nuclear factor erythroid 2-related factor 2 (NFE2L2) expression in skeletal muscle. NFE2L2 is required for acute exercise-induced increases in skeletal muscle mitochondrial biogenesis genes, such as nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A, and anti-oxidant genes, such as superoxide dismutase (SOD)1, SOD2 and catalase. Following exercise training mice with impaired NFE2L2 expression have reduced exercise performance, energy expenditure, mitochondrial volume and anti-oxidant activity. In muscle cells, ROS and NO can regulate mitochondrial biogenesis via a NFE2L2/NRF-1-dependent pathway. ABSTRACT Regular exercise induces adaptations to skeletal muscle, which can include mitochondrial biogenesis and enhanced anti-oxidant reserves. These adaptations and others are at least partly responsible for the improved health of physically active individuals. Reactive oxygen species (ROS) and nitric oxide (NO) are produced during exercise and may mediate the adaptive response to exercise in skeletal muscle. However, the mechanisms through which they act are unclear. In the present study, we aimed to determine the role of the redox-sensitive transcription factor nuclear factor erythroid-derived 2-like 2 (NFE2L2) in acute exercise- and training-induced mitochondrial biogenesis and the anti-oxidant response. We report that ROS and NO regulate acute exercise-induced expression of NFE2L2 in mouse skeletal muscle and muscle cells, and that deficiency in NFE2L2 prevents normal acute treadmill exercise-induced increases in mRNA of the mitochondrial biogenesis markers, nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (mtTFA), and the anti-oxidants superoxide dismutase (SOD) 1 and 2, as well as catalase, in mouse gastrocnemius muscle. Furthermore, after 5 weeks of treadmill exercise training, mice deficient in NFE2L2 had reduced exercise capacity and whole body energy expenditure, as well as skeletal muscle mitochondrial mass and SOD activity, compared to wild-type littermates. In C2C12 myoblasts, acute treatment with exogenous H2 O2 (ROS)- and diethylenetriamine/NO adduct (NO donor) induced increases in mtTFA, which was prevented by small interfering RNA and short hairpin RNA knockdown of either NFE2L2 or NRF-1. Our results suggest that, during exercise, ROS and NO can act via NFE2L2 to functionally regulate skeletal muscle mitochondrial biogenesis and anti-oxidant defence gene expression.
Collapse
Affiliation(s)
- Troy L Merry
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland. .,Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.
| | - Michael Ristow
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
62
|
Goljanek-Whysall K, Iwanejko LA, Vasilaki A, Pekovic-Vaughan V, McDonagh B. Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression. Mamm Genome 2016; 27:341-57. [PMID: 27215643 PMCID: PMC4935741 DOI: 10.1007/s00335-016-9643-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/05/2016] [Indexed: 12/17/2022]
Abstract
Ageing is associated with a progressive loss of skeletal muscle mass, quality and function—sarcopenia, associated with reduced independence and quality of life in older generations. A better understanding of the mechanisms, both genetic and epigenetic, underlying this process would help develop therapeutic interventions to prevent, slow down or reverse muscle wasting associated with ageing. Currently, exercise is the only known effective intervention to delay the progression of sarcopenia. The cellular responses that occur in muscle fibres following exercise provide valuable clues to the molecular mechanisms regulating muscle homoeostasis and potentially the progression of sarcopenia. Redox signalling, as a result of endogenous generation of ROS/RNS in response to muscle contractions, has been identified as a crucial regulator for the adaptive responses to exercise, highlighting the redox environment as a potentially core therapeutic approach to maintain muscle homoeostasis during ageing. Further novel and attractive candidates include the manipulation of microRNA expression. MicroRNAs are potent gene regulators involved in the control of healthy and disease-associated biological processes and their therapeutic potential has been researched in the context of various disorders, including ageing-associated muscle wasting. Finally, we discuss the impact of the circadian clock on the regulation of gene expression in skeletal muscle and whether disruption of the peripheral muscle clock affects sarcopenia and altered responses to exercise. Interventions that include modifying altered redox signalling with age and incorporating genetic mechanisms such as circadian- and microRNA-based gene regulation, may offer potential effective treatments against age-associated sarcopenia.
Collapse
Affiliation(s)
- Katarzyna Goljanek-Whysall
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK.
| | - Lesley A Iwanejko
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK
| | - Aphrodite Vasilaki
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK
| | - Vanja Pekovic-Vaughan
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK
| | - Brian McDonagh
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK.
| |
Collapse
|
63
|
Tessier SN, Storey KB. Lessons from mammalian hibernators: molecular insights into striated muscle plasticity and remodeling. Biomol Concepts 2016; 7:69-92. [DOI: 10.1515/bmc-2015-0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/21/2016] [Indexed: 12/19/2022] Open
Abstract
AbstractStriated muscle shows an amazing ability to adapt its structural apparatus based on contractile activity, loading conditions, fuel supply, or environmental factors. Studies with mammalian hibernators have identified a variety of molecular pathways which are strategically regulated and allow animals to endure multiple stresses associated with the hibernating season. Of particular interest is the observation that hibernators show little skeletal muscle atrophy despite the profound metabolic rate depression and mechanical unloading that they experience during long weeks of torpor. Additionally, the cardiac muscle of hibernators must adjust to low temperature and reduced perfusion, while the strength of contraction increases in order to pump cold, viscous blood. Consequently, hibernators hold a wealth of knowledge as it pertains to understanding the natural capacity of myocytes to alter structural, contractile and metabolic properties in response to environmental stimuli. The present review outlines the molecular and biochemical mechanisms which play a role in muscular atrophy, hypertrophy, and remodeling. In this capacity, four main networks are highlighted: (1) antioxidant defenses, (2) the regulation of structural, contractile and metabolic proteins, (3) ubiquitin proteosomal machinery, and (4) macroautophagy pathways. Subsequently, we discuss the role of transcription factors nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Myocyte enhancer factor 2 (MEF2), and Forkhead box (FOXO) and their associated posttranslational modifications as it pertains to regulating each of these networks. Finally, we propose that comparing and contrasting these concepts to data collected from model organisms able to withstand dramatic changes in muscular function without injury will allow researchers to delineate physiological versus pathological responses.
Collapse
Affiliation(s)
- Shannon N. Tessier
- 1Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Building 114 16th Street, Charlestown, MA 02129, USA
| | - Kenneth B. Storey
- 2Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Ontario, Canada
| |
Collapse
|
64
|
Kumar RR, Narasimhan M, Shanmugam G, Hong J, Devarajan A, Palaniappan S, Zhang J, Halade GV, Darley-Usmar VM, Hoidal JR, Rajasekaran NS. Abrogation of Nrf2 impairs antioxidant signaling and promotes atrial hypertrophy in response to high-intensity exercise stress. J Transl Med 2016; 14:86. [PMID: 27048381 PMCID: PMC4822244 DOI: 10.1186/s12967-016-0839-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/24/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Anomalies in myocardial structure involving myocyte growth, hypertrophy, differentiation, apoptosis, necrosis etc. affects its function and render cardiac tissue more vulnerable to the development of heart failure. Although oxidative stress has a well-established role in cardiac remodeling and dysfunction, the mechanisms linking redox state to atrial cardiomyocyte hypertrophic changes are poorly understood. Here, we investigated the role of nuclear erythroid-2 like factor-2 (Nrf2), a central transcriptional mediator, in redox signaling under high intensity exercise stress (HIES) in atria. METHODS Age and sex-matched wild-type (WT) and Nrf2(-/-) mice at >20 months of age were subjected to HIES for 6 weeks. Gene markers of hypertrophy and antioxidant enzymes were determined in the atria of WT and Nrf2(-/-) mice by real-time qPCR analyses. Detection and quantification of antioxidants, 4-hydroxy-nonenal (4-HNE), poly-ubiquitination and autophagy proteins in WT and Nrf2(-/-) mice were performed by immunofluorescence analysis. The level of oxidative stress was measured by microscopical examination of di-hydro-ethidium (DHE) fluorescence. RESULTS Under the sedentary state, Nrf2 abrogation resulted in a moderate down regulation of some of the atrial antioxidant gene expression (Gsr, Gclc, Gstα and Gstµ) despite having a normal redox state. In response to HIES, enlarged atrial myocytes along with significantly increased gene expression of cardiomyocyte hypertrophy markers (Anf, Bnf and β-Mhc) were observed in Nrf2(-/-) when compared to WT mice. Further, the transcript levels of Gclc, Gsr and Gstµ and protein levels of NQO1, catalase, GPX1 were profoundly downregulated along with GSH depletion and increased oxidative stress in Nrf2(-/-) mice when compared to its WT counterparts after HIES. Impaired antioxidant state and profound oxidative stress were associated with enhanced atrial expression of LC3 and ATG7 along with increased ubiquitination of ATG7 in Nrf2(-/-) mice subjected to HIES. CONCLUSIONS Loss of Nrf2 describes an altered biochemical phenotype associated with dysregulation in genes related to redox state, ubiquitination and autophagy in HIES that result in atrial hypertrophy. Therefore, our findings direct that preserving Nrf2-related antioxidant function would be one of the effective strategies to safeguard atrial health.
Collapse
Affiliation(s)
- Radhakrishnan Rajesh Kumar
- />Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294-2180 USA
| | - Madhusudhanan Narasimhan
- />Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA
| | - Gobinath Shanmugam
- />Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294-2180 USA
| | - Jennifer Hong
- />Division of Cardiovascular Medicine, Department of Medicine, The University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| | - Asokan Devarajan
- />Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
| | - Sethu Palaniappan
- />Department of Bio-Engineering, Comprehensive Cardiovascular Center, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Jianhua Zhang
- />Center for Free Radical Biology, The University of Alabama at Birmingham, Birmingham, AL 35294-2180 USA
| | - Ganesh V. Halade
- />Department of Medicine, Comprehensive Cardiovascular Center, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Victor M. Darley-Usmar
- />Center for Free Radical Biology, The University of Alabama at Birmingham, Birmingham, AL 35294-2180 USA
| | - John R. Hoidal
- />Division of Pulmonary Medicine, Department of Medicine, The University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| | - Namakkal S. Rajasekaran
- />Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294-2180 USA
- />Division of Cardiovascular Medicine, Department of Medicine, The University of Utah School of Medicine, Salt Lake City, UT 84132 USA
- />Center for Free Radical Biology, The University of Alabama at Birmingham, Birmingham, AL 35294-2180 USA
- />Department of Exercise Physiology, College of Health, The University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| |
Collapse
|
65
|
Shelar SB, Narasimhan M, Shanmugam G, Litovsky SH, Gounder SS, Karan G, Arulvasu C, Kensler TW, Hoidal JR, Darley-Usmar VM, Rajasekaran NS. Disruption of nuclear factor (erythroid-derived-2)-like 2 antioxidant signaling: a mechanism for impaired activation of stem cells and delayed regeneration of skeletal muscle. FASEB J 2016; 30:1865-79. [PMID: 26839378 DOI: 10.1096/fj.201500153] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/14/2016] [Indexed: 01/07/2023]
Abstract
Recently we have reported that age-dependent decline in antioxidant levels accelerated apoptosis and skeletal muscle degeneration. Here, we demonstrate genetic ablation of the master cytoprotective transcription factor, nuclear factor (erythroid-derived-2)-like 2 (Nrf2), aggravates cardiotoxin (CTX)-induced tibialis anterior (TA) muscle damage. Disruption of Nrf2 signaling sustained the CTX-induced burden of reactive oxygen species together with compromised expression of antioxidant genes and proteins. Transcript/protein expression of phenotypic markers of muscle differentiation, namely paired box 7 (satellite cell) and early myogenic differentiation and terminal differentiation (myogenin and myosin heavy chain 2) were increased on d 2 and 4 postinjury but later returned to baseline levels on d 8 and 15 in wild-type (WT) mice. In contrast, these responses were persistently augmented in Nrf2-null mice suggesting that regulation of the regeneration-related signaling mechanisms require Nrf2 for normal functioning. Furthermore, Nrf2-null mice displayed slower regeneration marked by dysregulation of embryonic myosin heavy chain temporal expression. Histologic observations illustrated that Nrf2-null mice displayed smaller, immature TA muscle fibers compared with WT counterparts on d 15 after CTX injury. Improvement in TA muscle morphology and gain in muscle mass evident in the WT mice was not noticeable in the Nrf2-null animals. Taken together these data show that the satellite cell activation, proliferation, and differentiation requires a functional Nrf2 system for effective healing following injury.-Shelar, S. B., Narasimhan, M., Shanmugam, G., Litovsky, S. H., Gounder, S. S., Karan, G., Arulvasu, C., Kensler, T. W., Hoidal, J. R., Darley-Usmar, V. M., Rajasekaran, N. S. Disruption of nuclear factor (erythroid-derived-2)-like 2 antioxidant signaling: a mechanism for impaired activation of stem cells and delayed regeneration of skeletal muscle.
Collapse
Affiliation(s)
- Sandeep Balu Shelar
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Gobinath Shanmugam
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Silvio Hector Litovsky
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sellamuthu S Gounder
- Division of Cardiovascular Medicine/Pulmonary Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | - Thomas W Kensler
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John R Hoidal
- Division of Cardiovascular Medicine/Pulmonary Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Victor M Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Namakkal S Rajasekaran
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA; Division of Cardiovascular Medicine/Pulmonary Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA;
| |
Collapse
|
66
|
Response of BAX, Bcl-2 Proteins, and SIRT1/PGC-1α mRNA Expression to 8-Week Treadmill Running in the Aging Rat Skeletal Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 923:283-289. [PMID: 27526155 DOI: 10.1007/978-3-319-38810-6_38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The aim of this study was to analyze the effects of exercise training on Bax and Bcl-2 protein content and sirtuin1 (SIRT1) mRNA expression levels to prevent sarcopenia in aging rats. Eight 18 months old male Sprague-Dawley rats were trained 5 days weekly for 8 weeks on a treadmill, and eight sedentary rats served as controls. Gastrocnemius muscles were dissected 2 days after the last training session. The mRNA content of PGC-1α, caspase-3, NRF1, TFAM, SOD2, and SIRT1 was estimated by RT-PCR with GAPDH used as an internal control. The protein expression of BAX and Bcl-2 was assessed by Western immunoblot. After training, significant (p < 0.05) increases were noted for the gastrocnemius muscle weights, the gastrocnemius mass/body mass ratio, the bcl-2/BAX ratio, the Bcl-2 protein and the SIRT1, PGC-1α, NRF1, TFAM, SOD2 mRNA content in the trained gastrocnemius, relative to the control samples. No difference was found in the BAX protein between control and trained muscles, whereas the caspase-3 mRNA content decreased by 50 %, in the gastrocnemius muscle of trained animals. Exercise training may inhibit age-induced myonuclear apoptosis by stimulating SIRT1/PGC-1α mRNA expression, thereby preventing sarcopenia in aging rat.
Collapse
|
67
|
Erekat NS. Apoptotic Mediators are Upregulated in the Skeletal Muscle of Chronic/Progressive Mouse Model of Parkinson's Disease. Anat Rec (Hoboken) 2015; 298:1472-8. [DOI: 10.1002/ar.23124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Nour S. Erekat
- Department of Anatomy; Faculty of Medicine; Jordan University of Science and Technology (JUST); Irbid Jordan
| |
Collapse
|
68
|
Al-Sawaf O, Fragoulis A, Rosen C, Keimes N, Liehn EA, Hölzle F, Kan YW, Pufe T, Sönmez TT, Wruck CJ. Nrf2 augments skeletal muscle regeneration after ischaemia-reperfusion injury. J Pathol 2014; 234:538-47. [DOI: 10.1002/path.4418] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/24/2014] [Accepted: 08/06/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Othman Al-Sawaf
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Christian Rosen
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Nora Keimes
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Elisa Anamaria Liehn
- Institute for Molecular Cardiovascular Research; University Hospital, RWTH Aachen University; Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery; University Hospital, RWTH Aachen University; Germany
| | - Yuet Wai Kan
- Department of Laboratory Medicine; University of California; San Francisco CA USA
| | - Thomas Pufe
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Tolga Taha Sönmez
- Department of Oral and Maxillofacial Surgery; University Hospital, RWTH Aachen University; Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| |
Collapse
|