51
|
Mechanisms contributing to cardiac remodelling. Clin Sci (Lond) 2017; 131:2319-2345. [PMID: 28842527 DOI: 10.1042/cs20171167] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Cardiac remodelling is classified as physiological (in response to growth, exercise and pregnancy) or pathological (in response to inflammation, ischaemia, ischaemia/reperfusion (I/R) injury, biomechanical stress, excess neurohormonal activation and excess afterload). Physiological remodelling of the heart is characterized by a fine-tuned and orchestrated process of beneficial adaptations. Pathological cardiac remodelling is the process of structural and functional changes in the left ventricle (LV) in response to internal or external cardiovascular damage or influence by pathogenic risk factors, and is a precursor of clinical heart failure (HF). Pathological remodelling is associated with fibrosis, inflammation and cellular dysfunction (e.g. abnormal cardiomyocyte/non-cardiomyocyte interactions, oxidative stress, endoplasmic reticulum (ER) stress, autophagy alterations, impairment of metabolism and signalling pathways), leading to HF. This review describes the key molecular and cellular responses involved in pathological cardiac remodelling.
Collapse
|
52
|
Abdullah A, Eyster KM, Bjordahl T, Xiao P, Zeng E, Wang X. Murine Myocardial Transcriptome Analysis Reveals a Critical Role of COPS8 in the Gene Expression of Cullin-RING Ligase Substrate Receptors and Redox and Vesicle Trafficking Pathways. Front Physiol 2017; 8:594. [PMID: 28861005 PMCID: PMC5562692 DOI: 10.3389/fphys.2017.00594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023] Open
Abstract
Background: The COP9 signalosome (CSN) consisting of 8 unique protein subunits (COPS1 through COPS8) serves as the cullin deneddylase, regulating the catalytic dynamics of cullin RING ligases (CRLs), the largest family of ubiquitin ligases Background: The COP9 signalosome (CSN) consisting of 8 unique protein subunits (COPS1 through COPS8) serves as the cullin deneddylase, regulating the catalytic dynamics of cullin RING ligases (CRLs), the largest family of ubiquitin ligases. Supported primarily by the decrease of substrate receptor (SR) proteins of CRLs in cells deficient of a CSN subunit, CSN-mediated cullin deneddylation is believed to prevent autoubiquitination and self-destruction of the SR in active CRLs. However, it is unclear whether the decrease in SRs is solely due to protein destabilization. Moreover, our prior studies have demonstrated that cardiac specific knockout of Cops8 (Cops8-CKO) impairs autophagosome maturation and causes massive necrosis in cardiomyocytes but the underlying mechanism remains poorly understood. Given that Cops8 is nucleus-enriched and a prior report showed its binding to the promoter of several genes and association of its ablation with decreased mRNA levels of these genes, we sought to determine the dynamic changes of myocardial transcriptome in mice with perinatal Cops8-CKO and to explore their functional implications. Methods and Results: Myocardial transcriptomes of Cops8flox/flox , Cops8flox/+::Myh6-Cre, and Cops8flox/flox::Myh6-Cre littermate mice at postnatal 2 and 3 weeks were analyzed. The data were imported into an in-house analysis pipeline using Bioconductor for quantile normalization and statistical analysis. Differentially expressed genes (DEGs) between groups at each time point or between time points within the group were revealed by t-test. Genes with p < 0.05 after Benjamini and Hochberg false discovery rate correction for multiple hypothesis testing were considered as significant DEGs. We found that (1) the Ingenuity Pathway Analysis (IPA) revealed significant enrichment of DEGs in multiple pathways, especially those responding to oxidative stress, in homozygous Cops8-CKO hearts at both 2 and 3 weeks, corroborating the occurrence of massive cardiomyocyte necrosis at 3 weeks; (2) the decreases in multiple CRL SR proteins were associated with decreased transcript levels; and (3) enrichment of DEGs in the chromatin remodeling pathway and the microtubule motility and vesicle trafficking pathways. Conclusions: Our data are consistent with the notion that Cops8/CSN plays a role in the transcriptional regulation of CRL SRs and in the redox and vesicle trafficking pathways.
Collapse
Affiliation(s)
- Ammara Abdullah
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South DakotaVermillion, SD, United States
| | - Kathleen M Eyster
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South DakotaVermillion, SD, United States
| | - Travis Bjordahl
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South DakotaVermillion, SD, United States
| | - Peng Xiao
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South DakotaVermillion, SD, United States
| | - Erliang Zeng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South DakotaVermillion, SD, United States.,Department of Computer Science and Department of Biology, University of South DakotaVermillion, SD, United States
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South DakotaVermillion, SD, United States
| |
Collapse
|
53
|
Yuan F, Zhang L, Li YQ, Teng X, Tian SY, Wang XR, Zhang Y. Chronic Intermittent Hypobaric Hypoxia Improves Cardiac Function through Inhibition of Endoplasmic Reticulum Stress. Sci Rep 2017; 7:7922. [PMID: 28801645 PMCID: PMC5554163 DOI: 10.1038/s41598-017-08388-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022] Open
Abstract
We investigated the role of endoplasmic reticulum stress (ERS) in chronic intermittent hypobaric hypoxia (CIHH)-induced cardiac protection. Adult male Sprague-Dawley rats were exposed to CIHH treatment simulating 5000 m altitude for 28 days, 6 hours per day. The heart was isolated and perfused with Langendorff apparatus and subjected to 30-min ischemia followed by 60-min reperfusion. Cardiac function, infarct size, and lactate dehydrogenase (LDH) activity were assessed. Expression of ERS molecular chaperones (GRP78, CHOP and caspase-12) was assayed by western blot analysis. CIHH treatment improved the recovery of left ventricular function and decreased cardiac infarct size and activity of LDH after I/R compared to control rats. Furthermore, CIHH treatment inhibited over-expression of ERS-related factors including GRP78, CHOP and caspase-12. CIHH-induced cardioprotection and inhibition of ERS were eliminated by application of dithiothreitol, an ERS inducer, and chelerythrine, a protein kinase C (PKC) inhibitor. In conclusion CIHH treatment exerts cardiac protection against I/R injury through inhibition of ERS via PKC signaling pathway.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Li Zhang
- Orthopedic Department of Third Hospital, Hebei Medical University, Shijiazhuang, 050000, China
| | - Yan-Qing Li
- Department of Gynecology, Hebei Traditional Medicine Hospital, Shijiazhuang, 050011, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Lab of Laboratory Animal Science, Shijiazhuang, 050017, China
| | - Si-Yu Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiao-Ran Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China.
| |
Collapse
|
54
|
Osada H, Okamoto T, Kawashima H, Toda E, Miyake S, Nagai N, Kobayashi S, Tsubota K, Ozawa Y. Neuroprotective effect of bilberry extract in a murine model of photo-stressed retina. PLoS One 2017; 12:e0178627. [PMID: 28570634 PMCID: PMC5453571 DOI: 10.1371/journal.pone.0178627] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/16/2017] [Indexed: 12/03/2022] Open
Abstract
Excessive exposure to light promotes degenerative and blinding retinal diseases such as age-related macular degeneration and retinitis pigmentosa. However, the underlying mechanisms of photo-induced retinal degeneration are not fully understood, and a generalizable preventive intervention has not been proposed. Bilberry extract is an antioxidant-rich supplement that ameliorates ocular symptoms. However, its effects on photo-stressed retinas have not been clarified. In this study, we examined the neuroprotective effects of bilberry extract against photo-stress in murine retinas. Light-induced visual function impairment recorded by scotopic and phototopic electroretinograms showing respective rod and cone photoreceptor function was attenuated by oral administration of bilberry extract through a stomach tube in Balb/c mice (750 mg/kg body weight). Bilberry extract also suppressed photo-induced apoptosis in the photoreceptor cell layer and shortening of the outer segments of rod and cone photoreceptors. Levels of photo-induced reactive oxygen species (ROS), oxidative and endoplasmic reticulum (ER) stress markers, as measured by real-time reverse transcriptase polymerase chain reaction, were reduced by bilberry extract treatment. Reduction of ROS by N-acetyl-L-cysteine, a well-known antioxidant also suppressed ER stress. Immunohistochemical analysis of activating transcription factor 4 expression showed the presence of ER stress in the retina, and at least in part, in Müller glial cells. The photo-induced disruption of tight junctions in the retinal pigment epithelium was also attenuated by bilberry extract, repressing an oxidative stress marker, although ER stress markers were not repressed. Our results suggest that bilberry extract attenuates photo-induced apoptosis and visual dysfunction most likely, and at least in part, through ROS reduction, and subsequent ER stress attenuation in the retina. This study can help understand the mechanisms of photo-stress and contribute to developing a new, potentially useful therapeutic approach using bilberry extract for preventing retinal photo-damage.
Collapse
Affiliation(s)
- Hideto Osada
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiro Okamoto
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hirohiko Kawashima
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Eriko Toda
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Miyake
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Wakasa Seikatsu Co., Ltd., Kyoto, Japan
| | - Norihiro Nagai
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | | | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
55
|
Rui Y, Cheng J, Qin L, Shan C, Chang J, Wang G, Wan Z. Effects of vitamin D and resveratrol on metabolic associated markers in liver and adipose tissue from SAMP8 mice. Exp Gerontol 2017; 93:16-28. [PMID: 28411010 DOI: 10.1016/j.exger.2017.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 12/31/2022]
Abstract
SAMP8 mice exhibit multiple metabolic characteristics associated with age, and it is a suitable candidate for researching aging associated metabolic dysfunction. OBJECTIVES We aimed to 1) explore how key metabolic markers will be altered in both liver and adipose tissue with aging in SAMP8 mice; and 2) how the combination of vitamin D (VD) with resveratrol (RSV) will affect aging associated metabolic impairment in liver and adipose tissue from SAMP8 mice. METHODS SAMP8 mice and their control SAMR1 mice were divided into 5 groups, i.e. SAMR1, SAMP8, SAMP8 mice supplemented with VD, RSV and VD combined with RSV group, respectively. At the end of the intervention, glucose and insulin tolerance, p-AMP-activated protein kinase (AMPK) and amyloid precursor protein (APP), and endoplasmic reticulum (ER) stress markers in liver and adipose tissue, adiponectin secretion, p-NF-κBp65 and TNF-α protein expression in adipose tissue were determined. RESULTS Compared to SAMR1 control, SAMP8 mice demonstrate impaired glucose tolerance and reduction in circulating adiponectin level; in the liver, SAMP8 mice have reduction in p-Aktser473, elevation in PTP1B and APP, p-eIF2α, GRP78 and p-JNK protein expression. In epididymal (EPI) fat, SAMP8 mice also have elevated p-Aktser473 and PTP1B compared to SAMR1 mice. In both epididymal (EPI) and subcutaneous (SC) fat, there were elevated ER stress markers, reduced p-AMPK and elevated APP, as well as elevated p-NF-κBp65 and TNF-α protein expression from SAMP8 compared to SAMR1 mice. In liver, the combined intervention significantly restored p-Aktser473, p-eIF2α and p-JNK protein expression. In both EPI and SC fat, the combined intervention is effective for reducing p-NF-κB p65 and TNF-α in both fat depot, while only partially reduced ER stress markers in SC fat. As for adiponectin, their combination is unable to reverse reduction in adiponectin level. Adiponectin secretion in SC fat from VD, RSV and VDRSV group were also significantly reduced compared to SAMR1. CONCLUSION The combined intervention might exert greater beneficial effects for reversing aging associated metabolic dysfunction in liver and adipose tissue from SAMP8 mice.
Collapse
Affiliation(s)
- Yehua Rui
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, PR China
| | - Jinbo Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, PR China
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, PR China
| | - Cheng Shan
- University of Waterloo, Waterloo, Ontario, Canada
| | - Jie Chang
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Guiping Wang
- Laboratory Animal Center, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| |
Collapse
|
56
|
Sozen E, Ozer NK. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review. Redox Biol 2017; 12:456-461. [PMID: 28319895 PMCID: PMC5357672 DOI: 10.1016/j.redox.2017.02.025] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) is the major site of protein folding and calcium storage. Beside the role of ER in protein homeostasis, it controls the cholesterol production and lipid-membrane biosynthesis as well as surviving and cell death signaling mechanisms in the cell. It is well-documented that elevated plasma cholesterol induces adverse effects in cardiovascular diseases (CVDs), liver disorders, such as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatosis hepatitis (NASH), and metabolic diseases which are associated with oxidative and ER stress. Recent animal model and human studies have showed high cholesterol and ER stress as an emerging factors involved in the development of many metabolic diseases. In this review, we will summarize the crucial effects of hypercholesterolemia and ER stress response in the pathogenesis of CVDs, NAFLD/NASH, diabetes and obesity which are major health problems in western countries. Endoplasmic reticulum stress involves in various metabolic disease development. Altered cholesterol metabolism is a well-documented inducer of ER stress. ER stress mediated apoptosis leads many cardiovascular disorders. UPR might lead NAFLD/NASH progression by enhancing inflammation and fibrosis.
Collapse
Affiliation(s)
- Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854, Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854, Maltepe, Istanbul, Turkey.
| |
Collapse
|
57
|
Di Pietro N, Marcovecchio ML, Di Silvestre S, de Giorgis T, Cordone VGP, Lanuti P, Chiarelli F, Bologna G, Mohn A, Pandolfi A. Plasma from pre-pubertal obese children impairs insulin stimulated Nitric Oxide (NO) bioavailability in endothelial cells: Role of ER stress. Mol Cell Endocrinol 2017; 443:52-62. [PMID: 28062198 PMCID: PMC5320395 DOI: 10.1016/j.mce.2017.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/16/2016] [Accepted: 01/02/2017] [Indexed: 12/12/2022]
Abstract
Childhood obesity is commonly associated with early signs of endothelial dysfunction, characterized by impairment of insulin signaling and vascular Nitric Oxide (NO) availability. However, the underlying mechanisms remain to be established. Hence, we tested the hypothesis that endothelial insulin-stimulated NO production and availability was impaired and related to Endoplasmic Reticulum (ER) in human umbilical vein endothelial cells (HUVECs) cultured with plasma obtained from pre-pubertal obese (OB) children. OB children (N = 28, age: 8.8 ± 2.2; BMI z-score: 2.15 ± 0.39) showed impaired fasting glucose, insulin and HOMA-IR than normal weight children (CTRL; N = 28, age: 8.8 ± 1.7; BMI z-score: 0.17 ± 0.96). The in vitro experiments showed that OB-plasma significantly impaired endothelial insulin-stimulated NO production and bioavailability compared to CTRL-plasma. In parallel, in HUVECs OB-plasma increased GRP78 and activated PERK, eIF2α, IkBα and ATF6 (all ER stress markers). Moreover, OB-plasma increased NF-κB activation and its nuclear translocation. Notably, all these effects proved to be significantly restored by using PBA and TUDCA, known ER stress inhibitors. Our study demonstrate for the first time that plasma from obese children is able to induce in vitro endothelial insulin resistance, which is characterized by reduced insulin-stimulated NO production and bioavailability, endothelial ER stress and increased NF-κB activation.
Collapse
Affiliation(s)
- Natalia Di Pietro
- Department of Medicine and Aging Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy; Centro Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio", Chieti-Pescara, Italy; "G. d'Annunzio" University Foundation, Chieti, Italy.
| | - M Loredana Marcovecchio
- Department of Medicine and Aging Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy; Centro Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio", Chieti-Pescara, Italy; "G. d'Annunzio" University Foundation, Chieti, Italy
| | - Sara Di Silvestre
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy; Centro Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio", Chieti-Pescara, Italy; "G. d'Annunzio" University Foundation, Chieti, Italy
| | - Tommaso de Giorgis
- Department of Medicine and Aging Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy; Centro Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio", Chieti-Pescara, Italy; "G. d'Annunzio" University Foundation, Chieti, Italy
| | - Vincenzo Giuseppe Pio Cordone
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy; Centro Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio", Chieti-Pescara, Italy; "G. d'Annunzio" University Foundation, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy; Centro Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio", Chieti-Pescara, Italy; "G. d'Annunzio" University Foundation, Chieti, Italy
| | - Francesco Chiarelli
- Department of Medicine and Aging Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy; Centro Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio", Chieti-Pescara, Italy; "G. d'Annunzio" University Foundation, Chieti, Italy
| | - Giuseppina Bologna
- Department of Medicine and Aging Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy; Centro Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio", Chieti-Pescara, Italy; "G. d'Annunzio" University Foundation, Chieti, Italy
| | - Angelika Mohn
- Department of Medicine and Aging Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy; Centro Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio", Chieti-Pescara, Italy; "G. d'Annunzio" University Foundation, Chieti, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy; Centro Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio", Chieti-Pescara, Italy; "G. d'Annunzio" University Foundation, Chieti, Italy
| |
Collapse
|
58
|
Yang J, Zhang X, Yu X, Tang W, Gan H. Renin-angiotensin system activation accelerates atherosclerosis in experimental renal failure by promoting endoplasmic reticulum stress-related inflammation. Int J Mol Med 2017; 39:613-621. [PMID: 28098884 PMCID: PMC5360357 DOI: 10.3892/ijmm.2017.2856] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 12/05/2016] [Indexed: 11/16/2022] Open
Abstract
In this study, we investigated the association between the renin-angiotensin system (RAS), endoplasmic reticulum (ER) stress and atherosclerosis (AS) in uremic apolipo-protein E knockout (apoE−/−) mice. Mild uremia was induced by a 5/6 nephrectomy (5/6 Nx) in 10-week-old apoE−/− mice. Four weeks after nephrectomy, the mice received losartan or no treatment for 16 weeks. Sham-operated mice served as the controls. We found that uremia accelerated AS at the aortic root. The activation of ER stress and the significant upregulation of pro-inflammatory cytokines and chemokines were observed in the uremic mice. Phosphorylated inositol-requiring 1α (p-IRE1α), an ER stress marker protein, was mainly expressed in macrophages in the atherosclerotic lesions. Treatment with losartan significantly attenuated aortic AS, inhibited ER stress and reduced aortic inflammation. In in vitro experiments, angiotensin II (Ang II) increased the levels of the common ER stress maker, glucose-regulated protein 78 (GRP78) and the phosphorylation of IRE1α in RAW264.7 macrophages. Treatment with losartan inhibited the activation of ER stress and the upregulation of GRP78, and enhanced the expression of nuclear factor-κB (NF-κB) inhibitor (IκB) in Ang II-stimulated RAW264.7 macrophages. IRE1α-siRNA suppressed inflammation and downregulated IκB expression and IκB kinase (IKK) phosphorylation, which inhibited IκB degradation and NF-κB p65 nuclear translocation in Ang II-treated RAW264.7 macrophages. These findings suggest that RAS activation accelerates AS by promoting ER stress-related inflammation in uremic mice.
Collapse
Affiliation(s)
- Jia Yang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xi Zhang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xinyi Yu
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weixue Tang
- Experimental Study Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
59
|
Jian L, Lu Y, Lu S, Lu C. Chemical Chaperone 4-Phenylbutyric Acid Reduces Cardiac Ischemia/Reperfusion Injury by Alleviating Endoplasmic Reticulum Stress and Oxidative Stress. Med Sci Monit 2016; 22:5218-5227. [PMID: 28036323 PMCID: PMC5221419 DOI: 10.12659/msm.898623] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Cardiovascular diseases are the leading cause of death in many countries and myocardial ischemia-reperfusion (I/R) injury is the cause of many serious heart diseases. Recent reports suggested that endoplasmic reticulum (ER) stress is associated with the progress of ischemia/reperfusion (I/R) injury. In a previous study, we illustrated that 4-phenylbutyric acid (4-PBA) reduces I/R-induced cell death in vitro through inhibiting the ER stress-initiated cell apoptosis. In the present study we investigated whether 4-PBA improves heart function in isolated rat hearts subjected to I/R and elucidated the potential mechanisms involved in 4-PBA-induced cardioprotective effects. Material/Methods The isolated rat hearts were subjected to global ischemia and reperfusion in the absence or presence of 4-PBA. Hemodynamic parameters (LVSP, LVEDP, ±dP/dtmax, and HR) were monitored and histopathological examination was applied. The biomarkers related to oxidative stress were detected by LDH, ROS, MDA, CK, SOD, and GSH-Px kits. A TUNEL apoptosis assay kit was used to detect apoptosis. The expression levels of ER stress and apoptosis proteins were evaluated by Western blotting. Results We found that 4-PBA (5 mM, 10 mM) pretreatment significantly attenuated cardiac dysfunction and depressed oxidative stress induced by I/R. Moreover, I/R activated the ER stress proteins Grp78 and PERK, which are all decreased by 4-PBA. 4-PBA pretreatment also inhibited the expression of CHOP, Caspase-12, and Bax, reduced the phosphorylation of JNK, and enhanced the expression of anti-apoptotic protein Bcl-2. Conclusions We elucidated the significant protective effects of 4-PBA against I/R injuries by inhibition of ER stress, oxidative stress, and their associated apoptosis.
Collapse
Affiliation(s)
- Lian Jian
- Department of Cardiovascular, Tianjin First Central Hospital, tianjin, China (mainland)
| | - Yuan Lu
- Department of Cardiovascular, Tianjin First Central Hospital, tianjin, China (mainland)
| | - Shan Lu
- Department of Radiology, Tianjin Medical University Metabolic Diseases Hospital, Tianjin, China (mainland)
| | - Chengzhi Lu
- Department of Cardiovascular, Tianjin First Central Hospital, tianjin, China (mainland)
| |
Collapse
|
60
|
Piceatannol attenuates homocysteine-induced endoplasmic reticulum stress and endothelial cell damage via heme oxygenase-1 expression. Amino Acids 2016; 49:735-745. [DOI: 10.1007/s00726-016-2375-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/09/2016] [Indexed: 01/22/2023]
|
61
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
62
|
Wang P, Li J, Sha B. The ER stress sensor PERK luminal domain functions as a molecular chaperone to interact with misfolded proteins. Acta Crystallogr D Struct Biol 2016; 72:1290-1297. [PMID: 27917829 PMCID: PMC5137225 DOI: 10.1107/s2059798316018064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/10/2016] [Indexed: 11/10/2022] Open
Abstract
PERK is one of the major sensor proteins which can detect the protein-folding imbalance generated by endoplasmic reticulum (ER) stress. It remains unclear how the sensor protein PERK is activated by ER stress. It has been demonstrated that the PERK luminal domain can recognize and selectively interact with misfolded proteins but not native proteins. Moreover, the PERK luminal domain may function as a molecular chaperone to directly bind to and suppress the aggregation of a number of misfolded model proteins. The data strongly support the hypothesis that the PERK luminal domain can interact directly with misfolded proteins to induce ER stress signaling. To illustrate the mechanism by which the PERK luminal domain interacts with misfolded proteins, the crystal structure of the human PERK luminal domain was determined to 3.2 Å resolution. Two dimers of the PERK luminal domain constitute a tetramer in the asymmetric unit. Superimposition of the PERK luminal domain molecules indicated that the β-sandwich domain could adopt multiple conformations. It is hypothesized that the PERK luminal domain may utilize its flexible β-sandwich domain to recognize and interact with a broad range of misfolded proteins.
Collapse
Affiliation(s)
- Peng Wang
- Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, Wuhu 241000, People’s Republic of China
| | - Jingzhi Li
- Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bingdong Sha
- Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
63
|
Qin Y, Wang Y, Liu O, Jia L, Fang W, Du J, Wei Y. Tauroursodeoxycholic Acid Attenuates Angiotensin II Induced Abdominal Aortic Aneurysm Formation in Apolipoprotein E-deficient Mice by Inhibiting Endoplasmic Reticulum Stress. Eur J Vasc Endovasc Surg 2016; 53:337-345. [PMID: 27889204 DOI: 10.1016/j.ejvs.2016.10.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE/BACKGROUND Abdominal aortic aneurysm (AAA) is characterised by the infiltration of smooth muscle cell (SMC) apoptosis, inflammatory cells, neovascularisation, and degradation of the extracellular matrix. Previous work has shown that endoplasmic reticulum (ER) stress and SMC apoptosis were increased both in a mouse model and human thoracic aortic aneurysm. However, whether the ER stress is activated in AAA formation and whether suppressing ER stress attenuates AAA is unknown. METHODS Human AAA and control aorta samples were collected. Expression of ER stress chaperones glucose-regulated protein (GRP)-78 and GRP-94 was detected by immunohistochemical staining. The effect of ER stress inhibitor tauroursodeoxycholic acid (TUDCA) on AAA formation in angiotensin (Ang) II induced apolipoprotein E-/- mice was explored. Elastin staining was used to observe the rupture of elastic fragmentation. Immunohistochemistry and Western blot analysis were performed, to detect the protein expression of ER stress chaperones and apoptosis molecules. RESULTS There was significant upregulation of GRP-78 and GRP-94 in aneurysmal areas of human AAA and Ang II induced ApoE-/- mice (p < .05). TUDCA significantly attenuated the maximum diameters of abdominal aortas in Ang II induced ApoE-/- mice (p < .05). TUDCA significantly reduced expression of ER stress chaperones and the apoptotic cell numbers (p < .05). Furthermore, TUDCA significantly reduced expression of apoptosis molecules, such as caspase-3, caspase-12, C/EBP homologous protein, c-Jun N-terminal kinase activating transcription factor 4, X-box binding protein, and eukaryotic initiation factor 2α in Ang II induced ApoE-/- mice (p < .05). CONCLUSION The results suggest that ER stress is involved in human and Ang II induced AAA formation in ApoE-/- mice. TUDCA attenuates Ang II induced AAA formation in ApoE-/- mice by inhibiting ER stress mediated apoptosis.
Collapse
Affiliation(s)
- Y Qin
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| | - Y Wang
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - O Liu
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - L Jia
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - W Fang
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - J Du
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Y Wei
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
64
|
Li J, Zheng X, Lou N, Zhong W, Yan D. Oxysterol binding protein-related protein 8 mediates the cytotoxicity of 25-hydroxycholesterol. J Lipid Res 2016; 57:1845-1853. [PMID: 27530118 PMCID: PMC5036365 DOI: 10.1194/jlr.m069906] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Indexed: 12/14/2022] Open
Abstract
Oxysterols are 27-carbon oxidized derivatives of cholesterol or by-products of cholesterol biosynthesis that can induce cell apoptosis in addition to a number of other bioactions. However, the mechanisms underlying this cytotoxicity are not completely understood. ORP8 is a member of the oxysterol binding protein-related protein (ORP) family, implicated in cellular lipid homeostasis, migration, and organization of the microtubule cytoskeleton. Here, we report that 25-hydroxycholesterol (OHC) induced apoptosis of the hepatoma cell lines, HepG2 and Huh7, via the endoplasmic reticulum (ER) stress response pathway, and ORP8 overexpression resulted in a similar cell response as 25-OHC, indicating a putative functional relationship between oxysterol cytotoxicity and ORP8. Further experiments demonstrated that ORP8 overexpression significantly enhanced the 25-OHC effect on ER stress and apoptosis in HepG2 cells. A truncated ORP8 construct lacking the ligand-binding domain or a closely related protein, ORP5, was devoid of this activity, evidencing for specificity of the observed effects. Importantly, ORP8 knockdown markedly dampened such responses to 25-OHC. Taken together, the present study suggests that ORP8 may mediate the cytotoxicity of 25-OHC.
Collapse
Affiliation(s)
- Jiwei Li
- Department of Biotechnology Jinan University, Guangzhou 510632, China; Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Xiuting Zheng
- Department of Biotechnology Jinan University, Guangzhou 510632, China; Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Ning Lou
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Wenbin Zhong
- Department of Biotechnology Jinan University, Guangzhou 510632, China; Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Daoguang Yan
- Department of Biotechnology Jinan University, Guangzhou 510632, China; Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
65
|
Li S, Zhang L, Ni R, Cao T, Zheng D, Xiong S, Greer PA, Fan GC, Peng T. Disruption of calpain reduces lipotoxicity-induced cardiac injury by preventing endoplasmic reticulum stress. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2023-2033. [PMID: 27523632 DOI: 10.1016/j.bbadis.2016.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 12/16/2022]
Abstract
Diabetes and obesity are prevalent in westernized countries. In both conditions, excessive fatty acid uptake by cardiomyocytes induces cardiac lipotoxicity, an important mechanism contributing to diabetic cardiomyopathy. This study investigated the effect of calpain disruption on cardiac lipotoxicity. Cardiac-specific capns1 knockout mice and their wild-type littermates (male, age of 4weeks) were fed a high fat diet (HFD) or normal diet for 20weeks. HFD increased body weight, altered blood lipid profiles and impaired glucose tolerance comparably in both capns1 knockout mice and their wild-type littermates. Calpain activity, cardiomyocyte cross-sectional areas, collagen deposition and triglyceride were significantly increased in HFD-fed mouse hearts, and these were accompanied by myocardial dysfunction and up-regulation of hypertrophic and fibrotic collagen genes as well as pro-inflammatory cytokines. These effects of HFD were attenuated by disruption of calpain in capns1 knockout mice. Mechanistically, deletion of capns1 in HFD-fed mouse hearts and disruption of calpain with calpain inhibitor-III, silencing of capn1, or deletion of capns1 in palmitate-stimulated cardiomyocytes prevented endoplasmic reticulum stress, apoptosis, cleavage of caspase-12 and junctophilin-2, and pro-inflammatory cytokine expression. Pharmacological inhibition of endoplasmic reticulum stress diminished palmitate-induced apoptosis and pro-inflammatory cytokine expression in cardiomyocytes. In summary, disruption of calpain prevents lipotoxicity-induced apoptosis in cardiomyocytes and cardiac injury in mice fed a HFD. The role of calpain is mediated, at least partially, through endoplasmic reticulum stress. Thus, calpain/endoplasmic reticulum stress may represent a new mechanism and potential therapeutic targets for cardiac lipotoxicity.
Collapse
Affiliation(s)
- Shengcun Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Lulu Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Rui Ni
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Critical Illness Research, Lawson Health Research Institute, Western University, London, Ontario N6A 4G5, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4G5, Canada
| | - Ting Cao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Dong Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Critical Illness Research, Lawson Health Research Institute, Western University, London, Ontario N6A 4G5, Canada; Department of Medicine, Western University, London, Ontario N6A 4G5, Canada
| | - Sidong Xiong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Peter A Greer
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Tianqing Peng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Critical Illness Research, Lawson Health Research Institute, Western University, London, Ontario N6A 4G5, Canada; Department of Medicine, Western University, London, Ontario N6A 4G5, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4G5, Canada.
| |
Collapse
|
66
|
Liu N, Yang HL, Wang P, Lu YC, Yang YJ, Wang L, Lee SC. Functional proteomic analysis revels that the ethanol extract of Annona muricata L. induces liver cancer cell apoptosis through endoplasmic reticulum stress pathway. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:210-217. [PMID: 27224241 DOI: 10.1016/j.jep.2016.05.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/18/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Annona muricata L. is used to treat cancer in some countries. Extracts of Annona muricata have been shown to cause apoptosis of various cancer cells in vitro, and inhibit tumor growth in vivo in animal models. However, the molecular mechanisms underlying its anti-cancer and apoptotic effects of the herb remain to be explored. AIM OF STUDY The study investigated the molecular mechanisms underlying liver cancer cell apoptosis triggered by the ethanol extract of leaves of Annona muricata L. MATERIALS AND METHODS Liver cancer HepG2 cells were used as experimental model. MTT assay was employed to evaluate cell viability. Flow cytometry and TUNEL assays were performed to confirm apoptosis. We employed functional proteomic analysis to delineate molecular pathways underlying apoptosis triggered by the herbal extract. RESULTS We showed that the extract was able to reduce viability and trigger apoptosis of the cancer cells. Proteomic analysis identified 14 proteins associated with the extract-elicited apoptosis, which included the increased expression levels of HSP70, GRP94 and DPI-related protein 5. Western blot analysis confirmed that the extract did up-regulated the protein levels of HSP70 and GRP94. Results from bioinformatic annotation pulled out two molecular pathways for the extract, which, notably, included endoplasmic reticulum (ER) stress which was evidenced by the up-regulation of HSP70, GRP94 and PDI-related protein 5. Further examinations of typical protein signaling events in ER stress using western blot analysis have shown that the extract up-regulated the phorsphorelation of PERK and eIF2α as well as the expression level of Bip and CHOP. CONCLUSION Our results indicate that the ethanol extract of leaves of Annona muricata L. causes apoptosis of liver cancer cells through ER stress pathway, which supports the ethnomedicinal use of this herb as an alternative or complementary therapy for cancer.
Collapse
Affiliation(s)
- Na Liu
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, PR China
| | - Hua Li Yang
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, PR China
| | - Pu Wang
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, PR China
| | - Yu Cheng Lu
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, PR China
| | - Ying Juan Yang
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, PR China
| | - Lan Wang
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, PR China
| | - Shao Chin Lee
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, PR China.
| |
Collapse
|
67
|
Wang S, Wang Z, Fan Q, Guo J, Galli G, Du G, Wang X, Xiao W. Ginkgolide K protects the heart against endoplasmic reticulum stress injury by activating the inositol-requiring enzyme 1α/X box-binding protein-1 pathway. Br J Pharmacol 2016; 173:2402-18. [PMID: 27186946 PMCID: PMC4945765 DOI: 10.1111/bph.13516] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/23/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Endoplasmic reticulum (ER) stress is increasingly recognized as an important causal factor of many diseases. Targeting ER stress has now emerged as a new therapeutic strategy for treating cardiovascular diseases. Here, we investigated the effects and underlying mechanism of ginkgolide K (1,10-dihydroxy-3,14-didehydroginkgolide, GK) on cardiac ER stress. EXPERIMENTAL APPROACH Cell death, apoptosis and ER stress-related signalling pathways were measured in cultured neonatal rat cardiomyocytes, treated with the ER stress inducers tunicamycin, hydrogen peroxide and thapsigargin. Acute myocardial infarction was established using left coronary artery occlusion in mice, and infarct size was measured by triphenyltetrazolium chloride staining. Echocardiography was used to assess heart function and transmission electron microscopy for evaluating ER expansion. KEY RESULTS Ginkgolide K (GK) significantly decreased ER stress-induced cell death in both in vitro and in vivo models. In ischaemic injured mice, GK treatment reduced infarct size, rescued heart dysfunction and ameliorated ER dilation. Mechanistic studies revealed that the beneficial effects of GK occurred through enhancement of inositol-requiring enzyme 1α (IRE1α)/X box-binding protein-1 (XBP1) activity, which in turn led to increased ER-associated degradation-mediated clearance of misfolded proteins and autophagy. In addition, GK was also able to partly repress the pro-apoptotic action of regulated IRE1-dependent decay and JNK pathway. CONCLUSIONS AND IMPLICATIONS In conclusion, GK acts through selective activation of the IRE1α/XBP1 pathway to limit ER stress injury. GK is revealed as a promising therapeutic agent to ameliorate ER stress for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Shoubao Wang
- Faculty of Life SciencesThe University of ManchesterManchesterUK
- Beijing Key Laboratory of Drug Targets Identification and Drug ScreeningInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhenzhong Wang
- State Key Laboratory of New‐tech for Chinese Medicine Pharmaceutical ProcessLianyungangChina
| | - Qiru Fan
- State Key Laboratory of New‐tech for Chinese Medicine Pharmaceutical ProcessLianyungangChina
- Faculty of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Jing Guo
- Faculty of Life SciencesThe University of ManchesterManchesterUK
| | - Gina Galli
- Faculty of Life SciencesThe University of ManchesterManchesterUK
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug ScreeningInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xin Wang
- Faculty of Life SciencesThe University of ManchesterManchesterUK
| | - Wei Xiao
- State Key Laboratory of New‐tech for Chinese Medicine Pharmaceutical ProcessLianyungangChina
| |
Collapse
|
68
|
Wang Q, Duan LX, Xu ZS, Wang JG, Xi SM. The protective effect of the earthworm active ingredients on hepatocellular injury induced by endoplasmic reticulum stress. Biomed Pharmacother 2016; 82:304-11. [PMID: 27470367 DOI: 10.1016/j.biopha.2016.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 02/01/2023] Open
Abstract
The earthworm is a widely used Chinese herbal medicine. There are more than 40 prescriptions including earthworms in the "Compendium of Materia Medica". TCM theory holds that earthworms exert antispasmodic and antipyretic effects through the liver meridian to calm the liver. However, the clinical effect of earthworms on liver injury has not been clearly demonstrated. We have previously established a method to extract the active ingredients from earthworms (hereinafter referred to as EWAs) [1]. In the present study, we observed protective effect of the EWAs on tunicamycin-induced ERS (endoplasmic reticulum stress) model in human hepatic L02 cells. The results showed that the EWAs promote proliferation and reduced apoptosis of ERS model in L02 cells (P<0.01). The up-regulation of ERS-related proteins, including PERK (protein kinase RNA-like endoplasmic reticulum kinase), eIF2a (eukaryotic translation initiation factor 2a), ATF4 (activating transcription factor 4) and CHOP (CCAAT/enhancer binding protein homologous protein), in L02 cell under ERS was inhibited by treatment of the EWAs (P<0.01). In summary, our data suggest the EWAs can significant attenuate ERS-induced hepatocyte injury via PERK-eIF2a-ATF4 pathway.
Collapse
Affiliation(s)
- Qi Wang
- Medical School, Henan University of Science and Technology, Luoyang 471003, China
| | - Leng-Xin Duan
- Medical School, Henan University of Science and Technology, Luoyang 471003, China.
| | - Zheng-Shun Xu
- Medical School, Henan University of Science and Technology, Luoyang 471003, China
| | - Jian-Gang Wang
- Medical School, Henan University of Science and Technology, Luoyang 471003, China
| | - Shou-Min Xi
- The Key Laboratory of Pharmacology and Medical Molecular Biology, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
69
|
Meng XX, Yao M, Zhang XD, Xu HX, Dong Q. ER stress-induced autophagy in melanoma. Clin Exp Pharmacol Physiol 2016; 42:811-6. [PMID: 26096022 DOI: 10.1111/1440-1681.12436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/30/2015] [Indexed: 02/05/2023]
Abstract
The activation of RAF-MEK-extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase cascade by v-raf murine sarcoma viral oncogene homolog B1 (BRAF)(V600E) mutation is a key alteration in melanoma. Although BRAF inhibitor (BRAFi) has achieved remarkable clinical success, the positive response to BRAFi is not sustainable, and the initial clinical benefit is eventually barred by the development of resistance to BRAFi. There is growing evidence to suggest that endoplasmic reticulum (ER) stress-induced autophagy could be a potential pro-survival mechanism that contributes to genesis of melanoma and to the resistance to BRAFi. ER stress-induced autophagy is an evolutionarily conserved membrane process. By degrading and recycling proteins and organelles via the formation of autophagous vesicles and their fusion with lysosomes, the autophagy plays a key role in homeostasis as well as pathological processes. In this review, we examine the autophagy phenomenon in melanocytic nevus, primary and metastatic melanoma, and its significance in BRAFi-resistant melanoma.
Collapse
Affiliation(s)
- Xiao-Xiao Meng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mu Yao
- Discipline of Endocrinology, Royal Prince Alfred Hospital and Charles Perkins Centre, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qihan Dong
- Discipline of Endocrinology, Royal Prince Alfred Hospital and Charles Perkins Centre, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,School of Science and Health, University of Western Sydney, Sydney, NSW, Australia
| |
Collapse
|
70
|
Zhou YF, Wang QX, Zhou HY, Chen G. Autophagy activation prevents sevoflurane-induced neurotoxicity in H4 human neuroglioma cells. Acta Pharmacol Sin 2016; 37:580-8. [PMID: 27041458 DOI: 10.1038/aps.2016.6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022]
Abstract
AIM The inhaled anesthetic sevoflurane may induce cognitive impairment in both animals and humans. Previous study has shown that sevoflurane triggers ER stress and may lead to apoptosis in rat hippocampal neurons. In this study, we examined whether sevoflurane caused autophagy and its contributions to sevoflurane induced neuronal cell injury. METHODS H4 human neuroglioma cells were exposed to 4.1% sevoflurane for 6 h. Cell viability and apoptosis ratio were assessed using a CCK8 kit and flow cytometry, respectively. Autophagosomes in the cells were detected using GFP-LC3 plasmid transfection or transmission electronic microscopy. The expression of LC3B, p62/SQSTM, C/EBP homologous protein (CHOP) and glucose-related protein 78 (GRP78) was assessed with Western blotting. RESULTS Sevoflurane treatment induced apoptosis and markedly increased the LC3-II level and GFP-LC3 puncta number, decreased p62 expression in H4 cells. Activation of autophagy by rapamycin (1 μmol/L) significantly reduced sevoflurane-induced apoptosis and increased cell viability, whereas inhibition of autophagy with 3-MA (5 mmol/L) caused the opposite effects. Furthermore, sevoflurane treatment markedly increased the expression of CHOP and GRP78, two hallmark proteins of ER stress. Inhibition of ER stress by 4-phenylbutyrate (500 μmol/L) abrogated sevoflurane-induced autophagy and apoptosis, and improved the viability. Moreover, sevoflurane-stimulated expression of CHOP and GRP78 was inhibited by rapamycin, but further enhanced by 3-MA. CONCLUSION Sevoflurane treatment induces ER stress and activates autophagy, which antagonizes sevoflurane-induced apoptosis in H4 human neuroglioma cells. The results suggest that autophagy may be a potential therapeutic target in preventing sevoflurane-induced neurotoxicity.
Collapse
|
71
|
Ebselen alters cellular oxidative status and induces endoplasmic reticulum stress in rat hippocampal astrocytes. Toxicology 2016; 357-358:74-84. [PMID: 27282967 DOI: 10.1016/j.tox.2016.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 01/08/2023]
|
72
|
Qin HS, Yu PP, Sun Y, Wang DF, Deng XF, Bao YL, Song J, Sun LG, Song ZB, Li YX. Paclitaxel inhibits selenoprotein S expression and attenuates endoplasmic reticulum stress. Mol Med Rep 2016; 13:5118-24. [PMID: 27109260 PMCID: PMC4878553 DOI: 10.3892/mmr.2016.5152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 04/11/2016] [Indexed: 01/01/2023] Open
Abstract
The primary effect of the endoplasmic reticulum (ER) stress response or unfolded protein response (UPR) is to reduce the load of unfolded protein and promote survival. However, prolonged and severe ER stress leads to tissue injury and serious diseases. Thus, it is important to identify drugs that can attenuate ER stress for the treatment of diseases. Natural products continue to provide lead compounds for drug discovery and front-line pharmacotherapy for people worldwide. Previous studies have indicated that selenoprotein S (SelS) is a sensitive and ideal maker of ER stress. In the present study, a firefly luciferase reporter driven by the SelS gene promoter was used to screen for natural compounds capable of attenuating ER stress. From this, paclitaxel (PTX) was identified to efficiently inhibit the promoter activity of the SelS gene, and further results revealed that PTX significantly inhibited the tunicamycin-induced upregulation of SelS at the mRNA and protein levels in HepG2 and HEK293T cells. In addition, PTX was able to efficiently inhibit the expression of the ER stress marker, glucose-regulated protein 78, in ER stress, indicating that PTX may reverse ER stress. Taken together, these results suggest that PTX is able to inhibit SelS expression during ER stress and attenuate ER stress.
Collapse
Affiliation(s)
- Hong-Shuang Qin
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, P.R. China
| | - Pei-Pei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, P.R. China
| | - Ying Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, P.R. China
| | - Dan-Feng Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, P.R. China
| | - Xiao-Fen Deng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, P.R. China
| | - Yong-Li Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, P.R. China
| | - Jun Song
- Department of Ultrasound, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lu-Guo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, P.R. China
| | - Zhen-Bo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, P.R. China
| | - Yu-Xin Li
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| |
Collapse
|
73
|
Yang SY, Wei FL, Hu LH, Wang CL. PERK-eIF2α-ATF4 pathway mediated by endoplasmic reticulum stress response is involved in osteodifferentiation of human periodontal ligament cells under cyclic mechanical force. Cell Signal 2016; 28:880-6. [PMID: 27079961 DOI: 10.1016/j.cellsig.2016.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/31/2016] [Accepted: 04/07/2016] [Indexed: 02/03/2023]
Abstract
To prevent excess accumulation of unfolded proteins in endoplasmic reticulum (ER), eukaryotic cells have signaling pathways from the ER to the cytosol or nucleus. These processes are known as the endoplasmic reticulum stress (ERS) response. Protein kinase R like endoplasmic reticulum kinase (PERK) is a major transducer of the ERS response and it directly phosphorylate α-subunit of eukaryotic initiation factor 2 (eIF2α), resulting in translational attenuation. Phosphorylated eIF2α specifically promoted the translation of the activating transcription factor 4 (ATF4). ATF4 is a known important transcription factor which plays a pivotal role in osteoblast differentiation and bone formation. Furthermore, ATF4 is a downstream target of PERK. Studies have shown that PERK-eIF2α-ATF4 signal pathway mediated by ERS was involved in osteoblastic differentiation of osteoblasts. We have known that orthodontic tooth movement is a process of periodontal ligament cells (PDLCs) osteodifferentiation and alveolar bone remodeling under mechanical force. However, the involvement of PERK-eIF2α-ATF4 signal pathway mediated by ERS in osteogenic differentiation of PDLCs under mechanical force has not been unclear. In our study, we applied the cyclic mechanical force at 10% elongation with 0.5Hz to mimic occlusal force, and explored whether PERK-eIF2α-ATF4 signaling pathway mediated by ERS involved in osteogenic differentiation of PDLCs under mechanical force. Firstly, cyclic mechanical force will induce ERS and intensify several osteoblast marker genes (ATF4, OCN, and BSP). Next, we found that PERK overexpression increased eIF2α phosphorylation and expression of ATF4, furthermore induced BSP, OCN expression, thus it will promote osteodifferentiation of hPDLCs; mechanical force could promote this effect. However, PERK(-/-) cells showed the opposite changes, which will inhibit osteodifferentiation of hPDLCs. Taken together, our study proved that PERK-eIF2α-ATF4 signaling pathway mediated by ERS involved in osteoblast differentiation of PDLCs under cyclic mechanical force.
Collapse
Affiliation(s)
- Shuang-Yan Yang
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, Shandong 250012, PR China
| | - Fu-Lan Wei
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, Shandong 250012, PR China
| | - Li-Hua Hu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, Shandong 250012, PR China
| | - Chun-Ling Wang
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
74
|
Park SH, Kang MK, Choi YJ, Kim YH, Antika LD, Lim SS, Kang YH. Dietary compound α-asarone alleviates ER stress-mediated apoptosis in 7β-hydroxycholesterol-challenged macrophages. Mol Nutr Food Res 2016; 60:1033-47. [DOI: 10.1002/mnfr.201500750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/26/2015] [Accepted: 02/03/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Sin-Hye Park
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Yean-Jung Choi
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Yun-Ho Kim
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Lucia Dwi Antika
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| |
Collapse
|
75
|
Jian L, Lu Y, Lu S, Lu C. Chemical chaperone 4-phenylbutyric acid protects H9c2 cardiomyocytes from ischemia/reperfusion injury by attenuating endoplasmic reticulum stress-induced apoptosis. Mol Med Rep 2016; 13:4386-92. [PMID: 27035223 DOI: 10.3892/mmr.2016.5063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 02/02/2016] [Indexed: 11/06/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) is a potential contributor to high rates of mortality in several cardiovascular diseases. I/R initiates the unfolded protein response and endoplasmic reticulum (ER) stress, which may lead to apoptotic pathways and exaggerate I/R injury. 4‑phenylbutyric acid (4‑PBA), a low molecular weight, terminal aromatic substituted fatty acid, has been reported to function as an ER chaperone. The aim of the present study was to investigate whether 4‑PBA is able to reduce ER stress‑induced apoptosis and prevent cardiomyocyte damage during the process of I/R in vitro. Accordingly, the rat cardiomyocyte line, H9c2, was treated with hypoxia/reoxygenation as an I/R model in vitro. Myocardium apoptosis was determined with TUNEL staining. The expression of ER stress‑related proteins were examined by western blotting. The resulting data showed that I/R activates the ER stress proteins, glucose‑regulated protein 78, activating transcription factor 6 and protein kinase RNA‑like endoplasmic reticulum kinase, which were all reduced by pretreatment with 4‑PBA. In addition, pretreatment with 4‑PBA significantly inhibited the expression levels of pro‑apoptotic proteins, C/EBP homologous protein, B cell lymphoma (Bcl‑2)‑associated X protein and phosphorylated c‑Jun N‑terminal kinase, and enhanced the expression of the anti‑apoptotic protein Bcl‑2 (n=3; P<0.05). The data demonstrated that I/R initiates ER stress‑associated apoptotic pathways, and 4‑PBA pretreatment protected the cardiomyocytes from I/R‑induced cell death. To the best of our knowledge, the present study is the first to report on the cell repair mechanism of 4‑PBA against I/R damage in cardiomyocytes based on ER stress‑associated apoptotic pathways.
Collapse
Affiliation(s)
- Lian Jian
- Cardiovascular Department, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Yuan Lu
- Cardiovascular Department, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Shan Lu
- Radiology Department, Tianjin Medical University Metabolic Diseases Hospital, Tianjin 300000, P.R. China
| | - Chengzhi Lu
- Cardiovascular Department, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
76
|
Ophiopogonin D maintains Ca2+ homeostasis in rat cardiomyocytes in vitro by upregulating CYP2J3/EETs and suppressing ER stress. Acta Pharmacol Sin 2016; 37:368-81. [PMID: 26838069 DOI: 10.1038/aps.2015.146] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/10/2015] [Indexed: 12/28/2022]
Abstract
AIM CYP2J3 in myocardium metabolizes arachidonic acid to 4 regioisomeric epoxyeicosatrienoic acids (EETs), which have diverse biological activities in rat heart. In this study we examined whether CYP2J3 was involved in cardioprotective effects of ophiopogonin D (OPD), a steroidal glycoside isolated from Chinese herb Radix ophiopogonis. METHODS Rat cardiomyoblast cell line (H9c2 cells) was tested. Intracellular Ca(2+) concentrations ([Ca(2+)]i) were measured using Fluo-4/AM. The expression of calcium-regulating molecules and ER stress signaling molecules was measured with qRT-PCR and Western blot analyses. Cell apoptosis was quantified with Hoechst 33258 staining and TUNEL assay. The level of 14,15-DHET, a stable metabolite of 14,15-EET, was assessed with ELISA. RESULTS Angiotensin II (10(-6) mol/L) significantly decreased the expression of calcium-regulating molecules (SERCA2a, PLB, RyR2 and FKBP12.6), and elevated [Ca(2+)]i in H9c2 cells. Furthermore, angiotensin II markedly increased the expression of ER stress signaling molecules (GRP78, CHOP, p-JNK and cleaved caspase-12) and ER stress-mediated apoptosis. OPD (100, 250 and 500 nmol/L) dose-dependently increased CYP2J3 expression and 14,15-DHET levels in normal H9c2 cells. Pretreatment of H9c2 cells with OPD suppressed angiotensin II-induced abnormalities in Ca(2+) homeostasis, ER stress responses and apoptosis. Overexpression of CYP2J3 or addition of exogenous 14,15-EET also prevented angiotensin II-induced abnormalities in Ca(2+) homeostasis, whereas transfection with CYP2J3 siRNA diminished the effects of OPD on Ca(2+) homeostasis. Furthermore, the intracellular Ca(2+) chelator BAPTA suppressed angiotensin II-induced ER stress responses and apoptosis in H9c2 cells. CONCLUSION OPD is a novel CYP2J3 inducer that may offer a therapeutic benefit in treatment of cardiovascular diseases related to disturbance of Ca(2+) homeostasis and ER stress.
Collapse
|
77
|
Yu Y, Sun G, Luo Y, Wang M, Chen R, Zhang J, Ai Q, Xing N, Sun X. Cardioprotective effects of Notoginsenoside R1 against ischemia/reperfusion injuries by regulating oxidative stress- and endoplasmic reticulum stress- related signaling pathways. Sci Rep 2016; 6:21730. [PMID: 26888485 PMCID: PMC4757886 DOI: 10.1038/srep21730] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 12/20/2022] Open
Abstract
Background: Recent reports suggested the involvement of oxidative stress- and endoplasmic reticulum stress (ERS)-associated pathways in the progression of ischemia/reperfusion (I/R) injury. Notoginsenoside R1 (NGR1) is a novel saponin isolated from P. notoginseng, which has a history of prevention and treatment of cardiovascular diseases. Objective: We aimed to examine the cardioprotective effects of NGR1 on I/R-induced heart dysfunction ex vivo and in vitro. Methods: H9c2 cadiomyocytes were incubated with NGR1 for 24 h and exposed to hypoxia/reoxygenation. Isolated rat hearts were perfused by NGR1 for 15 min and then subjected to global ischemia/reperfusion. Hemodynamic parameters were monitored as left ventricular systolic pressure (LVSP), heart rate, and maximal rate of increase and decrease of left ventricular pressure (±dP/dt max/min). Results: NGR1 pretreatment prevents cell apoptosis and delays the onset of ERS by decreasing the protein expression levels of ERS-responsive proteins GRP78, P-PERK, ATF6, IRE, and inhibiting the expression of pro-apoptosis proteins CHOP, Caspase-12, and P-JNK. Besides, NGR1 scavenges free radical, and increases the activity of antioxidase. NGR1 inhibits Tunicamycin-induced cell death and cardic dysfunction. Conclusion: We elucidated the significant cardioprotective effects of NGR1 against I/R injuries, and demonstrated the involvement of oxidative stress and ERS in the protective effects of NGR1.
Collapse
Affiliation(s)
- Yingli Yu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Yun Luo
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Rongchang Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Jingyi Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Qidi Ai
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Na Xing
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| |
Collapse
|
78
|
Cominacini L, Mozzini C, Garbin U, Pasini A, Stranieri C, Solani E, Vallerio P, Tinelli IA, Fratta Pasini A. Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases. Free Radic Biol Med 2015; 88:233-242. [PMID: 26051167 DOI: 10.1016/j.freeradbiomed.2015.05.027] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 12/30/2022]
Abstract
Various cellular perturbations implicated in the pathophysiology of human diseases, including cardiovascular and neurodegenerative diseases, diabetes mellitus, obesity, and liver diseases, can alter endoplasmic reticulum (ER) function and lead to the abnormal accumulation of misfolded proteins. This situation configures the so-called ER stress, a form of intracellular stress that occurs whenever the protein-folding capacity of the ER is overwhelmed. Reduction in blood flow as a result of atherosclerotic coronary artery disease causes tissue hypoxia, a condition that induces protein misfolding and ER stress. In addition, ER stress has an important role in cardiac hypertrophy mainly in the transition to heart failure (HF). ER transmembrane sensors detect the accumulation of unfolded proteins and activate transcriptional and translational pathways that deal with unfolded and misfolded proteins, known as the unfolded protein response (UPR). Once the UPR fails to control the level of unfolded and misfolded proteins in the ER, ER-initiated apoptotic signaling is induced. Furthermore, there is considerable evidence that implicates the presence of oxidative stress and subsequent related cellular damage as an initial cause of injury to the myocardium after ischemia/reperfusion (I/R) and in cardiac hypertrophy secondary to pressure overload. Oxidative stress is counterbalanced by complex antioxidant defense systems regulated by a series of multiple pathways, including the UPR, to ensure that the response to oxidants is adequate. Nuclear factor-E2-related factor (Nrf2) is an emerging regulator of cellular resistance to oxidants; Nrf2 is strictly interrelated with the UPR sensor called pancreatic endoplasmic reticulum kinase. A series of studies has shown that interventions against ER stress and Nrf2 activation reduce myocardial infarct size and cardiac hypertrophy in the transition to HF in animals exposed to I/R injury and pressure overload, respectively. Finally, recent data showed that Nrf2/antioxidant-response element pathway activation may be of importance also in ischemic preconditioning, a phenomenon in which the heart is subjected to one or more episodes of nonlethal myocardial I/R before the sustained coronary artery occlusion.
Collapse
Affiliation(s)
- Luciano Cominacini
- Section of Internal Medicine, Department of Medicine, University of Verona, 37134 Verona, Italy.
| | - Chiara Mozzini
- Section of Internal Medicine, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Ulisse Garbin
- Section of Internal Medicine, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Andrea Pasini
- Section of Internal Medicine, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Chiara Stranieri
- Section of Internal Medicine, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Erika Solani
- Section of Internal Medicine, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Paola Vallerio
- Section of Internal Medicine, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Anna Fratta Pasini
- Section of Internal Medicine, Department of Medicine, University of Verona, 37134 Verona, Italy
| |
Collapse
|
79
|
Zimmermann K, Baldinger J, Mayerhofer B, Atanasov AG, Dirsch VM, Heiss EH. Activated AMPK boosts the Nrf2/HO-1 signaling axis--A role for the unfolded protein response. Free Radic Biol Med 2015; 88:417-426. [PMID: 25843659 PMCID: PMC4568300 DOI: 10.1016/j.freeradbiomed.2015.03.030] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/20/2022]
Abstract
In light of the emerging interplay between redox and metabolic signaling pathways we investigated the potential cross talk between nuclear factor E2-related factor 2 (Nrf2) and AMP-activated kinase (AMPK), central regulators of the cellular redox and energy balance, respectively. Making use of xanthohumol (XN) as an activator of both the AMPK and the Nrf2 signaling pathway we show that AMPK exerts a positive influence on Nrf2/heme oxygenase (HO)-1 signaling in mouse embryonic fibroblasts. Genetic ablation and pharmacological inhibition of AMPK blunts Nrf2-dependent HO-1 expression by XN already at the mRNA level. XN leads to AMPK activation via interference with mitochondrial function and activation of liver kinase B1 as upstream AMPK kinase. The subsequent AMPK-mediated enhancement of the Nrf2/HO-1 response does not depend on inhibition of the mammalian target of rapamycin, inhibition of glycogen synthase kinase 3β, or altered abundance of Nrf2 (total and nuclear). However, reduced endoplasmic reticulum stress was identified and elaborated as a step in the AMPK-augmented Nrf2/HO-1 response. Overall, we shed more light on the hitherto incompletely understood cross talk between the LKB1/AMPK and the Nrf2/HO-1 axis revealing for the first time involvement of the unfolded protein response as an additional player and suggesting tight cooperation between signaling pathways controlling cellular redox, energy, or protein homeostasis.
Collapse
Affiliation(s)
- Kristin Zimmermann
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Johannes Baldinger
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Barbara Mayerhofer
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
80
|
Karademir B, Corek C, Ozer NK. Endoplasmic reticulum stress and proteasomal system in amyotrophic lateral sclerosis. Free Radic Biol Med 2015; 88:42-50. [PMID: 26073124 DOI: 10.1016/j.freeradbiomed.2015.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022]
Abstract
Protein processing including folding, unfolding and degradation is involved in the mechanisms of many diseases. Unfolded protein response and/or endoplasmic reticulum stress are accepted to be the first steps which should be completed via protein degradation. In this direction, proteasomal system and autophagy play important role as the degradation pathways and controlled via complex mechanisms. Amyotrophic lateral sclerosis is a multifactorial neurodegenerative disease which is also known as the most catastrophic one. Mutation of many different genes are involved in the pathogenesis such as superoxide dismutase 1, chromosome 9 open reading frame 72 and ubiquilin 2. These genes are mainly related to the antioxidant defense systems, endoplasmic reticulum stress related proteins and also protein aggregation, degradation pathways and therefore mutation of these genes cause related disorders.This review focused on the role of protein processing via endoplasmic reticulum and proteasomal system in amyotrophic lateral sclerosis which are the main players in the pathology. In this direction, dysfunction of endoplasmic reticulum associated degradation and related cell death mechanisms that are autophagy/apoptosis have been detailed.
Collapse
Affiliation(s)
- Betul Karademir
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Ceyda Corek
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
81
|
Fernández A, Ordóñez R, Reiter RJ, González-Gallego J, Mauriz JL. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res 2015. [PMID: 26201382 DOI: 10.1111/jpi.12264] [Citation(s) in RCA: 388] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) is a dynamic organelle that participates in a number of cellular functions by controlling lipid metabolism, calcium stores, and proteostasis. Under stressful situations, the ER environment is compromised, and protein maturation is impaired; this causes misfolded proteins to accumulate and a characteristic stress response named unfolded protein response (UPR). UPR protects cells from stress and contributes to cellular homeostasis re-establishment; however, during prolonged ER stress, UPR activation promotes cell death. ER stressors can modulate autophagy which in turn, depending of the situation, induces cell survival or death. Interactions of different autophagy- and apoptosis-related proteins and also common signaling pathways have been found, suggesting an interplay between these cellular processes, although their dynamic features are still unknown. A number of pathologies including metabolic, neurodegenerative and cardiovascular diseases, cancer, inflammation, and viral infections are associated with ER stress, leading to a growing interest in targeting components of the UPR as a therapeutic strategy. Melatonin has a variety of antioxidant, anti-inflammatory, and antitumor effects. As such, it modulates apoptosis and autophagy in cancer cells, neurodegeneration and the development of liver diseases as well as other pathologies. Here, we review the effects of melatonin on the main ER stress mechanisms, focusing on its ability to regulate the autophagic and apoptotic processes. As the number of studies that have analyzed ER stress modulation by this indole remains limited, further research is necessary for a better understanding of the crosstalk between ER stress, autophagy, and apoptosis and to clearly delineate the mechanisms by which melatonin modulates these responses.
Collapse
Affiliation(s)
- Anna Fernández
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Raquel Ordóñez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - José L Mauriz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
82
|
Abstract
Introduction: Genetic skeletal diseases (GSDs) are a diverse and complex group of rare genetic conditions that affect the development and homeostasis of the skeleton. Although individually rare, as a group of related diseases, GSDs have an overall prevalence of at least 1 per 4,000 children. There are currently very few specific therapeutic interventions to prevent, halt or modify skeletal disease progression and therefore the generation of new and effective treatments requires novel and innovative research that can identify tractable therapeutic targets and biomarkers of these diseases. Areas covered: Remarkable progress has been made in identifying the genetic basis of the majority of GSDs and in developing relevant model systems that have delivered new knowledge on disease mechanisms and are now starting to identify novel therapeutic targets. This review will provide an overview of disease mechanisms that are shared amongst groups of different GSDs and describe potential therapeutic approaches that are under investigation. Expert opinion: The extensive clinical variability and genetic heterogeneity of GSDs renders this broad group of rare diseases a bench to bedside challenge. However, the evolving hypothesis that clinically different diseases might share common disease mechanisms is a powerful concept that will generate critical mass for the identification and validation of novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Michael D Briggs
- Newcastle University, Institute of Genetic Medicine, International Centre for Life , Central Parkway, Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Peter A Bell
- Newcastle University, Institute of Genetic Medicine, International Centre for Life , Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Michael J Wright
- Newcastle University, Institute of Genetic Medicine, International Centre for Life , Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Katarzyna A Pirog
- Newcastle University, Institute of Genetic Medicine, International Centre for Life , Newcastle-upon-Tyne, NE1 3BZ, UK
| |
Collapse
|
83
|
Peng P, Ma Q, Wang L, Zhang O, Han H, Liu X, Zhou Y, Zhao Y. Preconditioning With Tauroursodeoxycholic Acid Protects Against Contrast-Induced HK-2 Cell Apoptosis by Inhibiting Endoplasmic Reticulum Stress. Angiology 2015; 66:941-9. [DOI: 10.1177/0003319715575965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To investigate whether tauroursodeoxycholic acid (TUDCA) could attenuate contrast media (CM)-induced renal tubular cell apoptosis by inhibiting endoplasmic reticulum stress (ERS), we exposed HK-2 cells to increasing doses of meglumine diatrizoate (20, 40, and 80 mg I/mL) for 2 to 16 hours, with/without TUDCA preconditioning for 24 hours. Cell viability test, Hoechst 33258 staining, and flow cytometry were used to detect meglumine diatrizoate-induced cell apoptosis, while real-time polymerase chain reaction and Western blot analysis were used to measure the expressions of ERS markers of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), and the apoptosis-related marker of caspase 12. Cell apoptosis and messenger RNA (mRNA) expression of GRP78 ( P = .005), ATF4 ( P = .01), and caspase 12 ( P = .001) were significantly higher in the CM 4 hours group than the control as well as the protein expressions. The TUDCA preconditioning reduced the mRNA expression of GRP78, ATF4, and caspase 12 in the CM 4 hours groups ( P = .009, .019, and .003, respectively) as well as the protein expression. In conclusion, TUDCA could protect renal tubular cells from meglumine diatrizoate-induced apoptosis by inhibiting ERS.
Collapse
Affiliation(s)
- Pingan Peng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Qian Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Le Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Ou Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Hongya Han
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Xiaoli Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Yingxin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| |
Collapse
|